Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
PLoS Pathog ; 20(5): e1012230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776321

RESUMEN

While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-ß and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-ß transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteína 58 DEAD Box , Interferón Tipo I , Macrófagos , Ratones Noqueados , Infecciones por Virus ARN , Ubiquitinas , Animales , Macrófagos/virología , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteína 58 DEAD Box/metabolismo , Interferón Tipo I/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Citocinas/metabolismo , Ratones Endogámicos C57BL , Humanos , Receptores Inmunológicos/metabolismo , Interferón beta/metabolismo , Virus ARN/inmunología , Factor 3 Regulador del Interferón/metabolismo
2.
Nat Commun ; 15(1): 4127, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750080

RESUMEN

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Asunto(s)
ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Transducción de Señal , Gránulos de Estrés , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Gránulos de Estrés/metabolismo , ARN Helicasas/metabolismo , ADN Helicasas/metabolismo , Proteína 58 DEAD Box/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunidad Innata , ARN Bicatenario/metabolismo , Células HEK293 , Células HeLa , Gránulos Citoplasmáticos/metabolismo , Infecciones por Virus ARN/virología , Infecciones por Virus ARN/metabolismo , Infecciones por Virus ARN/inmunología , Receptores Inmunológicos/metabolismo
3.
Virulence ; 15(1): 2355971, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38745468

RESUMEN

The vertebrate central nervous system (CNS) is the most complex system of the body. The CNS, especially the brain, is generally regarded as immune-privileged. However, the specialized immune strategies in the brain and how immune cells, specifically macrophages in the brain, respond to virus invasion remain poorly understood. Therefore, this study aimed to examine the potential immune response of macrophages in the brain of orange-spotted groupers (Epinephelus coioides) following red-spotted grouper nervous necrosis virus (RGNNV) infection. We observed that RGNNV induced macrophages to produce an inflammatory response in the brain of orange-spotted grouper, and the macrophages exhibited M1-type polarization after RGNNV infection. In addition, we found RGNNV-induced macrophage M1 polarization via the CXCR3.2- CXCL11 pathway. Furthermore, we observed that RGNNV triggered M1 polarization in macrophages, resulting in substantial proinflammatory cytokine production and subsequent damage to brain tissue. These findings reveal a unique mechanism for brain macrophage polarization, emphasizing their role in contributing to nervous tissue damage following viral infection in the CNS.


Asunto(s)
Encéfalo , Enfermedades de los Peces , Macrófagos , Nodaviridae , Infecciones por Virus ARN , Animales , Macrófagos/inmunología , Macrófagos/virología , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Encéfalo/virología , Encéfalo/inmunología , Encéfalo/patología , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Quimiocina CXCL11 , Receptores CXCR3/metabolismo , Lubina/inmunología , Lubina/virología , Transducción de Señal , Citocinas/metabolismo , Citocinas/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/genética
4.
Fish Shellfish Immunol ; 149: 109553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615704

RESUMEN

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.


Asunto(s)
Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/prevención & control , Rhabdoviridae/fisiología , Antivirales/farmacología , Antivirales/química , Percas , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Péptidos/farmacología , Péptidos/química , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control
5.
J Biol Chem ; 300(1): 105525, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043800

RESUMEN

The innate antiviral response to RNA viruses is initiated by sensing of viral RNAs by RIG-I-like receptors and elicits type I interferon (IFN) production, which stimulates the expression of IFN-stimulated genes that orchestrate the antiviral response to prevent systemic infection. Negative regulation of type I IFN and its master regulator, transcription factor IRF7, is essential to maintain immune homeostasis. We previously demonstrated that AIP (aryl hydrocarbon receptor interacting protein) functions as a negative regulator of the innate antiviral immune response by binding to and sequestering IRF7 in the cytoplasm, thereby preventing IRF7 transcriptional activation and type I IFN production. However, it remains unknown how AIP inhibition of IRF7 is regulated. We show here that the kinase TBK1 phosphorylates AIP and Thr40 serves as the primary target for TBK1 phosphorylation. AIP Thr40 plays critical roles in regulating AIP stability and mediating its interaction with IRF7. The AIP phosphomimetic T40E exhibited increased proteasomal degradation and enhanced interaction with IRF7 compared with wildtype AIP. AIP T40E also blocked IRF7 nuclear translocation, which resulted in reduced type I IFN production and increased viral replication. In sharp contrast, AIP phosphonull mutant T40A had impaired IRF7 binding, and stable expression of AIP T40A in AIP-deficient mouse embryonic fibroblasts elicited a heightened type I IFN response and diminished RNA virus replication. Taken together, these results demonstrate that TBK1-mediated phosphorylation of AIP at Thr40 functions as a molecular switch that enables AIP to interact with and inhibit IRF7, thus preventing overactivation of type I IFN genes by IRF7.


Asunto(s)
Inmunidad Innata , Factor 7 Regulador del Interferón , Interferón Tipo I , Proteínas Serina-Treonina Quinasas , Infecciones por Virus ARN , Virus ARN , Receptores de Hidrocarburo de Aril , Animales , Ratones , Fibroblastos , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Virus ARN/inmunología , Infecciones por Virus ARN/inmunología , Humanos , Células HEK293
6.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37882518

RESUMEN

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Asunto(s)
Infecciones por Virus ADN , Inmunidad Innata , Interferones , Infecciones por Virus ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Interferones/antagonistas & inhibidores , Interferones/biosíntesis , Transducción de Señal , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Retroalimentación Fisiológica , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
7.
Sci Adv ; 9(33): eadg5211, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37595039

RESUMEN

A rapid induction of antiviral genes is critical for eliminating viruses, which requires activated transcription factors and opened chromatins to initiate transcription. However, it remains elusive how the accessibility of specific chromatin is regulated during infection. Here, we found that XAF1 functioned as an epigenetic regulator that liberated repressed chromatin after infection. Upon RNA virus infection, MAVS recruited XAF1 and TBK1. TBK1 phosphorylated XAF1 at serine-252 and promoted its nuclear translocation. XAF1 then interacted with TRIM28 with the guidance of IRF1 to the specific locus of antiviral genes. XAF1 de-SUMOylated TRIM28 through its PHD domain, which led to increased accessibility of the chromatin and robust induction of antiviral genes. XAF1-deficient mice were susceptible to RNA virus due to impaired induction of antiviral genes. Together, XAF1 acts as an epigenetic regulator that promotes the opening of chromatin and activation of antiviral immunity by targeting TRIM28 during infection.


Asunto(s)
Cromatina , Infecciones por Virus ARN , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis , Cromatina/genética , Epigenómica , Inmunidad , ARN , Infecciones por Virus ARN/inmunología
8.
Viruses ; 15(6)2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37376652

RESUMEN

Macrophages are critical in the pathogenesis of a diverse group of viral pathogens, both as targets of infection and for eliciting primary defense mechanisms. Our prior in vitro work identified that CD40 signaling in murine peritoneal macrophages protects against several RNA viruses by eliciting IL-12, which stimulates the production of interferon gamma (IFN-γ). Here, we examine the role of CD40 signaling in vivo. We show that CD40 signaling is a critical, but currently poorly appreciated, component of the innate immune response using two distinct infectious agents: mouse-adapted influenza A virus (IAV, PR8) and recombinant VSV encoding the Ebola virus glycoprotein (rVSV-EBOV GP). We find that stimulation of CD40 signaling decreases early IAV titers, whereas loss of CD40 elevated early titers and compromised lung function by day 3 of infection. Protection conferred by CD40 signaling against IAV is dependent on IFN-γ production, consistent with our in vitro studies. Using rVSV-EBOV GP that serves as a low-biocontainment model of filovirus infection, we demonstrate that macrophages are a CD40-expressing population critical for protection within the peritoneum and T-cells are the key source of CD40L (CD154). These experiments reveal the in vivo mechanisms by which CD40 signaling in macrophages regulates the early host responses to RNA virus infection and highlight how CD40 agonists currently under investigation for clinical use may function as a novel class of broad antiviral treatments.


Asunto(s)
Antígenos CD40 , Infecciones por Virus ARN , Virus ARN , Animales , Ratones , Antígenos CD40/metabolismo , Interferón gamma , Macrófagos , Infecciones por Virus ARN/inmunología
9.
J Virol ; 97(6): e0053323, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255438

RESUMEN

Ubiquitination, as one of the most prevalent posttranslational modifications of proteins, enables a tight control of host immune responses. Many viruses hijack the host ubiquitin system to regulate host antiviral responses for their survival. Here, we found that the fish pathogen nervous necrosis virus (NNV) recruited Lateolabrax japonicus E3 ubiquitin ligase ring finger protein 34 (LjRNF34) to inhibit the RIG-I-like receptor (RLR)-mediated interferon (IFN) response via ubiquitinating Lateolabrax japonicus TANK-binding kinase 1 (LjTBK1) and interferon regulatory factor 3 (LjIRF3). Ectopic expression of LjRNF34 greatly enhanced NNV replication and prevented IFN production, while deficiency of LjRNF34 led to the opposite effect. Furthermore, LjRNF34 targeted LjTBK1 and LjIRF3 via its RING domain. Of note, the interactions between LjRNF34 and LjTBK1 or LjIRF3 were conserved in different cellular models derived from fish. Mechanically, LjRNF34 promoted K27- and K48-linked ubiquitination and degradation of LjTBK1 and LjIRF3, which in turn diminished LjTBK1-induced translocation of LjIRF3 from the cytoplasm to the nucleus. Ultimately, NNV capsid protein (CP) was found to bind with LjRNF34, CP induced LjTBK1 and LjIRF3 degradation, and IFN suppression depended on LjRNF34. Our finding demonstrates a novel mechanism by which NNV CP evaded host innate immunity via LjRNF34 and provides a potential drug target for the control of NNV infection. IMPORTANCE Ubiquitination plays an essential role in the regulation of innate immune responses to pathogens. NNV, a type of RNA virus, is the causal agent of a highly destructive disease in a variety of marine and freshwater fish. A previous study reported NNV could hijack the ubiquitin system to manipulate the host's immune responses; however, how NNV utilizes ubiquitination to facilitate its own replication is not well understood. Here, we identified a novel distinct role of E3 ubiquitin ligase LjRNF34 as an IFN antagonist to promote NNV infection. NNV capsid protein utilized LjRNF34 to target LjTBK1 and LjIRF3 for K27- and K48-linked ubiquitination and degradation. Importantly, the interactions between LjRNF34 and CP, LjTBK1, or LjIRF3 are conserved in different cellular models derived from fish, suggesting it is a general immune evasion strategy exploited by NNV to target the IFN response via RNF34.


Asunto(s)
Proteínas de la Cápside , Proteínas de Peces , Inmunidad Innata , Infecciones por Virus ARN , Animales , Proteínas de la Cápside/genética , Factor 3 Regulador del Interferón/metabolismo , Necrosis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Peces , Proteínas de Peces/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Nodaviridae , Infecciones por Virus ARN/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología
10.
J Virol ; 97(1): e0174822, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633407

RESUMEN

Nervous necrosis virus (NNV), a formidable pathogen in marine and freshwater fish, has inflicted enormous financial tolls on the aquaculture industry worldwide. Although capsid protein (CP) is the sole structural protein with pathogenicity and antigenicity, public information on immunodominant regions remains extremely scarce. Here, we employed neutralizing monoclonal antibodies (MAbs) specific for red-spotted grouper NNV (RGNNV) CNPgg2018 in combination with partially overlapping truncated proteins and peptides to identify two minimal B-cell epitope clusters on CP, 122GYVAGFL128 and 227SLYNDSL233. Site-directed mutational analysis confirmed residues Y123, G126, and L128 and residues L228, Y229, N230, D231, and L233 as the critical residues responsible for the direct interaction with ligand, respectively. According to homologous modeling and bioinformatic evaluation, 122GYVAGFL128 is harbored at the groove of the CP junction with strict conservation among all NNV isolates, while 227SLYNDSL233 is localized in proximity to the tip of a viral protrusion having relatively high evolutionary dynamics in different genotypes. Additionally, 227SLYNDSL233 was shown to be a receptor-binding site, since the corresponding polypeptide could moderately suppress RGNNV multiplication by impeding virion entry. In contrast, 122GYVAGFL128 seemed dedicated only to stabilizing viral native conformation and not to assisting initial virus attachment. Altogether, these findings contribute to a novel understanding of the antigenic distribution pattern of NNV and the molecular basis for neutralization, thus advancing the development of biomedical products, especially epitope-based vaccines, against NNV. IMPORTANCE NNV is a common etiological agent associated with neurological virosis in multiple aquatic organisms, causing significant hazards to the host. However, licensed drugs or vaccines to combat NNV infection are very limited to date. Toward the advancement of broad-spectrum prophylaxis and therapeutics against NNV, elucidating the diversity of immunodominant regions within it is undoubtedly essential. Here, we identified two independent B-cell epitopes on NNV CP, followed by the confirmation of critical amino acid residues participating in direct interaction. These two sites were distributed on the shell and protrusion domains of the virion, respectively, and mediated the neutralization exerted by MAbs via drastically distinct mechanisms. Our work promotes new insights into NNV antigenicity as well as neutralization and, more importantly, offers promising targets for the development of antiviral countermeasures.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Animales , Lubina/virología , Proteínas de la Cápside/metabolismo , Epítopos de Linfocito B/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Epítopos Inmunodominantes , Necrosis , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología
11.
Cell ; 186(1): 131-146.e13, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36565697

RESUMEN

Germinal centers (GCs) form in secondary lymphoid organs in response to infection and immunization and are the source of affinity-matured B cells. The duration of GC reactions spans a wide range, and long-lasting GCs (LLGCs) are potentially a source of highly mutated B cells. We show that rather than consisting of continuously evolving B cell clones, LLGCs elicited by influenza virus or SARS-CoV-2 infection in mice are sustained by progressive replacement of founder clones by naive-derived invader B cells that do not detectably bind viral antigens. Rare founder clones that resist replacement for long periods are enriched in clones with heavily mutated immunoglobulins, including some with very high affinity for antigen, that can be recalled by boosting. Our findings reveal underappreciated aspects of the biology of LLGCs generated by respiratory virus infection and identify clonal replacement as a potential constraint on the development of highly mutated antibodies within these structures.


Asunto(s)
Linfocitos B , Centro Germinal , Infecciones por Virus ARN , Animales , Ratones , Linfocitos B/citología , Linfocitos B/inmunología , Células Clonales , COVID-19 , Centro Germinal/citología , Centro Germinal/inmunología , SARS-CoV-2 , Gripe Humana , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/virología
12.
J Virol ; 96(17): e0077422, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35972291

RESUMEN

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Factor 1 Regulador del Interferón , Infecciones por Virus ARN , Virus ARN , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/inmunología , Humanos , Inmunidad Innata , Factor 1 Regulador del Interferón/inmunología , Ratones , Ratones Noqueados , Infecciones por Virus ARN/inmunología , Replicación Viral
13.
Front Immunol ; 13: 904481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677039

RESUMEN

Bats are important hosts for various zoonotic viral diseases. However, they rarely show signs of disease infection with such viruses. As the first line for virus control, the innate immune system of bats attracted our full attention. In this study, the Tadarida brasiliensis MDA5 gene (batMDA5), a major sensor for anti-RNA viral infection, was first cloned, and its biological functions in antiviral innate immunity were identified. Bioinformatics analysis shows that the amino acid sequence of batMDA5 is poorly conserved among species, and it is evolutionarily closer to humans. The mRNA of batMDA5 was significantly upregulated in Newcastle disease virus (NDV), avian influenza virus (AIV), and vesicular stomatitis virus (VSV)-infected bat TB 1 Lu cells. Overexpression of batMDA5 could activate IFNß and inhibit vesicular stomatitis virus (VSV-GFP) replication in TB 1 Lu cells, while knockdown of batMDA5 yielded the opposite result. In addition, we found that the CARD domain was essential for MDA5 to activate IFNß by constructing MDA5 domain mutant plasmids. These results indicated that bat employs a conserved MDA5 gene to trigger anti-RNA virus innate immune response. This study helps understand the biological role of MDA5 in innate immunity during evolution.


Asunto(s)
Quirópteros , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1 , Infecciones por Virus ARN , Animales , Quirópteros/inmunología , Virus de la Influenza A , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta , Infecciones por Virus ARN/inmunología , Virus ARN
14.
Proc Natl Acad Sci U S A ; 119(26): e2122805119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733260

RESUMEN

During viral infection, sensing of viral RNA by retinoic acid-inducible gene-I-like receptors (RLRs) initiates an antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA (virus-induced signal adaptor; also known as mitochondrial antiviral signaling protein [MAVS]). VISA is regulated by various posttranslational modifications (PTMs), such as polyubiquitination, phosphorylation, O-linked ß-d-N-acetylglucosaminylation (O-GlcNAcylation), and monomethylation. However, whether other forms of PTMs regulate VISA-mediated innate immune signaling remains elusive. Here, we report that Poly(ADP-ribosyl)ation (PARylation) is a PTM of VISA, which attenuates innate immune response to RNA viruses. Using a biochemical purification approach, we identified tankyrase 1 (TNKS1) as a VISA-associated protein. Viral infection led to the induction of TNKS1 and its homolog TNKS2, which translocated from cytosol to mitochondria and interacted with VISA. TNKS1 and TNKS2 catalyze the PARylation of VISA at Glu137 residue, thereby priming it for K48-linked polyubiquitination by the E3 ligase Ring figure protein 146 (RNF146) and subsequent degradation. Consistently, TNKS1, TNKS2, or RNF146 deficiency increased the RNA virus-triggered induction of downstream effector genes and impaired the replication of the virus. Moreover, TNKS1- or TNKS2-deficient mice produced higher levels of type I interferons (IFNs) and proinflammatory cytokines after virus infection and markedly reduced virus loads in the brains and lungs. Together, our findings uncover an essential role of PARylation of VISA in virus-triggered innate immune signaling, which represents a mechanism to avoid excessive harmful immune response.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Infecciones por Virus ARN , Virus ARN , Tanquirasas , Ubiquitina-Proteína Ligasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células HEK293 , Humanos , Inmunidad Innata/genética , Ratones , Infecciones por Virus ARN/inmunología , Virus ARN/inmunología , Tanquirasas/genética , Tanquirasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
Cell Rep ; 39(10): 110920, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35675783

RESUMEN

Retinoic acid-inducible-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) genes encode essential cytosolic receptors mediating antiviral immunity against viruses. Here, we show that OTUD3 has opposing role in response to RNA and DNA virus infection by removing distinct types of RIG-I/MDA5 and cGAS polyubiquitination. OTUD3 binds to RIG-I and MDA5 and removes K63-linked ubiquitination. This serves to reduce the binding of RIG-I and MDA5 to viral RNA and the downstream adaptor MAVS, leading to the suppression of the RNA virus-triggered innate antiviral responses. Meanwhile, OTUD3 associates with cGAS and targets at Lys279 to deubiquitinate K48-linked ubiquitination, resulting in the enhancement of cGAS protein stability and DNA-binding ability. As a result, Otud3-deficient mice and zebrafish are more resistant to RNA virus infection but are more susceptible to DNA virus infection. These findings demonstrate that OTUD3 limits RNA virus-triggered innate immunity but promotes DNA virus-triggered innate immunity.


Asunto(s)
Infecciones por Virus ADN , Inmunidad Innata , Infecciones por Virus ARN , Proteasas Ubiquitina-Específicas , Animales , Proteína 58 DEAD Box/metabolismo , Infecciones por Virus ADN/inmunología , Virus ADN , Enzimas Desubicuitinizantes , Helicasa Inducida por Interferón IFIH1/metabolismo , Ratones , Nucleotidiltransferasas , Infecciones por Virus ARN/inmunología , Virus ARN , ARN Viral/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Pez Cebra/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(15): e2119531119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35394863

RESUMEN

The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)­mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ER­mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 14­3-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 14­3-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 14­3-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.


Asunto(s)
Proteína 58 DEAD Box , Interferones , Infecciones por Virus ARN , ARN Viral , Receptores Inmunológicos , Ubiquitina-Proteína Ligasas , Proteínas 14-3-3/metabolismo , Proteína 58 DEAD Box/metabolismo , Humanos , Inmunidad Innata , Interferones/metabolismo , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/inmunología , ARN Viral/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
17.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163406

RESUMEN

Nanoplastics (NPs) might cause different negative effects on aquatic organisms at different biological levels, ranging from single cells to whole organisms, including cytotoxicity, reproduction, behavior or oxidative stress. However, the impact of NPs on disease resistance is almost unknown. The objective of this study was to assess whether exposure to 50 nm functionalized polystyrene NPs impacts fish susceptibility to viral diseases both in vitro and in vivo. In particular, we focused on the nervous necrosis virus (NNV), which affects many fish species, producing viral encephalopathy and retinopathy (VER), and causes great economic losses in marine aquaculture. In vitro and in vivo approaches were used. A brain cell line (SaB-1) was exposed to 1 µg mL-1 of functionalized polystyrene NPs (PS-NH2, PS-COOH) and then infected with NNV. Viral titers were increased in NP-exposed cells whilst the transcription of inflammatory and antiviral markers was lowered when compared to those cells only infected with NNV. In addition, European sea bass (Dicentrarchus labrax) juveniles were intraperitoneally injected with the same NPs and then challenged with NNV. Our results indicated that NPs increased the viral replication and clinical signs under which the fish died although the cumulate mortality was unaltered. Again, exposure to NPs produced a lowered inflammatory and antiviral response. Our results highlight that the presence of NPs might impact the infection process of NNV and fish resistance to the disease, posing an additional risk to marine organisms.


Asunto(s)
Lubina , Enfermedades de los Peces , Microplásticos/toxicidad , Nodaviridae/inmunología , Infecciones por Virus ARN , Animales , Lubina/inmunología , Lubina/virología , Línea Celular , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología
18.
Viruses ; 14(2)2022 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35216025

RESUMEN

Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.


Asunto(s)
Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Interferencia de ARN/fisiología , Infecciones por Virus ARN/inmunología , Arabidopsis/genética , Arabidopsis/virología , Interacciones Huésped-Patógeno , Inmunidad Innata , Enfermedades de las Plantas/virología , Infecciones por Virus ARN/virología
19.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969857

RESUMEN

Type I interferons (IFNs) are the first frontline of the host innate immune response against invading pathogens. Herein, we characterized an unknown protein encoded by phospholipase A2 inhibitor and LY6/PLAUR domain-containing (PINLYP) gene that interacted with TBK1 and induced type I IFN in a TBK1- and IRF3-dependent manner. Loss of PINLYP impaired the activation of IRF3 and production of IFN-ß induced by DNA virus, RNA virus, and various Toll-like receptor ligands in multiple cell types. Because PINLYP deficiency in mice engendered an early embryonic lethality in mice, we generated a conditional mouse in which PINLYP was depleted in dendritic cells. Mice lacking PINLYP in dendritic cells were defective in type I IFN induction and more susceptible to lethal virus infection. Thus, PINLYP is a positive regulator of type I IFN innate immunity and important for effective host defense against viral infection.


Asunto(s)
Células Dendríticas/inmunología , Inhibidores Enzimáticos/inmunología , Inmunidad Innata , Interferón beta/inmunología , Animales , Línea Celular , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/inmunología , Virus ADN/genética , Virus ADN/inmunología , Humanos , Interferón beta/genética , Ratones , Ratones Noqueados , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/inmunología , Virus ARN/genética , Virus ARN/inmunología
20.
PLoS Comput Biol ; 17(10): e1008874, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695114

RESUMEN

Respiratory viruses present major public health challenges, as evidenced by the 1918 Spanish Flu, the 1957 H2N2, 1968 H3N2, and 2009 H1N1 influenza pandemics, and the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Severe RNA virus respiratory infections often correlate with high viral load and excessive inflammation. Understanding the dynamics of the innate immune response and its manifestations at the cell and tissue levels is vital to understanding the mechanisms of immunopathology and to developing strain-independent treatments. Here, we present a novel spatialized multicellular computational model of RNA virus infection and the type-I interferon-mediated antiviral response that it induces within lung epithelial cells. The model is built using the CompuCell3D multicellular simulation environment and is parameterized using data from influenza virus-infected cell cultures. Consistent with experimental observations, it exhibits either linear radial growth of viral plaques or arrested plaque growth depending on the local concentration of type I interferons. The model suggests that modifying the activity of signaling molecules in the JAK/STAT pathway or altering the ratio of the diffusion lengths of interferon and virus in the cell culture could lead to plaque growth arrest. The dependence of plaque growth arrest on diffusion lengths highlights the importance of developing validated spatial models of cytokine signaling and the need for in vitro measurement of these diffusion coefficients. Sensitivity analyses under conditions leading to continuous or arrested plaque growth found that plaque growth is more sensitive to variations of most parameters and more likely to have identifiable model parameters when conditions lead to plaque arrest. This result suggests that cytokine assay measurements may be most informative under conditions leading to arrested plaque growth. The model is easy to extend to include SARS-CoV-2-specific mechanisms or to use as a component in models linking epithelial cell signaling to systemic immune models.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Interferones , Infecciones por Virus ARN , Virus ARN , Replicación Viral , Células Cultivadas , Biología Computacional , Células Epiteliales/inmunología , Humanos , Inmunidad Innata/inmunología , Interferones/inmunología , Interferones/metabolismo , Pulmón/citología , Pulmón/inmunología , Modelos Biológicos , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Virus ARN/inmunología , Virus ARN/fisiología , Replicación Viral/inmunología , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...