Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Front Immunol ; 15: 1294898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660301

RESUMEN

Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas no Estructurales Virales , Humanos , Infecciones por Adenovirus Humanos/inmunología , Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/inmunología , Adenovirus Humanos/fisiología , Células HEK293 , Inflamasomas/metabolismo , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Unión Proteica , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo
2.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673764

RESUMEN

The exacerbation of pneumonia in children with human adenovirus type 3 (HAdV-3E) is secondary to a Staphylococcus aureus (S. aureus) infection. The influence of host-pathogen interactions on disease progression remains unclear. It is important to note that S. aureus infections following an HAdV-3E infection are frequently observed in clinical settings, yet the underlying susceptibility mechanisms are not fully understood. This study utilized an A549 cell model to investigate secondary infection with S. aureus following an HAdV-3E infection. The findings suggest that HAdV-3E exacerbates the S. aureus infection by intensifying lung epithelial cell damage. The results highlight the role of HAdV-3E in enhancing the interferon signaling pathway through RIG-I (DDX58), resulting in the increased expression of interferon-stimulating factors like MX1, RSAD2, and USP18. The increase in interferon-stimulating factors inhibits the NF-κB and MAPK/P38 pro-inflammatory signaling pathways. These findings reveal new mechanisms of action for HAdV-3E and S. aureus in secondary infections, enhancing our comprehension of pathogenesis.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Proteína 58 DEAD Box , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/inmunología , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/fisiología , Adenovirus Humanos/inmunología , Coinfección/microbiología , Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inflamación/metabolismo , FN-kappa B/metabolismo , Receptores Inmunológicos/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Ubiquitina Tiolesterasa
3.
J Virol ; 98(3): e0157623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38323814

RESUMEN

Adenovirus (AdV) infection of the respiratory epithelium is common but poorly understood. Human AdV species C types, such as HAdV-C5, utilize the Coxsackie-adenovirus receptor (CAR) for attachment and subsequently integrins for entry. CAR and integrins are however located deep within the tight junctions in the mucosa where they would not be easily accessible. Recently, a model for CAR-independent AdV entry was proposed. In this model, human lactoferrin (hLF), an innate immune protein, aids the viral uptake into epithelial cells by mediating interactions between the major capsid protein, hexon, and yet unknown host cellular receptor(s). However, a detailed understanding of the molecular interactions driving this mechanism is lacking. Here, we present a new cryo-EM structure of HAdV-5C hexon at high resolution alongside a hybrid structure of HAdV-5C hexon complexed with human lactoferrin (hLF). These structures reveal the molecular determinants of the interaction between hLF and HAdV-C5 hexon. hLF engages hexon primarily via its N-terminal lactoferricin (Lfcin) region, interacting with hexon's hypervariable region 1 (HVR-1). Mutational analyses pinpoint critical Lfcin contacts and also identify additional regions within hLF that critically contribute to hexon binding. Our study sheds more light on the intricate mechanism by which HAdV-C5 utilizes soluble hLF/Lfcin for cellular entry. These findings hold promise for advancing gene therapy applications and inform vaccine development. IMPORTANCE: Our study delves into the structural aspects of adenovirus (AdV) infections, specifically HAdV-C5 in the respiratory epithelium. It uncovers the molecular details of a novel pathway where human lactoferrin (hLF) interacts with the major capsid protein, hexon, facilitating viral entry, and bypassing traditional receptors such as CAR and integrins. The study's cryo-EM structures reveal how hLF engages hexon, primarily through its N-terminal lactoferricin (Lfcin) region and hexon's hypervariable region 1 (HVR-1). Mutational analyses identify critical Lfcin contacts and other regions within hLF vital for hexon binding. This structural insight sheds light on HAdV-C5's mechanism of utilizing soluble hLF/Lfcin for cellular entry, holding promise for gene therapy and vaccine development advancements in adenovirus research.


Asunto(s)
Adenovirus Humanos , Proteínas de la Cápside , Lactoferrina , Receptores Virales , Internalización del Virus , Humanos , Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/química , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Adenovirus Humanos/ultraestructura , Sitios de Unión/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Lactoferrina/química , Lactoferrina/genética , Lactoferrina/metabolismo , Lactoferrina/ultraestructura , Modelos Biológicos , Mutación , Unión Proteica , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Receptores Virales/ultraestructura , Solubilidad , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología
4.
Curr Med Sci ; 44(1): 121-133, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38393525

RESUMEN

OBJECTIVE: Human adenovirus (HAdV) infection is common and can develop to serious conditions with high mortality, yet the mechanism of HAdV infection remains unclear. In the present study, the serum metabolite profiles of HAdV-7-infected patients with pneumonia or upper respiratory tract infection (URTI) were explored. METHODS: In total, 35 patients were enrolled in the study following an outbreak of HAdV-7 in the army, of whom 14 had pneumonia and 21 had URTI. Blood samples were collected at the acute stage and at the recovery stage and were analyzed by untargeted metabolomics. RESULTS: Over 90% of the differential metabolites identified between the pneumonia patients and URTI patients were lipids and lipid-like molecules, including glycerophospholipids, fatty acyls, and sphingolipids. The metabolic pathways that were significantly enriched were primarily the lipid metabolism pathways, including sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. The sphingolipid metabolism was identified as a significantly differential pathway between the pneumonia patients and URTI patients and between the acute and recovery stages for the pneumonia patients, but not between the acute and recovery stages for the URTI patients. Ceramide and lactosylceramide, involved in sphingolipid metabolism, were significantly higher in the pneumonia patients than in the URTI patients with good discrimination abilities [area under curve (AUC) 0.742 and 0.716, respectively; combination AUC 0.801]. CONCLUSION: Our results suggested that HAdV modulated lipid metabolism for both the patients with URTI and pneumonia, especially the sphingolipid metabolism involving ceramide and lactosylceramide, which might thus be a potential intervention target in the treatment of HAdV infection.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Antígenos CD , Neumonía , Infecciones del Sistema Respiratorio , Humanos , Adenovirus Humanos/genética , Lactosilceramidos , Infecciones del Sistema Respiratorio/epidemiología , Neumonía/complicaciones , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/metabolismo
5.
Front Immunol ; 14: 1169968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180156

RESUMEN

Introduction: Human adenovirus (HAdV) is a common respiratory virus, which can lead to severe pneumonia in children and immunocompromised persons, and canonical inflammasomes are reported to be involved in anti-HAdV defense. However, whether HAdV induced noncanonical inflammasome activation has not been explored. This study aims to explore the broad roles of noncanonical inflammasomes during HAdV infection to investigate the regulatory mechanism of HAdV-induced pulmonary inflammatory damage. Methods: We mined available data on GEO database and collected clinical samples from adenovirus pneumonia pediatric patients to investigate the expression of noncanonical inflammasome and its clinical relevance. An in vitro cell model was employed to investigate the roles of noncanonical inflammasomes in macrophages in response to HAdV infection. Results: Bioinformatics analysis showed that inflammasome-related genes, including caspase-4 and caspase-5, were enriched in adenovirus pneumonia. Moreover, caspase-4 and caspase-5 expression levels were significantly increased in the cells isolated from peripheral blood and broncho-alveolar lavage fluid (BALF) of pediatric patients with adenovirus pneumonia, and positively correlated with clinical parameters of inflammatory damage. In vitro experiments revealed that HAdV infection promoted caspase-4/5 expression, activation and pyroptosis in differentiated THP-1 (dTHP-1) human macrophages via NF-κB, rather than STING signaling pathway. Interestingly, silencing of caspase-4 and caspase-5 in dTHP-1 cells suppressed HAdV-induced noncanonical inflammasome activation and macrophage pyroptosis, and dramatically decreased the HAdV titer in cell supernatants, by influencing virus release rather than other stages of virus life cycle. Discussion: In conclusion, our study demonstrated that HAdV infection induced macrophage pyroptosis by triggering noncanonical inflammasome activation via a NF-kB-dependent manner, which may explore new perspectives on the pathogenesis of HAdV-induced inflammatory damage. And high expression levels of caspase-4 and caspase-5 may be a biomarker for predicting the severity of adenovirus pneumonia.


Asunto(s)
Infecciones por Adenoviridae , Infecciones por Adenovirus Humanos , Neumonía Viral , Humanos , Niño , Inflamasomas/metabolismo , Piroptosis , Infecciones por Adenovirus Humanos/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Caspasas/metabolismo , Neumonía Viral/metabolismo , Infecciones por Adenoviridae/complicaciones
6.
J Virol ; 96(3): e0082621, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787457

RESUMEN

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/clasificación , Adenovirus Humanos/fisiología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Interacciones Huésped-Patógeno , Proteína Cofactora de Membrana/metabolismo , Adenovirus Humanos/ultraestructura , Animales , Biomarcadores , Recuento de Células Sanguíneas , Células CHO , Línea Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/química , Cricetulus , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Proteína Cofactora de Membrana/química , Proteína Cofactora de Membrana/genética , Ratones Transgénicos , Modelos Biológicos , Modelos Moleculares , Mutagénesis , Unión Proteica , Conformación Proteica , Serogrupo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacología , Relación Estructura-Actividad
7.
J Virol ; 96(3): e0083821, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787461

RESUMEN

Over the past decades, studies on the biology of human adenoviruses (HAdVs) mainly focused on the HAdV prototype species C type 5 (HAdV-C5) and revealed fundamental molecular insights into mechanisms of viral replication and viral cell transformation. Recently, other HAdV species are gaining more and more attention in the field. Reports on large E1B proteins (E1B-55K) from different HAdV species showed that these multifactorial proteins possess strikingly different features along with highly conserved functions. In this work, we identified potential SUMO-conjugation motifs (SCMs) in E1B-55K proteins from HAdV species A to F. Mutational inactivation of these SCMs demonstrated that HAdV E1B-55K proteins are SUMOylated at a single lysine residue that is highly conserved among HAdV species B to E. Moreover, we provide evidence that E1B-55K SUMOylation is a potent regulator of intracellular localization and p53-mediated transcription in most HAdV species. We also identified a lysine residue at position 101 (K101), which is unique to HAdV-C5 E1B-55K and specifically regulates its SUMOylation and nucleo-cytoplasmic shuttling. Our findings reveal important new aspects on HAdV E1B-55K proteins and suggest that different E1B-55K species possess conserved SCMs while their SUMOylation has divergent cellular effects during infection. IMPORTANCE E1B-55K is a multifunctional adenoviral protein and its functions are highly regulated by SUMOylation. Although functional consequences of SUMOylated HAdV-C5 E1B-55K are well studied, we lack information on the effects of SUMOylation on homologous E1B-55K proteins from other HAdV species. Here, we show that SUMOylation is a conserved posttranslational modification in most of the E1B-55K proteins, similar to what we know about HAdV-C5 E1B-55K. Moreover, we identify subcellular localization and regulation of p53-dependent transcription as highly conserved SUMOylation-regulated E1B-55K functions. Thus, our results highlight how HAdV proteins might have evolved in different HAdV species with conserved domains involved in virus replication and differing alternative functions and interactions with the host cell machinery. Future research will link these differences and similarities to the diverse pathogenicity and organ tropism of the different HAdV species.


Asunto(s)
Proteínas E1B de Adenovirus/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/fisiología , Interacciones Huésped-Patógeno , Proteínas E1B de Adenovirus/química , Infecciones por Adenovirus Humanos/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteína SUMO-1/metabolismo , Especificidad de la Especie , Sumoilación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Viruses ; 13(2)2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672966

RESUMEN

Human adenovirus (HAdV)-F40 and -F41 are leading causes of diarrhea and diarrhea-associated mortality in children under the age of five, but the mechanisms by which they infect host cells are poorly understood. HAdVs initiate infection through interactions between the knob domain of the fiber capsid protein and host cell receptors. Unlike most other HAdVs, HAdV-F40 and -F41 possess two different fiber proteins-a long fiber and a short fiber. Whereas the long fiber binds to the Coxsackievirus and adenovirus receptor (CAR), no binding partners have been identified for the short fiber. In this study, we identified heparan sulfate (HS) as an interaction partner for the short fiber of enteric HAdVs. We demonstrate that exposure to acidic pH, which mimics the environment of the stomach, inactivates the interaction of enteric adenovirus with CAR. However, the short fiber:HS interaction is resistant to and even enhanced by acidic pH, which allows attachment to host cells. Our results suggest a switch in receptor usage of enteric HAdVs after exposure to acidic pH and add to the understanding of the function of the short fibers. These results may also be useful for antiviral drug development and the utilization of enteric HAdVs for clinical applications such as vaccine development.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/metabolismo , Heparitina Sulfato/metabolismo , Receptores Virales/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/química , Adenovirus Humanos/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Preescolar , Femenino , Humanos , Lactante , Masculino , Dominios Proteicos
9.
Life Sci ; 265: 118762, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33189825

RESUMEN

AIMS: This study is to investigate the role of adenovirus type 36 (Ad36) in inducing differentiation of human adipose-derived stem cells (hADSCs) into brown adipocytes. MAIN METHODS: The hADSCs were induced to differentiate into adipocytes by a cocktail method and Ad36, respectively. They were collected on the 2nd, 4th, 6th, and 8th day, respectively. LncRNA ROR was silenced by siRNA. RT-qPCR and Western-blot were used to detect the mRNA and protein levels. Transmission electron microscopy was used to observe the mitochondria. KEY FINDINGS: The mRNA and protein expression levels of LncRNA ROR, Cidea, Dio2, Fgf21, Ucp1, Prdm16, Cox5b, Atp5o, Atp6, and Nd2 in the Ad36 induction group were significantly higher than those in the cocktail induction group. The expression levels of Leptin mRNA and protein in the Ad36 induction group were significantly lower than those in the cocktail induction group. After siRNA knockdown of LncRNA ROR, mRNA and protein expression levels of Cidea, Dio2, Fgf21, Ucp1, Prdm16, Cox5b, Atp5o, Atp6 and Nd2 were significantly lower than the control group during the induction of hADSC differentiation into adipocytes by Ad36. Additionally, mitochondria in the Ad36 induction group was increased compared to that in the cocktail induction group. SIGNIFICANCE: Ad36 may promote the differentiation of hADSCs into brown adipocytes by up-regulating LncRNA ROR.


Asunto(s)
Adenoviridae/metabolismo , Infecciones por Adenovirus Humanos/metabolismo , Adipocitos Marrones/virología , Células Madre Mesenquimatosas/metabolismo , ARN Largo no Codificante/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Marrones/fisiología , Adipocitos Marrones/ultraestructura , Western Blotting , Diferenciación Celular , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Front Immunol ; 11: 551413, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072092

RESUMEN

Human Adenovirus (AdV) infection is very common and usually has a significant impact on children. AdV-induced inflammation is believed to be one of the main causes of severe symptoms. However, an inflammatory response profile in the airway in AdV-infected children is still lacking, and the mechanism underlying AdV-induced inflammation in the airway is also poorly understood. In the current study, we determined the expression of a panel of inflammation cytokines in the airway samples from AdV 7 infected children and further investigated the molecular mechanism underlying AdV 7-induced cytokine expression. Our results showed that eight out of 13 tested inflammatory cytokines were significantly increased in nasal washes of AdV 7-infected children comparing to healthy control, with IL-6 showing the highest enhancement. AdV 7 infection of bronchial epithelial cell line and primary airway epithelial cells confirmed that AdV 7 increased IL-6 mRNA and protein expression in an infection dose-dependent manner. Promoter analysis revealed that AdV 7 infection transactivated IL-6 promoter and a NF-κB binding site in IL-6 promoter was involved in the transactivation. Further analysis showed that upon AdV 7 infection, NF-κB p65 was phosphorylated and translocated into nucleus and bound onto IL-6 promoter. Signaling pathway analysis revealed that p38/NF-κB pathway was involved in AdV 7 infection induced IL-6 elevation. Taken together, our study shows that AdV 7 infection triggers the expression of a range of inflammatory cytokines including IL-6 in the airway of infected children, and AdV 7 enhances IL-6 expression by transactivating IL-6 promoter via p38/NF-κB signaling pathway. Findings of our current study have provided more information toward a better understanding of AdV-induced airway inflammation, which might also benefit the development of intervention strategies.


Asunto(s)
Infecciones por Adenovirus Humanos/genética , Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/inmunología , Interleucina-6/genética , FN-kappa B/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Infecciones por Adenovirus Humanos/virología , Citocinas/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología
11.
Dis Model Mech ; 13(8)2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32651192

RESUMEN

Model animals are indispensable for the study of human diseases, and in general, of complex biological processes. The Syrian hamster is an important model animal for infectious diseases, behavioral science and metabolic science, for which more experimental tools are becoming available. Here, we describe the generation and characterization of an interleukin-2 receptor subunit gamma (Il2rg) knockout (KO) Syrian hamster strain. In humans, mutations in IL2RG can result in a total failure of T and natural killer (NK) lymphocyte development and nonfunctional B lymphocytes (X-linked severe combined immunodeficiency; XSCID). Therefore, we sought to develop a non-murine model to study XSCID and the infectious diseases associated with IL2RG deficiency. We demonstrated that the Il2rg KO hamsters have a lymphoid compartment that is greatly reduced in size and diversity, and is impaired in function. As a result of the defective adaptive immune response, Il2rg KO hamsters developed a more severe human adenovirus infection and cleared virus less efficiently than immune competent wild-type hamsters. Because of this enhanced virus replication, Il2rg KO hamsters developed more severe adenovirus-induced liver pathology than wild-type hamsters. This novel hamster strain will provide researchers with a new tool to investigate human XSCID and its related infections.


Asunto(s)
Inmunidad Adaptativa , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/patogenicidad , Huésped Inmunocomprometido , Subunidad gamma Común de Receptores de Interleucina/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Células A549 , Infecciones por Adenovirus Humanos/genética , Infecciones por Adenovirus Humanos/inmunología , Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Hígado/inmunología , Hígado/metabolismo , Hígado/virología , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/virología , Masculino , Mesocricetus/genética , Carga Viral , Replicación Viral , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/inmunología , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/metabolismo
12.
PLoS Pathog ; 16(6): e1008588, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32584886

RESUMEN

The human adenovirus type 5 (HAdV5) causes disease of the upper and lower respiratory tract. The early steps of HAdV5 entry up to genome replication in the host nucleus have been extensively studied. However, late stages of infection remain poorly understood. Here, we set out to elucidate the spatiotemporal orchestration of late adenovirus nuclear remodeling in living cells. We generated virus mutants expressing fluorescently tagged protein IX (pIX) and protein V (pV), a capsid and viral genome associated protein, respectively. We found that during progeny virion production both proteins localize to a membrane-less, nuclear compartment, which is highly impermeable such that in immunofluorescence microscopy antibodies can hardly penetrate it. We termed this compartment 'late virion accumulation compartment' (LVAC). Correlation between light- and electron microscopy revealed that the LVAC contains paracrystalline arrays of viral capsids that arrange tightly packed within a honeycomb-like organization of viral DNA. Live-cell microscopy as well as FRAP measurements showed that the LVAC is rigid and restricts diffusion of larger molecules, indicating that capsids are trapped inside.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/fisiología , Proteínas de la Cápside/metabolismo , ADN Viral/metabolismo , Virión/metabolismo , Replicación Viral , Células A549 , Infecciones por Adenovirus Humanos/genética , Infecciones por Adenovirus Humanos/patología , Proteínas de la Cápside/genética , Proteínas de la Cápside/ultraestructura , ADN Viral/genética , Humanos , Virión/genética
13.
Viruses ; 12(6)2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503156

RESUMEN

Viruses alter a multitude of host-cell processes to create a more optimal environment for viral replication. This includes altering metabolism to provide adequate substrates and energy required for replication. Typically, viral infections induce a metabolic phenotype resembling the Warburg effect, with an upregulation of glycolysis and a concurrent decrease in cellular respiration. Human adenovirus (HAdV) has been observed to induce the Warburg effect, which can be partially attributed to the adenovirus protein early region 4, open reading frame 1 (E4orf1). E4orf1 regulates a multitude of host-cell processes to benefit viral replication and can influence cellular metabolism through the transcription factor avian myelocytomatosis viral oncogene homolog (MYC). However, E4orf1 does not explain the full extent of Warburg-like HAdV metabolic reprogramming, especially the accompanying decrease in cellular respiration. The HAdV protein early region 1A (E1A) also modulates the function of the infected cell to promote viral replication. E1A can interact with a wide variety of host-cell proteins, some of which have been shown to interact with metabolic enzymes independently of an interaction with E1A. To determine if the HAdV E1A proteins are responsible for reprogramming cell metabolism, we measured the extracellular acidification rate and oxygen consumption rate of A549 human lung epithelial cells with constitutive endogenous expression of either of the two major E1A isoforms. This was followed by the characterization of transcript levels for genes involved in glycolysis and cellular respiration, and related metabolic pathways. Cells expressing the 13S encoded E1A isoform had drastically increased baseline glycolysis and lower maximal cellular respiration than cells expressing the 12S encoded E1A isoform. Cells expressing the 13S encoded E1A isoform exhibited upregulated expression of glycolysis genes and downregulated expression of cellular respiration genes. However, tricarboxylic acid cycle genes were upregulated, resembling anaplerotic metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/metabolismo , Células Epiteliales/virología , Pulmón/virología , Células A549 , Proteínas E1A de Adenovirus/genética , Infecciones por Adenovirus Humanos/genética , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/genética , Células Epiteliales/metabolismo , Glucólisis , Humanos , Pulmón/metabolismo , Fosforilación Oxidativa , Oxígeno/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32376620

RESUMEN

Virus entry into host cells is a complex process that is largely regulated by access to specific cellular receptors. Human adenoviruses (HAdVs) and many other viruses use cell adhesion molecules such as the coxsackievirus and adenovirus receptor (CAR) for attachment to and entry into target cells. These molecules are rarely expressed on the apical side of polarized epithelial cells, which raises the question of how adenoviruses-and other viruses that engage cell adhesion molecules-enter polarized cells from the apical side to initiate infection. We have previously shown that species C HAdVs utilize lactoferrin-a common innate immune component secreted to respiratory mucosa-for infection via unknown mechanisms. Using a series of biochemical, cellular, and molecular biology approaches, we mapped this effect to the proteolytically cleavable, positively charged, N-terminal 49 residues of human lactoferrin (hLF) known as human lactoferricin (hLfcin). Lactoferricin (Lfcin) binds to the hexon protein on the viral capsid and anchors the virus to an unknown receptor structure of target cells, resulting in infection. These findings suggest that HAdVs use distinct cell entry mechanisms at different stages of infection. To initiate infection, entry is likely to occur at the apical side of polarized epithelial cells, largely by means of hLF and hLfcin bridging HAdV capsids via hexons to as-yet-unknown receptors; when infection is established, progeny virions released from the basolateral side enter neighboring cells by means of hLF/hLfcin and CAR in parallel.IMPORTANCE Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell-apical or lateral/basolateral-is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/metabolismo , Proteínas de la Cápside/metabolismo , Células Epiteliales/metabolismo , Lactoferrina/metabolismo , Mucosa Respiratoria/metabolismo , Células A549 , Infecciones por Adenovirus Humanos/genética , Adenovirus Humanos/genética , Proteínas de la Cápside/genética , Células Epiteliales/virología , Humanos , Lactoferrina/genética , Mucosa Respiratoria/virología
15.
FEBS Lett ; 594(12): 1861-1878, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32472693

RESUMEN

Human adenoviruses (HAdVs) cause widespread acute and persistent infections. Infections are usually mild and controlled by humoral and cell-based immunity. Reactivation of persistently infected immune cells can lead to a life-threatening disease in immunocompromised individuals, especially children and transplant recipients. To date, no effective therapy or vaccine against HAdV disease is available to the public. HAdV-C2 and C5 are the best-studied of more than 100 HAdV types. They persist in infected cells and release their progeny by host cell lysis to neighbouring cells and fluids, a process facilitated by the adenovirus death protein (ADP). ADP consists of about 100 amino acids and harbours a single membrane-spanning domain. It undergoes post-translational processing in endoplasmic reticulum and Golgi compartments, before localizing to the inner nuclear membrane. Here, we discuss the current knowledge on how ADP induces membrane rupture. Membrane rupture is essential for both progression of disease and efficacy of therapeutic viruses in clinical applications, in particular oncolytic therapy.


Asunto(s)
Adenoviridae/patogenicidad , Proteínas E3 de Adenovirus/fisiología , Infecciones por Adenovirus Humanos/patología , Interacciones Huésped-Patógeno/fisiología , Adenoviridae/metabolismo , Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Animales , Muerte Celular , Retículo Endoplásmico/metabolismo , Humanos , Proteínas Mad2/metabolismo , Virus Oncolíticos/genética
16.
Proteomics ; 20(7): e1900327, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32032466

RESUMEN

PTMs such as phosphorylations are usually involved in signal transduction pathways. To investigate the temporal dynamics of phosphoproteome changes upon viral infection, a model system of IMR-90 cells infected with human adenovirus type 2 (Ad2) is used in a time-course quantitative analysis combining titanium dioxide (TiO2 ) particle enrichment and SILAC-MS. Quantitative data from 1552 phosphorylated sites clustered the highly altered phosphorylated sites to the signaling by rho family GTPases, the actin cytoskeleton signaling, and the cAMP-dependent protein kinase A signaling pathways. Their activation is especially pronounced at early time post-infection. Changes of several phosphorylated sites involved in the glycolysis pathway, related to the activation of the Warburg effect, point at virus-induced energy production. For Ad2 proteins, 32 novel phosphorylation sites are identified and as many as 52 phosphorylated sites on 17 different Ad2 proteins are quantified, most of them at late time post-infection. Kinase predictions highlighted activation of PKA, CDK1/2, MAPK, and CKII. Overlaps of kinase motif sequences for viral and human proteins are observed, stressing the importance of phosphorylation during Ad2 infection.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Proteoma/análisis , Transducción de Señal , Humanos , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteómica
17.
FEBS Lett ; 594(12): 1879-1890, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811727

RESUMEN

Human adenoviruses (HAdVs) are common pathogens associated with a wide variety of respiratory, ocular, and gastrointestinal diseases. To achieve its effective lytic mode of replication, HAdVs have to reprogram host-cell gene expression and fine-tune viral gene expression in a temporal manner. In two decades, omics revolution has advanced our knowledge about the HAdV and host-cell interplay at the RNA and protein levels. This review summarizes the current knowledge from large-scale datasets on how HAdV infections adjust coding and noncoding RNA expression, as well as how they reprogram host-cell proteome during the lytic course of infection.


Asunto(s)
Infecciones por Adenovirus Humanos/genética , Adenovirus Humanos/fisiología , Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos
18.
FEBS Lett ; 593(24): 3551-3570, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31769503

RESUMEN

The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/patogenicidad , Cromatina/virología , Epigénesis Genética , Proteínas E1A de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/metabolismo , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Cromatina/metabolismo , Interacciones Huésped-Patógeno , Humanos , Replicación Viral
19.
PLoS Pathog ; 15(8): e1008017, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31425554

RESUMEN

The host limits adenovirus infections by mobilizing immune systems directed against infected cells that also represent major barriers to clinical use of adenoviral vectors. Adenovirus early transcription units encode a number of products capable of thwarting antiviral immune responses by co-opting host cell pathways. Although the EGF receptor (EGFR) was a known target for the early region 3 (E3) RIDα protein encoded by nonpathogenic group C adenoviruses, the functional role of this host-pathogen interaction was unknown. Here we report that incoming viral particles triggered a robust, stress-induced pathway of EGFR trafficking and signaling prior to viral gene expression in epithelial target cells. EGFRs activated by stress of adenoviral infection regulated signaling by the NFκB family of transcription factors, which is known to have a critical role in the host innate immune response to infectious adenoviruses and adenovirus vectors. We found that the NFκB p65 subunit was phosphorylated at Thr254, shown previously by other investigators to be associated with enhanced nuclear stability and gene transcription, by a mechanism that was attributable to ligand-independent EGFR tyrosine kinase activity. Our results indicated that the adenoviral RIDα protein terminated this pathway by co-opting the host adaptor protein Alix required for sorting stress-exposed EGFRs in multivesicular endosomes, and promoting endosome-lysosome fusion independent of the small GTPase Rab7, in infected cells. Furthermore RIDα expression was sufficient to down-regulate the same EGFR/NFκB signaling axis in a previously characterized stress-activated EGFR trafficking pathway induced by treatment with the pro-inflammatory cytokine TNF-α. We also found that cell stress activated additional EGFR signaling cascades through the Gab1 adaptor protein that may have unappreciated roles in the adenoviral life cycle. Similar to other E3 proteins, RIDα is not conserved in adenovirus serotypes associated with potentially severe disease, suggesting stress-activated EGFR signaling may contribute to adenovirus virulence.


Asunto(s)
Proteínas E3 de Adenovirus/metabolismo , Infecciones por Adenovirus Humanos/metabolismo , Adenovirus Humanos/fisiología , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Estrés Fisiológico , Células A549 , Infecciones por Adenovirus Humanos/virología , Receptores ErbB/metabolismo , Humanos , Fosforilación , Transporte de Proteínas , Transducción de Señal , Internalización del Virus
20.
Vopr Virusol ; 64(2): 53-62, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-31412171

RESUMEN

Human adenoviruses cause different organ infections of varying severity, from asymptomatic to severe cases with lethal outcome, that are registered everywhere. Detailed and focused study of factors predisposing to a severe course of infection is required. The literature contains information indicating the association of severe adenoviral respiratory diseases with certain types of adenovirus, primarily type 7. This review highlights the possible causes of increased pathogenicity of some types of adenovirus and their association with severe forms of infection. Pathogenicity factors include the ability of adenovirus to bind the specific cellular receptors, the formation of subviral particles, the interaction with blood proteins, in particular the coagulation factor X, as well as the features of the early genes E1A, E1B, E3, E4. In addition, the severity of the disease may be affected by the presence or absence of pre-existing antibodies specific to certain types of adenoviruses. Chronic diseases or immunosuppression also increase the risk of severe adenovirus infection. The information presented in this review may elucidate the pathogenesis of adenovirus infection, and help to develop new features for prevention and treatment.


Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Regulación Viral de la Expresión Génica , Infecciones del Sistema Respiratorio , Infecciones por Adenovirus Humanos/genética , Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/patología , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Adenovirus Humanos/patogenicidad , Factor X/metabolismo , Humanos , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...