Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Fish Dis ; 47(6): e13913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421380

RESUMEN

Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 µg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 µg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.


Asunto(s)
Alimentación Animal , Biopelículas , Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Piscirickettsia/efectos de los fármacos , Piscirickettsia/fisiología , Enfermedades de los Peces/microbiología , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología , Animales , Alimentación Animal/análisis , Antibacterianos/farmacología , Suplementos Dietéticos/análisis , Extractos Vegetales/farmacología , Dieta/veterinaria , Chile
2.
J Fish Dis ; 47(1): e13862, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776076

RESUMEN

Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmonidae , Animales , Polietileno/farmacología , Nylons/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Antibacterianos/farmacología , Salmón , Biopelículas , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología
3.
ISME J ; 17(12): 2247-2258, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37853183

RESUMEN

The management of bacterial pathogens remains a key challenge of aquaculture. The marine gammaproteobacterium Piscirickettsia salmonis is the etiological agent of piscirickettsiosis and causes multi-systemic infections in different salmon species, resulting in considerable mortality and substantial commercial losses. Here, we elucidate its global diversity, evolution, and selection during human interventions. Our comprehensive analysis of 73 closed, high quality genome sequences covered strains from major outbreaks and was supplemented by an analysis of all P. salmonis 16S rRNA gene sequences and metagenomic reads available in public databases. Genome comparison showed that Piscirickettsia comprises at least three distinct, genetically isolated species of which two showed evidence for continuing speciation. However, at least twice the number of species exist in marine fish or seawater. A hallmark of Piscirickettsia diversification is the unprecedented amount and diversity of transposases which are particularly active in subgroups undergoing rapid speciation and are key to the acquisition of novel genes and to pseudogenization. Several group-specific genes are involved in surface antigen synthesis and may explain the differences in virulence between strains. However, the frequent failure of antibiotic treatment of piscirickettsiosis outbreaks cannot be explained by horizontal acquisition of resistance genes which so far occurred only very rarely. Besides revealing a dynamic diversification of an important pathogen, our study also provides the data for improving its surveillance, predicting the emergence of novel lineages, and adapting aquaculture management, and thereby contributes towards the sustainability of salmon farming.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Animales , Humanos , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología , ARN Ribosómico 16S/genética , Peces , Enfermedades de los Peces/microbiología
4.
J Fish Dis ; 46(5): 591-596, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36639965

RESUMEN

Public health is facing a new challenge due to the increased bacterial resistance to most of the conventional antibacterial agents. Inadequate use of antibiotics in the Chilean aquaculture industry leads to the generation of multidrug resistance bacteria. Many fish pathogenic bacteria produce biofilm upon various sources of stress such as antibiotics, which provides several survival advantages for the bacterial life in community and can constitute a reservoir of pathogens in the marine environment. Being florfenicol a broad-spectrum antibiotic commonly used to treat infections in aquaculture, the aim of this study was to assess whether this antibiotic modulates in vitro the biofilm formation in several isolates of Piscirickettsia salmonis. Standard antibiotic-micro broth 96-flat well plates were used to determinate the minimal inhibitory concentration of florfenicol in eight different P. salmonis isolates. In vitro findings, with P. salmonis growing in the presence and absence of the antibiotic, exhibited a statistically significantly increase (p < .05) in biofilm formation in all the bacterial isolates cultivated with sub-MIC (defined as the half of the minimal inhibitory concentration in the presence of antibiotic) of florfenicol compared with controls (antibiotic-free broth). In conclusion, sub-MIC of florfenicol induced an increased biofilm formation in all P. salmonis isolates tested.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Tianfenicol , Animales , Enfermedades de los Peces/microbiología , Tianfenicol/farmacología , Antibacterianos/farmacología , Biopelículas , Infecciones por Piscirickettsiaceae/microbiología
5.
Front Cell Infect Microbiol ; 12: 1067514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544910

RESUMEN

Piscirickettsiosis is a fish disease caused by the Gram-negative bacterium Piscirickettsia salmonis. This disease has a high socio-economic impact on the Chilean salmonid aquaculture industry. The bacterium has a cryptic character in the environment and their main reservoirs are yet unknown. Bacterial biofilms represent a ubiquitous mechanism of cell persistence in diverse natural environments and a risk factor for the pathogenesis of several infectious diseases, but their microbiological significance for waterborne veterinary diseases, including piscirickettsiosis, have seldom been evaluated. This study analyzed the in vitro biofilm behavior of P. salmonis LF-89T (genogroup LF-89) and CA5 (genogroup EM-90) using a multi-method approach and elucidated the potential arsenal of virulence of the P. salmonis LF-89T type strain in its biofilm state. P. salmonis exhibited a quick kinetics of biofilm formation that followed a multi-step and highly strain-dependent process. There were no major differences in enzymatic profiles or significant differences in cytotoxicity (as tested on the Chinook salmon embryo cell line) between biofilm-derived bacteria and planktonic equivalents. The potential arsenal of virulence of P. salmonis LF-89T in biofilms, as determined by whole-transcriptome sequencing and differential gene expression analysis, consisted of genes involved in cell adhesion, polysaccharide biosynthesis, transcriptional regulation, and gene mobility, among others. Importantly, the global gene expression profiles of P. salmonis LF-89T were not enriched with virulence-related genes upregulated in biofilm development stages at 24 and 48 h. An enrichment in virulence-related genes exclusively expressed in biofilms was also undetected. These results indicate that early and mature biofilm development stages of P. salmonis LF-89T were transcriptionally no more virulent than their planktonic counterparts, which was supported by cytotoxic trials, which, in turn, revealed that both modes of growth induced important and very similar levels of cytotoxicity on the salmon cell line. Our results suggest that the aforementioned biofilm development stages do not represent hot spots of virulence compared with planktonic counterparts. This study provides the first transcriptomic catalogue to select specific genes that could be useful to prevent or control the (in vitro and/or in vivo) adherence and/or biofilm formation by P. salmonis and gain further insights into piscirickettsiosis pathogenesis.


Asunto(s)
Enfermedades de los Peces , Infecciones por Piscirickettsiaceae , Animales , Virulencia , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología , Conducta de Masa , Peces/microbiología , Salmón/microbiología , Biopelículas , Enfermedades de los Peces/microbiología
6.
J Fish Dis ; 45(8): 1099-1107, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543448

RESUMEN

Research into Piscirickettsia salmonis biofilms on materials commonly used in salmon farming is crucial for understanding its persistence and virulence. We used the CDC Biofilm Reactor to investigate P. salmonis (LF-89 and EM-90) biofilm formation on Nylon, Stainless steel (316L), Polycarbonate and High-Density Polyethylene (HDPE) surfaces. After 144 h of biofilm visualization by scanning confocal laser microscopy under batch growth conditions, Nylon coupons generated the greatest biofilm formation and coverage compared to Stainless steel (316L), Polycarbonate and HDPE. Additionally, P. salmonis biofilm formation on Nylon was significantly greater (p ≤ .01) than Stainless steel (316L), Polycarbonate and HDPE at 288 h. We used Nylon coupons to determine the kinetic parameters of the planktonic and biofilm phases of P. salmonis. The two strains had similar latencies in the planktonic phase; however, LF-89 maximum growth was 2.5 orders of magnitude higher (Log cell ml-1 ). Additionally, LF-89 had a specified growth rate (µmax) of 0.0177 ± 0.006 h-1 and a generation time of 39.2 h. This study contributes to a deeper understanding of the biofilm formation by P. salmonis and elucidates the impact of the biofilm on aquaculture systems.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Animales , Biopelículas , Centers for Disease Control and Prevention, U.S. , Enfermedades de los Peces/microbiología , Nylons , Infecciones por Piscirickettsiaceae/microbiología , Polietileno , Acero Inoxidable , Estados Unidos
7.
Vet Res ; 52(1): 111, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425904

RESUMEN

Salmonid rickettsial septicaemia (SRS) is a contagious disease caused by Piscirickettsia salmonis, an intracellular bacterium. SRS causes an estimated economic loss of $700 million USD to the Chilean industry annually. Vaccination and antibiotic therapy are the primary prophylactic and control measures used against SRS. Unfortunately, commercially available SRS vaccines have not been shown to have a significant effect on reducing mortality. Most vaccines contain whole inactivated bacteria which results in decreased efficacy due to the limited ability of the vaccine to evoke a cellular mediated immune response that can eliminate the pathogen or infected cells. In addition, SRS vaccine efficacy has been evaluated primarily with Salmo salar (Atlantic salmon). Vaccine studies using Oncorhynchus mykiss (rainbow trout) are scarce, despite SRS being the leading cause of infectious death for this species. In this study, we evaluate an injectable vaccine based on P. salmonis proteoliposome; describing the vaccine security profile, capacity to induce specific anti-P. salmonis IgM and gene expression of immune markers related to T CD8 cell-mediated immunity. Efficacy was determined by experimental challenge with P. salmonis intraperitoneally. Our findings indicate that a P. salmonis proteoliposome-based vaccine is able to protect O. mykiss against challenge with a P. salmonis Chilean isolate and causes a specific antibody response. The transcriptional profile suggests that the vaccine is capable of inducing cellular immunity. This study provides new insights into O. mykiss protection and the immune response induced by a P. salmonis proteoliposome-based vaccine.


Asunto(s)
Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/prevención & control , Oncorhynchus mykiss , Infecciones por Piscirickettsiaceae/veterinaria , Proteolípidos/uso terapéutico , Sepsis/veterinaria , Vacunación/veterinaria , Animales , Chile , Enfermedades de los Peces/microbiología , Piscirickettsia/inmunología , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/prevención & control , Sepsis/microbiología , Sepsis/prevención & control
8.
Artículo en Inglés | MEDLINE | ID: mdl-34087760

RESUMEN

Skeletal muscle is the most abundant tissue in teleosts and is essential for movement and metabolism. Recently, it has been described that skeletal muscle can express and secrete immune-related molecules during pathogen infection. However, the role of this tissue during infection is poorly understood. To determine the immunocompetence of fish skeletal muscle, juvenile rainbow trout (Oncorhynchus mykiss) were challenged with Piscirickettsia salmonis strain LF-89. P. salmonis is the etiological agent of piscirickettsiosis, a severe disease that has caused major economic losses in the aquaculture industry. This gram-negative bacterium produces a chronic systemic infection that involves several organs and tissues in salmonids. Using high-throughput RNA-seq, we found that 60 transcripts were upregulated in skeletal muscle, mostly associated with inflammatory response and positive regulation of interleukin-8 production. Conversely, 141 transcripts were downregulated in association with muscle filament sliding and actin filament-based movement. To validate these results, we performed in vitro experiments using rainbow trout myotubes. In myotubes coincubated with P. salmonis strain LF-89 at an MOI of 50, we found increased expression of the proinflammatory cytokine il1b and the pattern recognition receptor tlr5s 8 and 12 h after infection. These results demonstrated that fish skeletal muscle is an immunologically active organ that can implement an early immunological response against P. salmonis.


Asunto(s)
Enfermedades de los Peces/inmunología , Inflamación/inmunología , Músculo Esquelético/inmunología , Oncorhynchus mykiss/inmunología , Piscirickettsia/fisiología , Infecciones por Piscirickettsiaceae/inmunología , Transcriptoma , Animales , Acuicultura , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Perfilación de la Expresión Génica , Inflamación/genética , Inflamación/microbiología , Músculo Esquelético/metabolismo , Músculo Esquelético/microbiología , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/microbiología , Infecciones por Piscirickettsiaceae/microbiología
9.
Vet Res ; 52(1): 64, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933136

RESUMEN

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is the most important infectious disease in the Chilean salmon farming industry. An opportunity to control this disease is to use functional micronutrients to modulate host mechanisms of response to the infection. Since P. salmonis may affect the host antioxidant system in salmonids, particularly that dependent on selenium (Se), we hypothesized that fish's dietary selenium supplementation could improve the response to the bacterial infection. To address this, we defined a non-antibiotic, non-cytotoxic concentration of selenium to evaluate its effect on the response to in vitro infections of SHK-1 cells with P. salmonis. The results indicated that selenium supplementation reduced the cytopathic effect, intracellular bacterial load, and cellular mortality of SHK-1 by increasing the abundance and activity of host glutathione peroxidase. We then prepared diets supplemented with selenium up to 1, 5, and 10 mg/kg to feed juvenile trout for 8 weeks. At the end of this feeding period, we obtained their blood plasma and evaluated its ability to protect SHK-1 cells from infection with P. salmonis in ex vivo assays. These results recapitulated the observed ability of selenium to protect against infection with P. salmonis by increasing the concentration of selenium and the antioxidant capacity in fish's plasma. To the best of our knowledge, this is the first report of the protective capacity of selenium against P. salmonis infection in salmonids, becoming a potential effective host-directed dietary therapy for SRS and other infectious diseases in animals at a non-antibiotic concentration.


Asunto(s)
Antioxidantes/metabolismo , Resistencia a la Enfermedad , Enfermedades de los Peces/microbiología , Oncorhynchus mykiss/inmunología , Infecciones por Piscirickettsiaceae/veterinaria , Selenio/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Piscirickettsia/fisiología , Infecciones por Piscirickettsiaceae/microbiología , Plasma/química , Distribución Aleatoria , Selenio/administración & dosificación
11.
BMC Vet Res ; 17(1): 155, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849522

RESUMEN

BACKGROUND: Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. RESULTS: Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1ß at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. CONCLUSION: The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis.


Asunto(s)
Enfermedades de los Peces/microbiología , Deficiencias de Hierro , Piscirickettsia/efectos de los fármacos , Infecciones por Piscirickettsiaceae/veterinaria , Animales , Carga Bacteriana , Línea Celular , Quelantes/farmacología , Deferoxamina/farmacología , Regulación de la Expresión Génica , Hepcidinas/genética , Hepcidinas/metabolismo , Piscirickettsia/patogenicidad , Infecciones por Piscirickettsiaceae/microbiología , ARN Mensajero/metabolismo , Salmo salar
12.
J Fish Dis ; 44(7): 1033-1042, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33754342

RESUMEN

During the winter of 2013 and 2016, several Croatian fish farms experienced mortalities in the fry of European sea bass, Dicentrarchus labrax. Affected fish showed abnormal swimming behaviour and reduced appetite, and death ensued several days after the onset of clinical signs of disease. Necropsy revealed pale liver, empty digestive tract, distended gall bladder, and hyperaemia and congestion of the meninges. Routine bacteriological examination tested negative, and virological examination ruled out nodavirus infection. Histological examination revealed multifocal necrosis and extensive inflammation in the brain with abundant cellular debris in the ventricles. Inflammatory cells displayed intra-cytoplasmic basophilic vacuoles leading to suspicion of Piscirickettsia salmonis infection. Fluorescent in situ hybridization using an oligonucleotide probe targeting Domain Bacterium applied to tissue sections tested positive. The pathogen was identified by 16S rRNA gene sequencing of brain material, and the sequence showed 99% similarity with P. salmonis. This result enabled the design of an oligonucleotide probe specifically targeting P. salmonis. In 2016, P. salmonis was successfully isolated on CHAB from the brain of an affected specimen and identified using 16S rRNA gene sequencing and MALDI-TOF. This study describes the first outbreak of disease caused by P. salmonis in sea bass in Croatia, while new diagnostic tools will enable further research on its epidemiology and pathogenicity.


Asunto(s)
Acuicultura , Lubina , Enfermedades de los Peces/microbiología , Piscirickettsia , Infecciones por Piscirickettsiaceae/veterinaria , Animales , Croacia/epidemiología , Brotes de Enfermedades , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/patología , Infecciones por Piscirickettsiaceae/epidemiología , Infecciones por Piscirickettsiaceae/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Front Immunol ; 12: 602689, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679740

RESUMEN

An effective and economical vaccine against the Piscirickettsia salmonis pathogen is needed for sustainable salmon farming and to reduce disease-related economic losses. Consequently, the aquaculture industry urgently needs to investigate efficient prophylactic measures. Three protein-based vaccine prototypes against Piscirickettsia salmonis were prepared from a highly pathogenic Chilean isolate. Only one vaccine effectively protected Atlantic salmon (Salmo salar), in correlation with the induction of Piscirickettsia-specific IgM antibodies and a high induction of transcripts encoding pro-inflammatory cytokines (i.e., Il-1ß and TNF-α). In addition, we studied the proteome fraction protein of P. salmonis strain Austral-005 using multidimensional protein identification technology. The analyzes identified 87 proteins of different subcellular origins, such as the cytoplasmic and membrane compartment, where many of them have virulence functions. The other two prototypes activated only the innate immune responses, but did not protect Salmo salar against P. salmonis. These results suggest that the knowledge of the formulation of vaccines based on P. salmonis proteins is useful as an effective therapy, this demonstrates the importance of the different research tools to improve the study of the different immune responses, resistance to diseases in the Atlantic salmon. We suggest that this vaccine can help prevent widespread infection by P. salmonis, in addition to being able to be used as a booster after a primary vaccine to maintain high levels of circulating protective antibodies, greatly helping to reduce the economic losses caused by the pathogen.


Asunto(s)
Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Enfermedades de los Peces , Piscirickettsia/inmunología , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/prevención & control , Infecciones por Piscirickettsiaceae/veterinaria , Salmo salar/inmunología , Salmo salar/microbiología
14.
PLoS One ; 16(3): e0248098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667267

RESUMEN

BACKGROUND: Salmonid rickettsial septicemia is an emergent and geographically widespread disease of marine-farmed salmonids caused by infection with the water-borne bacterium Piscirickettsia salmonis. Very little is known about the route, timing, or magnitude of bacterial shedding from infected fish. METHODOLOGY/PRINCIPAL FINDINGS: A cohabitation challenge model was used to assess shedding from chum Oncorhynchus keta, pink O. gorbuscha and Atlantic salmon Salmo salar. Infections in donor fish were established by intraperitoneal injection of P. salmonis. Naïve recipients were cohabitated with donor fish after which cumulative percent morbidity and mortality (CMM) was monitored, and bacterial burdens in kidney and in tank water were measured by qPCR. All donor fish died with mean days-to-death (MDD) among species ranging from 17.5 to 23.9. Among recipients, CMM ranged from 42.7% to 77.8% and MDD ranged from 49.7 to 56.4. In each trial, two peaks of bacterial DNA concentrations in tank water closely aligned with the MDD values of donor and recipient fish. Bacterial tissue burden and shedding rate, and plasma physiological parameters were obtained from individual donors and recipients. Statistically significant positive correlations between the shedding rate and P. salmonis kidney burden were measured in donor pink and in donor and recipient chum salmon, but not in donor or recipient Atlantic salmon. In Atlantic salmon, there was a negative correlation between kidney bacterial burden and hematocrit, plasma Ca++ and Mg++ values, whereas in infected chum salmon the correlation was positive for Na+ and Cl- and negative for glucose. CONCLUSIONS: A dependency of bacterial shedding on species-specific patterns of pathogenesis was suggested. The coincidence of bacterial shedding with mortality will inform pathogen transmission models.


Asunto(s)
Derrame de Bacterias , Enfermedades de los Peces/metabolismo , Oncorhynchus keta/metabolismo , Piscirickettsia/metabolismo , Infecciones por Piscirickettsiaceae/metabolismo , Salmo salar/metabolismo , Salmón/metabolismo , Animales , Enfermedades de los Peces/microbiología , Oncorhynchus keta/microbiología , Piscirickettsia/patogenicidad , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/veterinaria , Salmo salar/microbiología , Salmón/microbiología , Especificidad de la Especie
15.
J Fish Dis ; 44(5): 495-504, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33455005

RESUMEN

Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, a systemic disease generating high mortality rates in farmed salmon cultures of southern Chile. Proteolytic enzymes are important virulence factors since they play a key role in bacterial invasion and proliferation within the host. Bacteria growing in muscle tissues are known to secrete proteases, but no proteolytic enzymes have been described in P. salmonis to date. A battery of putative protease genes was found in the genomes and available strains of P. salmonis by bioinformatics analyses, and their identity was established through comparison with protease genes in databases. The transcript levels of five candidate genes were analysed by in vitro infection and qPCR. All strains were found to generate protease activity to varying degrees, and this was significantly increased when bacteria infected a salmon cell line. Gene expression of several types of proteases was also evidenced, with the highest levels corresponding to the type 1 secretion system (T1SS), which is also involved in the transport of haemolysin A, although transcripts with significant levels of peptidase M4 (thermolysin) and CLP protease were also found.


Asunto(s)
Enfermedades de los Peces/microbiología , Genes Bacterianos/genética , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/veterinaria , Salmo salar , Factores de Virulencia/genética , Animales , Infecciones por Piscirickettsiaceae/microbiología
16.
Front Immunol ; 12: 789465, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35035387

RESUMEN

Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. "phagocytosis", "defense response to bacterium", "inflammatory response") and adaptive (e.g. "regulation of T cell activation", "antigen processing and presentation of exogenous antigen") immune processes, while a small number of general physiological processes (e.g. "apoptotic process", development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.


Asunto(s)
Proteínas de Peces/genética , Perfilación de la Expresión Génica , Piscirickettsia/patogenicidad , Infecciones por Piscirickettsiaceae/genética , Salmo salar/genética , Transcriptoma , Animales , Carga Bacteriana , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Inmunidad Celular , Inmunidad Innata , Riñón/inmunología , Riñón/microbiología , Piscirickettsia/inmunología , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/microbiología , Salmo salar/inmunología , Salmo salar/microbiología , Transducción de Señal , Factores de Tiempo
17.
J Fish Dis ; 44(2): 181-190, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33006764

RESUMEN

Piscirickettsiosis is a fish disease caused by the facultative intracellular bacterium, Piscirickettsia salmonis. Even though entry routes of P. salmonis in fish are not fully clear yet, the skin seems to be the main portal in some salmonid species. Despite the importance of fish mucous skin barrier in fighting waterborne pathogens, the interaction between salmonid skin mucus and the bacterium is unknown. This study seeks to determine the in vitro changes in the growth of two Chilean P. salmonis strains (LF-89-like and EM-90-like genotypes) and the type strain LF-89T under exposures to skin mucus from Salmo salar and Oncorhynchus mykiss, as well as changes in the cytotoxic effect of P. salmonis on the SHK-1 cells following exposures. The results suggest that the growth of three P. salmonis strains was not significantly negatively affected under exposures to skin mucus (adjusted at 100 µg total protein ml-1 ) of O. mykiss (69 ± 18 U lysozyme ml-1 ) and S. salar (48 ± 33 U lysozyme ml-1 ) over time. However, the cytotoxic effect of P. salmonis, pre-exposed to salmonid skin mucus, on the SHK-1 cell line was reliably identified only towards the end of the incubation period, suggesting that the mucus had a delaying effect on the cytotoxic response of the cell line to the bacterium. These results represent a baseline knowledge to open new avenues of research intended to understand how P. salmonis faces the fish mucous skin barrier.


Asunto(s)
Moco/inmunología , Piscirickettsia/crecimiento & desarrollo , Infecciones por Piscirickettsiaceae/veterinaria , Animales , Línea Celular , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Genotipo , Moco/microbiología , Oncorhynchus mykiss/inmunología , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/microbiología , Salmo salar/inmunología , Piel/inmunología , Piel/microbiología
18.
FEMS Microbiol Lett ; 367(21)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33128546

RESUMEN

Piscirickettsia salmonis is a facultative intracellular bacterium that generates piscirickettsiosis affecting salmonids in Chile. The bacterium has the adaptability to survive in the marine environment under multiple stressful conditions. In this sense, this work focused on the analysis of a gene battery associated with biofilm formation under different culture conditions and on the adaptability of this biofilm to different media. The results indicated that the strains LF-89, IBM-034 and IBM-040 were strong biofilm producers, evidencing adaptability to the media by increasing the amount of biofilm through successive growths. Transcript levels of six genes described in various bacteria and P. salmonis, considered to have metabolic functions, and playing a relevant role in biofilm formation, were analyzed to evaluate bacterial functionality in the biofilm. The genes mazE-mazF, implicated in biofilm and stress, were markedly overexpressed in the biofilm condition in the three strains. For its part, gene gltA, an indicator of metabolic activity and related to virulence inhibition in Salmonella typhimurium, also seems to restrain the pathogenesis process in P. salmonis by inhibiting the expression of the virulence-associated genes liso and tcf. Finally, the expression of the glnA gene suggests the use of glutamine as an essential element for the growth of the biofilm.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Enfermedades de los Peces/microbiología , Piscirickettsia/genética , Piscirickettsia/patogenicidad , Infecciones por Piscirickettsiaceae/microbiología , Factores de Virulencia/genética , Animales , Chile , Perfilación de la Expresión Génica , Genes Bacterianos/genética , Piscirickettsia/metabolismo , Salmonidae/microbiología
19.
Vet Res ; 51(1): 134, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115510

RESUMEN

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is a severe bacterial disease in the Chilean salmon farming industry. Vaccines and antibiotics are the current strategies to fight SRS; however, the high frequency of new epizootic events confirms the need to develop new strategies to combat this disease. An innovative opportunity is perturbing the host pathways used by the microorganisms to replicate inside host cells through host-directed antimicrobial drugs (HDAD). Iron is a critical nutrient for P. salmonis infection; hence, the use of iron-chelators becomes an excellent alternative to be used as HDAD. The aim of this work was to use the iron chelator Deferiprone (DFP) as HDAD to treat SRS. Here, we describe the protective effect of the iron chelator DFP over P. salmonis infections at non-antibiotic concentrations, in bacterial challenges both in vitro and in vivo. At the cellular level, our results indicate that DFP reduced the intracellular iron content by 33.1% and P. salmonis relative load during bacterial infections by 78%. These findings were recapitulated in fish, where DFP reduced the mortality of rainbow trout challenged with P. salmonis in 34.9% compared to the non-treated group. This is the first report of the protective capacity of an iron chelator against infection in fish, becoming a potential effective host-directed therapy for SRS and other animals against ferrophilic pathogens.


Asunto(s)
Enfermedades de los Peces/prevención & control , Hierro/farmacología , Oncorhynchus mykiss , Piscirickettsia/fisiología , Infecciones por Piscirickettsiaceae/veterinaria , Salmo salar , Sepsis/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Línea Celular , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Hierro/química , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/prevención & control , Sepsis/inmunología , Sepsis/microbiología , Sepsis/prevención & control
20.
Sci Rep ; 10(1): 12224, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699383

RESUMEN

Piscirickettsia salmonis is the causative agent of piscirickettsiosis, a disease with high socio-economic impacts for Chilean salmonid aquaculture. The identification of major environmental reservoirs for P. salmonis has long been ignored. Most microbial life occurs in biofilms, with possible implications in disease outbreaks as pathogen seed banks. Herein, we report on an in vitro analysis of biofilm formation by P. salmonis Psal-103 (LF-89-like genotype) and Psal-104 (EM-90-like genotype), the aim of which was to gain new insights into the ecological role of biofilms using multiple approaches. The cytotoxic response of the salmon head kidney cell line to P. salmonis showed interisolate differences, depending on the source of the bacterial inoculum (biofilm or planktonic). Biofilm formation showed a variable-length lag-phase, which was associated with wider fluctuations in biofilm viability. Interisolate differences in the lag phase emerged regardless of the nutritional content of the medium, but both isolates formed mature biofilms from 288 h onwards. Psal-103 biofilms were sensitive to Atlantic salmon skin mucus during early formation, whereas Psal-104 biofilms were more tolerant. The ability of P. salmonis to form viable and mucus-tolerant biofilms on plastic surfaces in seawater represents a potentially important environmental risk for the persistence and dissemination of piscirickettsiosis.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Piscirickettsia/crecimiento & desarrollo , Infecciones por Piscirickettsiaceae/microbiología , Animales , Acuicultura/métodos , Línea Celular , Chile , Enfermedades de los Peces/microbiología , Genotipo , Riñón Cefálico/microbiología , Piscirickettsia/genética , Salmo salar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...