Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
Parasit Vectors ; 17(1): 204, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715075

RESUMEN

BACKGROUND: Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS: To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS: The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS: The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.


Asunto(s)
Aedes , Culex , Mosquitos Vectores , Orthobunyavirus , Animales , Mosquitos Vectores/virología , Aedes/virología , Culex/virología , Orthobunyavirus/genética , Orthobunyavirus/clasificación , Orthobunyavirus/aislamiento & purificación , ARN Viral/genética , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología
2.
Front Cell Infect Microbiol ; 14: 1365221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711929

RESUMEN

Bunyaviruses are a large group of important viral pathogens that cause significant diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon entry into host cells, the components of viruses are recognized by host innate immune system, leading to the activation of downstream signaling cascades to induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their receptors and upregulate the expression of hundreds of interferon-stimulated genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to host cells. For efficient replication and spread, viruses have evolved different strategies to antagonize IFN-mediated restriction. Here, we discuss recent advances in our understanding of the interactions between bunyaviruses and host innate immune response.


Asunto(s)
Infecciones por Bunyaviridae , Inmunidad Innata , Orthobunyavirus , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/virología , Humanos , Animales , Orthobunyavirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Interferones/inmunología , Interferones/metabolismo , Transducción de Señal , Citocinas/metabolismo , Citocinas/inmunología , Enfermedades Transmitidas por Vectores/inmunología , Enfermedades Transmitidas por Vectores/virología , Enfermedades Transmitidas por Vectores/prevención & control , Replicación Viral
3.
Virulence ; 15(1): 2348252, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38712703

RESUMEN

Heartland virus (HRTV), an emerging tick-borne pathogenic bunyavirus, has been a concern since 2012, with an increasing incidence, expanding geographical distribution, and high pathogenicity in the United States. Infection from HRTV results in fever, thrombocytopenia, and leucopenia in humans, and in some cases, symptoms can progress to severe outcomes, including haemorrhagic disease, multi-organ failure, and even death. Currently, no vaccines or antiviral drugs are available for treatment of the HRTV disease. Moreover, little is known about HRTV-host interactions, viral replication mechanisms, pathogenesis and virulence, further hampering the development of vaccines and antiviral interventions. Here, we aimed to provide a brief review of HRTV epidemiology, molecular biology, pathogenesis and virulence on the basis of published article data to better understand this virus and provide clues for further study.


Asunto(s)
Bunyaviridae , Replicación Viral , Humanos , Virulencia , Animales , Infecciones por Bunyaviridae/virología , Thogotovirus/patogenicidad , Thogotovirus/genética , Thogotovirus/fisiología , Estados Unidos/epidemiología , Interacciones Huésped-Patógeno
4.
Mem Inst Oswaldo Cruz ; 119: e230221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747855

RESUMEN

OBJECTIVES: We report the first case of Oropouche fever detected in the border region of Colombia. METHODS: Using a multiplex real-time polymerase chain reaction (PCR), genetic sequencing and clinical characteristics during the dengue epidemic in 2019, a total of 175 samples were analysed, from cases notified to the system epidemiological surveillance such as dengue. FINDINGS: The Oropouche virus (OROV) isolate from Leticia belongs to lineage 2 according to both M and S genome segments maximum likelihood (ML) analysis, shares a common ancestor with samples obtained in Esmeraldas, Ecuador and Turbaco, Colombia. The patient: a woman resident in the border neighbourhood of the municipality of Leticia had the following symptoms: fever, headache, retro-orbital pain and myalgias. MAIN CONCLUSION: This cross-border surveillance can be useful to give an alert about the entry or exit of arboviruses circulation in the region, which are often underreported in public health surveillance systems.


Asunto(s)
Orthobunyavirus , Humanos , Femenino , Colombia/epidemiología , Orthobunyavirus/genética , Orthobunyavirus/aislamiento & purificación , Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Adulto , Reacción en Cadena en Tiempo Real de la Polimerasa , Filogenia
5.
Parasit Vectors ; 17(1): 223, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750581

RESUMEN

BACKGROUND: Batai virus (BATV) is a zoonotic arbovirus of veterinary importance. A high seroprevalence in cows, sheep and goats and infection in different mosquito species has been observed in Central Europe. Therefore, we studied indigenous as well as exotic species of the genera Culex and Aedes for BATV vector competence at different fluctuating temperature profiles. METHODS: Field caught Culex pipiens biotype pipiens, Culex torrentium, Aedes albopictus and Aedes japonicus japonicus from Germany and Aedes aegypti laboratory colony were infected with BATV strain 53.3 using artificial blood meals. Engorged mosquitoes were kept under four (Culex species) or three (Aedes species) fluctuating temperature profiles (18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C) at a humidity of 70% and a dark/light rhythm of 12:12 for 14 days. Transmission was measured by testing the saliva obtained by forced salivation assay for viable BATV particles. Infection rates were analysed by testing whole mosquitoes for BATV RNA by quantitative reverse transcription PCR. RESULTS: No transmission was detected for Ae. aegypti, Ae. albopictus or Ae. japonicus japonicus. Infection was observed for Cx. p. pipiens, but only in the three conditions with the highest temperatures (21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C). In Cx. torrentium infection was measured at all tested temperatures with higher infection rates compared with Cx. p. pipiens. Transmission was only detected for Cx. torrentium exclusively at the highest temperature of 27 ± 5 °C. CONCLUSIONS: Within the tested mosquito species, only Cx. torrentium seems to be able to transmit BATV if the climatic conditions are feasible.


Asunto(s)
Aedes , Virus Bunyamwera , Culex , Mosquitos Vectores , Temperatura , Animales , Aedes/virología , Aedes/fisiología , Aedes/clasificación , Culex/virología , Culex/fisiología , Culex/clasificación , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología , Virus Bunyamwera/genética , Virus Bunyamwera/fisiología , Virus Bunyamwera/aislamiento & purificación , Saliva/virología , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Femenino , Europa (Continente) , Alemania
6.
J Virol ; 98(3): e0169823, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38358288

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne virus of the Orthonairovirus genus, persistently infects tick cells. It has been reported to establish persistent infection in non-human primates, but virological analysis has not yet been performed in human cells. Here, we investigated whether and how nairoviruses persistently infect human cells using Hazara orthonairovirus (HAZV), a surrogate model for CCHFV. We established a human cell line that was persistently infected with HAZV. Surprisingly, virions of persistently infected HAZV (HAZVpi) were not observed in the culture supernatants. There were five mutations (mut1, mut2, mut3, mut4, and mut5) in L protein of HAZVpi. Mutations in L protein of HAZVpi contribute to non-detection of virion in the supernatants. Lmut4 was found to cause low viral growth rate, despite its high polymerase activity. The low growth rate was restored by Lmut2, Lmut3, and Lmut5. The polymerase activity of Lmut1 was extremely low, and recombinant HAZV carrying Lmut1 (rHAZV/Lmut1) was not released into the supernatants. However, genomes of rHAZV/Lmut1 were retained in the infected cells. All mutations (Lmut1-5) found in L protein of HAZVpi were required for experimental reproduction of HAZVpi, and only Lmut1 and Lmut4 were insufficient. We demonstrated that point mutations in viral polymerase contribute to the establishment of persistent HAZV infection. Furthermore, innate immunity was found to be suppressed in HAZVpi-infected cells, which also potentially contributes to viral persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells. IMPORTANCE: We investigated whether and how nairoviruses persistently infect human cells, using Hazara orthonairovirus (HAZV), a surrogate model for Crimean-Congo hemorrhagic fever virus. We established a human cell line that was persistently infected with HAZV. Five mutations were found in L protein of persistently infected HAZV (HAZVpi): mut1, mut2, mut3, mut4, and mut5. Among them, Lmut1 and Lmut4 restricted viral growth by low polymerase activity and low growth rate, respectively, leading to inhibition of viral overgrowth. The restriction of viral growth caused by Lmut1 and Lmut4 was compensated by other mutations, including Lmut2, Lmut3, and Lmut5. Each of the mutations found in L protein of HAZVpi was concluded to cooperatively modulate viral growth, which facilitates the establishment of persistent infection. Suppression of innate immunity also potentially contributes to virus persistence. This is the first presentation of a possible mechanism behind how nairoviruses establish persistent infection in human cells.


Asunto(s)
Infecciones por Bunyaviridae , Nairovirus , Animales , Humanos , Línea Celular , Virus de la Fiebre Hemorrágica de Crimea-Congo/fisiología , Fiebre Hemorrágica de Crimea/virología , Mutación , Nairovirus/genética , Infección Persistente , Infecciones por Bunyaviridae/virología
7.
Ticks Tick Borne Dis ; 15(2): 102307, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38194758

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS, with a case fatality rate of up to 30 %. The innate immune system plays a crucial role in the defense against SFTSV; however, the impact of viral propagation of STFSV on the innate immune system remains unclear. Although proteomics analysis revealed that the expression of the downregulator of transcription 1 (DR1) increased after SFTSV infection, the specific change trend and the functional role of DR1 during viral infection remain unelucidated. In this study, we demonstrate that DR1 was highly expressed in response to SFTSV infection in HEK 293T cells using qRT-PCR and Western blot analysis. Furthermore, viral replication significantly increased the expression of various TLRs, especially TLR9. Our data indicated that DR1 positively regulated the expression of TLRs in HEK 293T cells, DR1 overexpression highly increased the expression of numerous TLRs, whereas RNAi-mediated DR1 silencing decreased TLR expression. Additionally, the myeloid differentiation primary response gene 88 (MyD88)-dependent or TIR-domain-containing adaptor inducing interferon-ß (TRIF)-dependent signaling pathways were highly up- and downregulated by the overexpression and silencing of DR1, respectively. Finally, we report that DR1 stimulates the expression of TLR7, TLR8, and TLR9, thereby upregulating the TRIF-dependent and MyD88-dependent signaling pathways during the SFTSV infection, attenuating viral replication, and enhancing the production of type I interferon and various inflammatory factors, including IL-1ß, IL-6, and IL-8. These results imply that DR1 defends against SFTSV replication by inducing the expression of TLR7, TLR8, and TLR9. Collectively, our findings revealed a novel role and mechanism of DR1 in mediating antiviral responses and innate immunity.


Asunto(s)
Infecciones por Bunyaviridae , Phlebovirus , Fosfoproteínas , Transducción de Señal , Factores de Transcripción , Animales , Humanos , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Regulación hacia Abajo , Células HEK293 , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Fosfoproteínas/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 9/metabolismo , Factores de Transcripción/metabolismo , Phlebovirus/fisiología , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/virología
8.
J Virol ; 97(3): e0001523, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36794941

RESUMEN

Negative-strand RNA viruses (NSVs) represent one of the most threatening groups of emerging viruses globally. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly pathogenic emerging virus that was initially reported in 2011 from China. Currently, no licensed vaccines or therapeutic agents have been approved for use against SFTSV. Here, L-type calcium channel blockers obtained from a U.S. Food and Drug Administration (FDA)-approved compound library were identified as effective anti-SFTSV compounds. Manidipine, a representative L-type calcium channel blocker, restricted SFTSV genome replication and exhibited inhibitory effects against other NSVs. The result from the immunofluorescent assay suggested that manidipine inhibited SFTSV N-induced inclusion body formation, which is believed to be important for the virus genome replication. We have shown that calcium possesses at least two different roles in regulating SFTSV genome replication. Inhibition of calcineurin, the activation of which is triggered by calcium influx, using FK506 or cyclosporine was shown to reduce SFTSV production, suggesting the important role of calcium signaling on SFTSV genome replication. In addition, we showed that globular actin, the conversion of which is facilitated by calcium from filamentous actin (actin depolymerization), supports SFTSV genome replication. We also observed an increased survival rate and a reduction of viral load in the spleen in a lethal mouse model of SFTSV infections after manidipine treatment. Overall, these results provide information regarding the importance of calcium for NSV replication and may thereby contribute to the development of broad-scale protective therapies against pathogenic NSVs. IMPORTANCE SFTS is an emerging infectious disease and has a high mortality rate of up to 30%. There are no licensed vaccines or antivirals against SFTS. In this article, L-type calcium channel blockers were identified as anti-SFTSV compounds through an FDA-approved compound library screen. Our results showed the involvement of L-type calcium channel as a common host factor for several different families of NSVs. The formation of an inclusion body, which is induced by SFTSV N, was inhibited by manidipine. Further experiments showed that SFTSV replication required the activation of calcineurin, a downstream effecter of the calcium channel. In addition, we identified that globular actin, the conversion of which is facilitated by calcium from filamentous actin, supports SFTSV genome replication. We also observed an increased survival rate in a lethal mouse model of SFTSV infection after manidipine treatment. These results facilitate both our understanding of the NSV replication mechanism and the development of novel anti-NSV treatment.


Asunto(s)
Infecciones por Bunyaviridae , Calcio , Phlebovirus , Animales , Ratones , Actinas/metabolismo , Infecciones por Bunyaviridae/virología , Calcineurina/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Modelos Animales de Enfermedad , Phlebovirus/efectos de los fármacos , Phlebovirus/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología , Bazo/virología , Carga Viral
9.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939689

RESUMEN

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Asunto(s)
Infecciones por Bunyaviridae , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Orthobunyavirus , Internalización del Virus , Animales , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/virología , Técnicas de Inactivación de Genes , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Orthobunyavirus/fisiología , América del Sur
10.
J Virol ; 96(13): e0045422, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35695504

RESUMEN

In this issue, Gao and colleagues (J Virol 96:e00167-22, https://doi.org/10.1128/JVI.00167-22) dissect innate immune signaling in a microglial cell line infected with severe fever with thrombocytopenia syndrome virus (SFTSV). This virus has been designated a priority pathogen by the World Health Organization due to its capacity to induce a fatal cytokine storm. The study's findings attribute the pathogenesis to induction of the host inflammasome response by the SFTSV nonstructural protein.


Asunto(s)
Infecciones por Bunyaviridae , Encefalitis , Phlebovirus , Infecciones por Bunyaviridae/inmunología , Infecciones por Bunyaviridae/virología , Encefalitis/inmunología , Encefalitis/virología , Humanos , Phlebovirus/metabolismo , Transducción de Señal/fisiología , Proteínas no Estructurales Virales/metabolismo
11.
J Virol ; 96(7): e0217321, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35266805

RESUMEN

The Bunyavirales contain many important human pathogens that lack an antiviral therapy. The cap-snatching endonuclease (EN) of segmented negative-strand RNA viruses is an attractive target for broad-spectrum antivirals due to its essential role in initiating viral transcription. L-742,001, a previously reported diketo acid inhibitor against influenza virus EN, demonstrated potent EN inhibition and antiviral activity on various bunyaviruses. However, the precise inhibitory mechanism of the compound is still poorly understood. We recently characterized a highly active EN from Ebinur Lake virus (EBIV), a newly identified member of the Orthobunyavirus genus, and obtained its high-resolution structures, paving the way for structure-guided inhibitor development. Here, nine L-742,001 derivatives were designed and synthesized de novo, and their structure-activity relationship with EBIV EN was studied. In vitro biochemical data showed that the compounds inhibited the EBIV EN activity with different levels and could be divided into three categories. Five representative compounds were selected for further cell-based antiviral assay, and the results largely agreed with those of the EN assays. Furthermore, the precise binding modes of L-742,001 and its derivatives in EN were revealed by determining the high-resolution crystal structures of EN-inhibitor complexes, which suggested that the p-chlorobenzene is essential for the inhibitory activity and the flexible phenyl has the greatest exploration potential. This study provides an important basis for the structure-based design and optimization of inhibitors targeting EN of segmented negative-strand RNA viruses. IMPORTANCE The Bunyavirales contain many important human pathogens such as Crimean-Congo hemorrhagic fever virus and Lassa virus that pose serious threats to public health; however, currently there are no specific antiviral drugs against these viruses. The diketo acid inhibitor L-742,001 is a potential drug as it inactivates the cap-snatching endonuclease (EN) encoded by bunyaviruses. Here, we designed and synthesized nine L-742,001 derivatives and assessed the structure-activity relationship using EN of the newly identified Ebinur Lake virus (EBIV) as a research model. Our results revealed that the p-chlorobenzene of this broad-spectrum EN inhibitor is crucial for the inhibitory activity and the flexible phenyl "arm" has the best potential for further optimization. As cap-snatching ENs are present not only in bunyaviruses but also in influenza viruses, our data provide important guidelines for the development of novel and more potent diketo acid-based antiviral drugs against those viruses.


Asunto(s)
Antivirales , Bunyaviridae , Endonucleasas , Proteínas Virales , Antivirales/síntesis química , Antivirales/farmacología , Antivirales/uso terapéutico , Bunyaviridae/enzimología , Infecciones por Bunyaviridae/tratamiento farmacológico , Infecciones por Bunyaviridae/virología , Endonucleasas/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Hidroxibutiratos/uso terapéutico , Piperidinas/química , Piperidinas/farmacología , Piperidinas/uso terapéutico , Relación Estructura-Actividad , Proteínas Virales/metabolismo
12.
Sci Rep ; 12(1): 2573, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173184

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus that causes a hemorrhagic fever known as the severe fever with thrombocytopenia syndrome (SFTS). Inflammasomes are a molecular platform that are assembled to process pro-caspase 1 and subsequently promote secretion of interleukin (IL)-1ß/IL-18 for proinflammatory responses induced upon infection. We hypothesize that inflammasome activation and pyroptosis induced in SFTS results in elevated levels of IL-1ß/IL-18 responsible for high fever and hemorrhage in the host, characteristic of SFTS. Here we report that IL-1ß secretion was elevated in SFTS patients and infected mice and IL-1ß levels appeared to be reversibly associated to disease severity and viral load in patients' blood. Increased caspase-1 activation, IL-1ß/IL-18 secretion, cell death, and processing of gasdermin D were detected, indicating that pyroptosis was induced in SFTSV-infected human peripheral blood monocytes (PBMCs). To characterize the mechanism of pyroptosis induction, we knocked down several NOD-like receptors (NLRs) with respective shRNAs in PBMCs and showed that the NLR family pyrin domain containing 3 (NLRP3) inflammasome was critical for processing pro-caspase-1 and pro-IL-1ß. Our data with specific inhibitors for NLRP3 and caspase-1 further showed that activation of the NLRP3 inflammasome was key to caspase-1 activation and IL-1ß secretion which may be inhibitory to viral replication in PBMCs infected with SFTSV. The findings in this study suggest that the activation of the NLPR3 inflammasome and pyroptosis, leading to IL-1ß/IL-18 secretion during the SFTSV infection, could play important roles in viral pathogenesis and host protection. Pyroptosis as part of innate immunity might be essential in proinflammatory responses and pathogenicty in humans infected with this novel phlebovirus.


Asunto(s)
Infecciones por Bunyaviridae/complicaciones , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Phlebovirus/aislamiento & purificación , Síndrome de Trombocitopenia Febril Grave/patología , Replicación Viral , Animales , Infecciones por Bunyaviridae/virología , Estudios de Casos y Controles , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Síndrome de Trombocitopenia Febril Grave/etiología , Síndrome de Trombocitopenia Febril Grave/metabolismo
13.
PLoS Negl Trop Dis ; 16(1): e0010156, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35073325

RESUMEN

Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus, family Peribunyaviridae. It was first isolated from a Culiseta inorata mosquito in Cache Valley, Utah in 1956 and is known to circulate widely in the Americas. While only a handful of human cases have been reported since its discovery, it is the causative agent of fetal death and severe malformations in livestock. CVV has recently emerged as a potential viral pathogen causing severe disease in humans. Currently, the only serological assay available for diagnostic testing is plaque reduction neutralization test which takes several days to perform and requires biocontainment. To expand diagnostic capacity to detect CVV infections by immunoassays, 12 hybridoma clones secreting anti-CVV murine monoclonal antibodies (MAbs) were developed. All MAbs developed were found to be non-neutralizing and specific to the nucleoprotein of CVV. Cross-reactivity experiments with related orthobunyaviruses revealed several of the MAbs reacted with Tensaw, Fort Sherman, Tlacotalpan, Maguari, Playas, and Potosi viruses. Our data shows that MAbs CVV14, CVV15, CVV17, and CVV18 have high specific reactivity as a detector in an IgM antibody capture test with human sera.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Virus Bunyamwera/inmunología , Infecciones por Bunyaviridae/diagnóstico , Proteínas de la Nucleocápside/inmunología , Animales , Infecciones por Bunyaviridae/virología , Línea Celular , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Ganado/virología , Ratones , Ratones Noqueados , Sensibilidad y Especificidad , Pruebas Serológicas , Enfermedades Transmitidas por Vectores/virología , Células Vero
14.
Viruses ; 13(11)2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34834956

RESUMEN

Important lessons have been learned by the Israeli veterinary community regarding Simbu serogroup viruses infections. This serogroup of viruses might cause the births of neonatal malformation in susceptible ruminant's populations. Until 2012, only Akabane virus was connected with the births of malformed ruminants in Israel. However, serological and genomic detection tests, coupled with viral isolations, revealed that more than a single Simbu serogroup serotype could be present concurrently in the same farm or even in the same animal. From 2012 to date, Aino, Shuni, Shamunda, Satuperi, Peaton, Schmallenberg, and Sango viruses have been found in Israel either by serological or genomic investigation. Israel is located in the Eastern Mediterranean Basin, a terrestrial and climatic bridge between the three old continents. The Eastern Mediterranean shores benefit from both the tropical/subtropical and the continental climatic conditions. Therefore, the Eastern Mediterranean basin might serve as an optimal investigatory compound for several arboviral diseases, acting as a sentinel. This review summarizes updated information related to the presence of Simbu serogroup viruses in Israel.


Asunto(s)
Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Clima , Ganado/virología , Virus Simbu , Animales , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/virología , Infecciones por Bunyaviridae/epidemiología , Bovinos , Enfermedades de los Bovinos/virología , Enfermedades Transmisibles Emergentes , Brotes de Enfermedades/veterinaria , Israel , Orthobunyavirus , Rumiantes/virología , Serogrupo , Ovinos , Enfermedades de las Ovejas/virología , Virus Simbu/clasificación , Virus Simbu/genética , Virus Simbu/aislamiento & purificación
15.
PLoS Pathog ; 17(11): e1010070, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34788350

RESUMEN

Nuclear scaffold attachment factor A (SAFA) is a novel RNA sensor involved in sensing viral RNA in the nucleus and mediating antiviral immunity. Severe fever with thrombocytopenia syndrome virus (SFTSV) is a bunyavirus that causes SFTS with a high fatality rate of up to 30%. It remains elusive whether and how cytoplasmic SFTSV can be sensed by the RNA sensor SAFA. Here, we demonstrated that SAFA was able to detect SFTSV infection and mediate antiviral interferon and inflammatory responses. Transcription and expression levels of SAFA were strikingly upregulated under SFTSV infection. SAFA was retained in the cytoplasm by interaction with SFTSV nucleocapsid protein (NP). Importantly, SFTSV genomic RNA was recognized by cytoplasmic SAFA, which recruited and promoted activation of the STING-TBK1 signaling axis against SFTSV infection. Of note, the nuclear localization signal (NLS) domain of SAFA was important for interaction with SFTSV NP and recognition of SFTSV RNA in the cytoplasm. In conclusion, our study reveals a novel antiviral mechanism in which SAFA functions as a novel cytoplasmic RNA sensor that directly recognizes RNA virus SFTSV and mediates an antiviral response.


Asunto(s)
Antivirales/metabolismo , Infecciones por Bunyaviridae/inmunología , Citoplasma/inmunología , Inmunidad Innata/inmunología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Phlebovirus/inmunología , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/virología , Citoplasma/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Proteínas Asociadas a Matriz Nuclear/genética
16.
BMC Vet Res ; 17(1): 349, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34781948

RESUMEN

BACKGROUND: Akabane virus (AKAV) is an important insect-borne virus which is widely distributed throughout the world except the Europe and is considered as a great threat to herbivore health. RESULTS: An AKAV strain defined as TJ2016 was firstly isolated from the bovine sera in China in 2016. Sequence analysis of the S and M segments suggested that the isolated AKAV strain was closely related to the AKAV strains JaGAr39 and JaLAB39, which belonged to AKAV genogroup II. To further study the pathogenic mechanism of AKAV, the full-length cDNA clone of TJ2016 S, M, and L segment was constructed separately into the TVT7R plasmid at the downsteam of T7 promoter and named as TVT7R-S, TVT7R-M, and TVT7R-L, respectively. The above three plasmids were further transfected into the BSR-T7/5 cells simultaneously with a ratio of 1:1:1 to produce the rescued virus AKAV. Compared with the parental wild type AKAV (wtAKAV), the rescued virus (rAKAV) was proved to be with similar cytopathic effects (CPE), plaque sizes and growth kinetics in BHK-21 cells. CONCLUSION: We successfully isolated a AKAV strain TJ2016 from the sera of cattle and established a reverse genetic platform for AKAV genome manipulation. The established reverse genetic system is also a powerful tool for further research on AKAV pathogenesis and even vaccine studies.


Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Orthobunyavirus/genética , Orthobunyavirus/aislamiento & purificación , Animales , Infecciones por Bunyaviridae/virología , Bovinos , Enfermedades de los Bovinos/virología , Línea Celular , Cricetinae , Genotipo , Orthobunyavirus/patogenicidad , Filogenia , Genética Inversa/veterinaria
17.
Parasit Vectors ; 14(1): 566, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732254

RESUMEN

BACKGROUND: A number of zoonotic mosquito-borne viruses have emerged in Europe in recent decades. Batai virus (BATV), a member of the genus Orthobunyavirus, is one example of a relatively newly emerged mosquito-borne virus, having been detected in mosquitoes and livestock. We conducted vector competency studies on three mosquito species at a low temperature to assess whether Aedes and Culex mosquito species are susceptible to infection with BATV. METHODS: Colonised lines of Aedes aegypti and Culex pipiens and a wild-caught species, Aedes detritus, were orally inoculated with BATV strain 53.2, originally isolated from mosquitoes trapped in Germany in 2009. Groups of blood-fed female mosquitoes were maintained at 20 °C for 7 or 14 days. Individual mosquitoes were screened for the presence of BATV in body, leg and saliva samples for evidence of infection, dissemination and transmission, respectively. BATV RNA was detected by reverse transcription-PCR, and positive results confirmed by virus isolation in Vero cells. RESULTS: Aedes detritus was highly susceptible to BATV, with an infection prevalence of ≥ 80% at both measurement time points. Disseminated infections were recorded in 30.7-41.6% of Ae. detritus, and evidence of virus transmission with BATV in saliva samples (n = 1, days post-infection: 14) was observed. Relatively lower rates of infection for Ae. aegypti and Cx. pipiens were observed, with no evidence of virus dissemination or transmission at either time point. CONCLUSIONS: This study shows that Ae. detritus may be a competent vector for BATV at 20 °C, whereas Ae. aegypti and Cx. pipiens were not competent. Critically, the extrinsic incubation period appears to be ≤ 7 days for Ae. detritus, which may increase the onward transmissibility potential of BATV in these populations.


Asunto(s)
Virus Bunyamwera/fisiología , Culicidae/virología , Mosquitos Vectores/virología , Animales , Virus Bunyamwera/genética , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Culicidae/inmunología , Europa (Continente) , Femenino , Humanos , Masculino , Mosquitos Vectores/inmunología , Saliva/virología
18.
Parasit Vectors ; 14(1): 561, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717742

RESUMEN

BACKGROUND: Tahyna orthobunyavirus (TAHV) is a mosquito-borne virus that may cause mild flu-like symptoms or neurological symptoms in humans. It is historically associated with floodplain habitats in Central Europe, and the mammalophilic floodwater mosquito, Aedes vexans, is thought to be the principal vector. There are few contemporary reports of TAHV transmission ecology within mosquitoes or their vertebrate hosts, and virus infections are rarely reported (and probably seldom diagnosed). The objectives of this study were to survey the mosquito population for TAHV in three floodwater habitats and describe host usage by the predominant floodwater mosquito species to potentially define TAHV transmission at these foci. METHODS: We performed longitudinal mosquito sampling along three major rivers in eastern Austria to characterize the mosquito community in floodplain habitats, and tested for the presence of TAHV in pools of mosquitoes. We characterized TAHV rescued from mosquito pool homogenate by sequencing. We surveyed mosquito host selection by analyzing mosquito blood meals. RESULTS: We identified TAHV in two pools of Ae. vexans captured along the Leitha River. This mosquito, and other floodwater mosquitoes, used large mammals (red deer, roe deer, wild boar) as their hosts. The sequence of the rescued virus was remarkably similar to other TAHV isolates from the region, dating back to the first isolate of TAHV in 1958. CONCLUSIONS: In general, we confirmed that TAHV is most likely being transmitted by Ae. vexans, although the precise contribution of vertebrate-amplifying hosts to the ecological maintenance of the virus is unclear. The pattern of host selection matches the estimated exposure of the same large mammal species in the region to TAHV based on a recent serosurvey, but hares were also hosts at the site where TAHV was detected. We also confirm humans as hosts of two floodwater mosquito species, providing a potential mechanism for spillover of TAHV or other mosquito-borne viruses.


Asunto(s)
Aedes/virología , Infecciones por Bunyaviridae/transmisión , Ecosistema , Mosquitos Vectores/virología , Orthobunyavirus/genética , Orthobunyavirus/fisiología , Aedes/genética , Animales , Austria , Sangre , Infecciones por Bunyaviridae/virología , Femenino , Humanos , Estudios Longitudinales , Comidas , Mosquitos Vectores/genética , Orthobunyavirus/clasificación
19.
Viruses ; 13(10)2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34696477

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus in Asia that causes severe disease. Despite its clinical importance, treatment options for SFTSV infection remains limited. The SFTSV glycoprotein Gn plays a major role in mediating virus entry into host cells and is therefore a potential antiviral target. In this study, we employed an in silico structure-based strategy to design novel cyclic antiviral peptides that target the SFTSV glycoprotein Gn. Among the cyclic peptides, HKU-P1 potently neutralizes the SFTSV virion. Combinatorial treatment with HKU-P1 and the broad-spectrum viral RNA-dependent RNA polymerase inhibitor favipiravir exhibited synergistic antiviral effects in vitro. The in silico peptide design platform in this study may facilitate the generation of novel antiviral peptides for other emerging viruses.


Asunto(s)
Péptidos/farmacología , Phlebovirus/efectos de los fármacos , Síndrome de Trombocitopenia Febril Grave/tratamiento farmacológico , Antivirales/farmacología , Infecciones por Bunyaviridae/virología , Línea Celular , Línea Celular Tumoral , Simulación por Computador , Hong Kong , Humanos , Orthobunyavirus/patogenicidad , Phlebovirus/patogenicidad , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Trombocitopenia/virología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos
20.
Emerg Microbes Infect ; 10(1): 1649-1659, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34353229

RESUMEN

Cache Valley virus (CVV) is a prevalent emerging pathogen of significant importance to agricultural and human health in North America. Emergence in livestock can result in substantial agroeconomic losses resulting from the severe embryonic lethality associated with infection during pregnancy. Although CVV pathogenesis has been well described in ruminants, small animal models are still unavailable, which limits our ability to study its pathogenesis and perform preclinical testing of therapeutics. Herein, we explored CVV pathogenesis, tissue tropism, and disease outcomes in a variety of murine models, including immune -competent and -compromised animals. Our results show that development of CVV disease in mice is dependent on innate immune responses, and type I interferon signalling is essential for preventing infection in mice. IFN-αßR-/- mice infected with CVV present with significant disease and lethal infections, with minimal differences in age-dependent pathogenesis, suggesting this model is appropriate for pathogenesis-related, and short- and long-term therapeutic studies. We also developed a novel CVV in utero transmission model that showed high rates of transmission, spontaneous abortions, and congenital malformations during infection. CVV infection presents a wide tissue tropism, with significant amplification in liver, spleen, and placenta tissues. Immune-competent mice are generally resistant to infection, and only show disease in an age dependent manner. Given the high seropositivity rates in regions of North America, and the continuing geographic expansion of competent mosquito vectors, the risk of epidemic and epizootic emergence of CVV is high, and interventions are needed for this important pathogen.


Asunto(s)
Virus Bunyamwera/patogenicidad , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología , Modelos Animales de Enfermedad , Transmisión Vertical de Enfermedad Infecciosa , Ratones , Animales , Femenino , Mosquitos Vectores/virología , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...