Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407464

RESUMEN

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Asunto(s)
Hordeum , Haz Vascular de Plantas , Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo , Hordeum/fisiología , Haz Vascular de Plantas/anatomía & histología , Haz Vascular de Plantas/fisiología , Haz Vascular de Plantas/crecimiento & desarrollo , Transporte Biológico , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología
2.
BMC Plant Biol ; 22(1): 127, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303806

RESUMEN

BACKGROUND: Inflorescence architecture and floral development in flowering plants are determined by genetic control of meristem identity, determinacy, and maintenance. The ear inflorescence meristem in maize (Zea mays) initiates short branch meristems called spikelet pair meristems, thus unlike the tassel inflorescence, the ears lack long branches. Maize growth-regulating factor (GRF)-interacting factor1 (GIF1) regulates branching and size of meristems in the tassel inflorescence by binding to Unbranched3. However, the regulatory pathway of gif1 in ear meristems is relatively unknown. RESULT: In this study, we found that loss-of-function gif1 mutants had highly branched ears, and these extra branches repeatedly produce more branches and florets with unfused carpels and an indeterminate floral apex. In addition, GIF1 interacted in vivo with nine GRFs, subunits of the SWI/SNF chromatin-remodeling complex, and hormone biosynthesis-related proteins. Furthermore, key meristem-determinacy gene RAMOSA2 (RA2) and CLAVATA signaling-related gene CLV3/ENDOSPERM SURROUNDING REGION (ESR) 4a (CLE4a) were directly bound and regulated by GIF1 in the ear inflorescence. CONCLUSIONS: Our findings suggest that GIF1 working together with GRFs recruits SWI/SNF chromatin-remodeling ATPases to influence DNA accessibility in the regions that contain genes involved in hormone biosynthesis, meristem identity and determinacy, thus driving the fate of axillary meristems and floral organ primordia in the ear-inflorescence of maize.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Transcriptoma , Zea mays/genética , Secuenciación de Inmunoprecipitación de Cromatina , Expresión Génica , Fusión Génica , Genes Reporteros , Inflorescencia/anatomía & histología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Mutación con Pérdida de Función , Meristema/anatomía & histología , Meristema/genética , Meristema/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/genética , Zea mays/anatomía & histología , Zea mays/crecimiento & desarrollo
3.
Plant Physiol ; 188(1): 363-381, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34662405

RESUMEN

In cultivated grasses, tillering, leaf, and inflorescence architecture, as well as abscission ability, are major agronomical traits. In barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and brachypodium (Brachypodium distachyon), NOOT-BOP-COCH-LIKE (NBCL) genes are essential regulators of vegetative and reproductive development. Grass species usually possess 2-4 NBCL copies and until now a single study in O. sativa showed that the disruption of all NBCL genes strongly altered O. sativa leaf development. To improve our understanding of the role of NBCL genes in grasses, we extended the study of the two NBCL paralogs BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) in the nondomesticated grass B. distachyon. For this, we applied reversed genetics and generated original B. distachyon single and double nbcl mutants by clustered regularly interspaced short palindromic repeats - CRISPR associated protein 9 (CRISPR-Cas9) approaches and genetic crossing between nbcl targeting induced local lesions in genomes (TILLING) mutants. Through the study of original single laxa CRISPR-Cas9 null alleles, we validated functions previously proposed for LAXA in tillering, leaf patterning, inflorescence, and flower development and also unveiled roles for these genes in seed yield. Furthermore, the characterization of cul4laxa double mutants revealed essential functions for nbcl genes in B. distachyon development, especially in the regulation of tillering, stem cell elongation and secondary cell wall composition as well as for the transition toward the reproductive phase. Our results also highlight recurrent antagonist interactions between NBCLs occurring in multiple aspects of B. distachyon development.


Asunto(s)
Brachypodium/crecimiento & desarrollo , Brachypodium/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Genética Inversa
4.
Plant Physiol ; 188(2): 1229-1247, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34865141

RESUMEN

In Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis (Arabidopsis thaliana), among the genes encoding tonoplastic transporters, SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16 (SWEET16) and SWEET17 expression has been previously detected in the vascular system. Here, using a reverse genetics approach, we propose that sugar exchanges at the tonoplast, regulated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the accumulation of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by Fourier-transformed infrared spectroscopy in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development partially depends on the exchange of hexoses at the tonoplast of xylem-forming cells.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Hexosas/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Xilema/crecimiento & desarrollo , Xilema/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Variación Genética , Genotipo , Inflorescencia/metabolismo , Mutación , Vacuolas/fisiología , Xilema/metabolismo
5.
Nat Plants ; 7(12): 1589-1601, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34907313

RESUMEN

Glutaredoxins (GRXs) are small oxidoreductases that can modify target protein activities through control of the redox (reduction/oxidation) state by reducing or glutathionylating disulfide bridges. Although CC-type GRXs are plant specific and play important roles in many processes, the mechanisms by which they modulate the activity of target proteins in vivo are unknown. In this study, we show that a maize CC-type GRX, MALE STERILE CONVERTED ANTHER1 (MSCA1), acts redundantly with two paralogues, ZmGRX2 and ZmGRX5, to modify the redox state and the activity of its putative target, the TGA transcription factor FASCIATED EAR4 (FEA4) that acts as a negative regulator of inflorescence meristem development. We used CRISPR-Cas9 to create a GRX triple knockout, resulting in severe suppression of meristem, ear and tassel growth and reduced plant height. We further show that GRXs regulate the redox state, DNA accessibility and transcriptional activities of FEA4, which acts downstream of MSCA1 and its paralogues to control inflorescence development. Our findings reveal the function of GRXs in meristem development, and also provide direct evidence for GRX-mediated redox modification of target proteins in plants.


Asunto(s)
Glutarredoxinas , Inflorescencia , Zea mays , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Glutarredoxinas/genética , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Oxidación-Reducción , Zea mays/genética
6.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948467

RESUMEN

Branch angle is a key shoot architecture trait that strongly influences the ornamental and economic value of garden plants. However, the mechanism underlying the control of branch angle, an important aspect of tree architecture, is far from clear in roses. In the present study, we isolated the RrLAZY1 gene from the stems of Rosa rugosa 'Zilong wochi'. Sequence analysis showed that the encoded RrLAZY1 protein contained a conserved GΦL (A/T) IGT domain, which belongs to the IGT family. Quantitative real-time PCR (qRT-PCR) analyses revealed that RrLAZY1 was expressed in all tissues and that expression was highest in the stem. The RrLAZY1 protein was localized in the plasma membrane. Based on a yeast two-hybrid assay and bimolecular fluorescence complementation experiments, the RrLAZY1 protein was found to interact with auxin-related proteins RrIAA16. The over-expression of the RrLAZY1 gene displayed a smaller branch angle in transgenic Arabidopsis inflorescence and resulted in changes in the expression level of genes related to auxin polar transport and signal transduction pathways. This study represents the first systematic analysis of the LAZY1 gene family in R. rugosa. The results of this study will provide a theoretical basis for the improvement of rose plant types and molecular breeding and provide valuable information for studying the regulation mechanism of branch angle in other woody plants.


Asunto(s)
Arabidopsis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Rosa/metabolismo , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Inflorescencia/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Tallos de la Planta/metabolismo , Dominios Proteicos , Rosa/genética , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos
7.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769440

RESUMEN

SHORT VEGETATIVE PHASE (SVP) genes are members of the well-known MADS-box gene family that play a key role in regulating vital developmental processes in plants. Hemerocallis are perennial herbs that exhibit continuous flowering development and have been extensively used in landscaping. However, there are few reports on the regulatory mechanism of flowering in Hemerocallis. To better understand the molecular basis of floral formation of Hemerocallis, we identified and characterized the SVP-like gene HkSVP from the Hemerocallis cultivar 'Kanai Sensei'. Quantitative RT-PCR (qRT-PCR) indicated that HkSVP transcript was mainly expressed in the vegetative growth stage and had the highest expression in leaves, low expression in petals, pedicels and fruits, and no expression in pistils. The HkSVP encoded protein was localized in the nucleus of Arabidopsis protoplasts and the nucleus of onion epidermal cells. Yeast two hybrid assay revealed that HKSVP interacted with Hemerocallis AP1 and TFL1. Moreover, overexpression of HkSVP in Arabidopsis resulted in delayed flowering and abnormal phenotypes, including enriched trichomes, increased basal inflorescence branches and inhibition of inflorescence formation. These observations suggest that the HkSVP gene may play an important role in maintaining vegetative growth by participating in the construction of inflorescence structure and the development of flower organs.


Asunto(s)
Flores/crecimiento & desarrollo , Hemerocallis/crecimiento & desarrollo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Flores/genética , Flores/metabolismo , Hemerocallis/genética , Hemerocallis/metabolismo , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Proteínas de Dominio MADS/genética , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Physiol ; 187(3): 1189-1201, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34734274

RESUMEN

Dominance inhibition of shoot growth by fruit load is a major factor that regulates shoot architecture and limits yield in agriculture and horticulture crops. In annual plants, the inhibition of inflorescence growth by fruit load occurs at a late stage of inflorescence development termed the end of flowering transition. Physiological studies show this transition is mediated by production and export of auxin from developing fruits in close proximity to the inflorescence apex. In the meristem, cessation of inflorescence growth is controlled in part by the age-dependent pathway, which regulates the timing of arrest. Here, we show the end of flowering transition is a two-step process in Arabidopsis (Arabidopsis thaliana). The first stage is characterized by a cessation of inflorescence growth, while immature fruit continues to develop. At this stage, dominance inhibition of inflorescence growth by fruit load is associated with a selective dampening of auxin transport in the apical region of the stem. Subsequently, an increase in auxin response in the vascular tissues of the apical stem where developing fruits are attached marks the second stage for the end of flowering transition. Similar to the vegetative and floral transition, the end of flowering transition is associated with a change in sugar signaling and metabolism in the inflorescence apex. Taken together, our results suggest that during the end of flowering transition, dominance inhibition of inflorescence shoot growth by fruit load is mediated by auxin and sugar signaling.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Azúcares/metabolismo , Arabidopsis/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Frutas/fisiología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología , Meristema/crecimiento & desarrollo , Meristema/fisiología
9.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34360677

RESUMEN

Inflorescence architecture in rice (Oryza sativa) is mainly determined by spikelets and the branch arrangement. Primary branches initiate from inflorescence meristem in a spiral phyllotaxic manner, and further develop into the panicle branches. The branching patterns contribute largely to rice production. In this study, we characterized a rice verticillate primary branch 1(vpb1) mutant, which exhibited a clustered primary branches phenotype. Gene isolation revealed that VPB1 was a allele of RI, that it encoded a BELL-like homeodomain (BLH) protein. VPB1 gene preferentially expressed in the inflorescence and branch meristems. The arrangement of primary branch meristems was disturbed in the vpb1 mutant. Transcriptome analysis further revealed that VPB1 affected the expression of some genes involved in inflorescence meristem identity and hormone signaling pathways. In addition, the differentially expressed gene (DEG) promoter analysis showed that OsBOPs involved in boundary organ initiation were potential target genes of VPB1 protein. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter system further verified that VPB1 protein bound to the promoter of OsBOP1 gene. Overall, our findings demonstrate that VPB1 controls inflorescence architecture by regulating the expression of genes involved in meristem maintenance and hormone pathways and by interacting with OsBOP genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Inflorescencia/metabolismo , Oryza/metabolismo , Transducción de Señal , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo
10.
Carbohydr Polym ; 269: 118336, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294346

RESUMEN

A pot experiment was conducted to explore the effects of high-quality (Huanghuazhan, HH), drought-resistant (IR, IRAT109) and drought-susceptible cultivars (ZS, Zhenshan97) under flooding irrigation and dry cultivation (D) on the starch accumulation and synthesis, physicochemical traits of starch granules and rice grain quality at the upper (U) and lower panicle. Under D treatment, IR and ZS had lower rice quality, especially the appearance and cooking quality. DHH-U had the highest appearance, nutritional and cooking quality among all cultivars under D treatment, which could be ascribed to the synthesis of more short-branch chain amylopectin and correspondingly higher starch granule tightness. DHH-U also maintained ordered carbohydrate structure, crystalline regions, and many hydrophilic and hydrophobic functional groups in starch granules before pasting. It could prevent the polymerization of small molecules to avoid the formation of macromolecules after pasting. Overall, these findings may facilitate the improvement of grain quality in rice dry cultivation.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Almidón/biosíntesis , Riego Agrícola/métodos , Sequías , Grano Comestible/metabolismo , Harina , Calidad de los Alimentos , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Oryza/metabolismo , Almidón/química
11.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205521

RESUMEN

The developmental process of inflorescence and gametophytes is vital for sexual reproduction in rice. Multiple genes and conserved miRNAs have been characterized to regulate the process. The changes of miRNAs expression during the early development of rice inflorescence remain unknown. In this study, the analysis of miRNAs profiles in the early stage of rice inflorescence development identified 671 miRNAs, including 67 known and 44 novel differentially expressed miRNAs (DEMs). Six distinct clusters of miRNAs expression patterns were detected, and Cluster 5 comprised 110 DEMs, including unconserved, rice-specific osa-miR5506. Overexpression of osa-miR5506 caused pleiotropic abnormalities, including over- or under-developed palea, various numbers of floral organs and spikelet indeterminacy. In addition, the defects of ovaries development were frequently characterized by multiple megasporocytes, ovule-free ovary, megasporocyte degenerated and embryo sac degenerated in the transgenic lines. osa-miR5506 targeted REM transcription factor LOC_Os03g11370. Summarily, these results demonstrated that rice-specific osa-miR5506 plays an essential role in the regulation of floral organ number, spikelet determinacy and female gametophyte development in rice.


Asunto(s)
Inflorescencia/crecimiento & desarrollo , MicroARNs/metabolismo , Oryza/metabolismo , Óvulo Vegetal/crecimiento & desarrollo , Perfilación de la Expresión Génica , Meiosis , Oryza/genética , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente
12.
Science ; 373(6551): 192-197, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244409

RESUMEN

Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.


Asunto(s)
Arabidopsis/anatomía & histología , Arabidopsis/genética , Brassica/anatomía & histología , Brassica/genética , Redes Reguladoras de Genes , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crecimiento & desarrollo , Flores/anatomía & histología , Flores/genética , Flores/crecimiento & desarrollo , Fractales , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Inflorescencia/anatomía & histología , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Modelos Biológicos , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
13.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068350

RESUMEN

Artificial domestication and improvement of the majority of crops began approximately 10,000 years ago, in different parts of the world, to achieve high productivity, good quality, and widespread adaptability. It was initiated from a phenotype-based selection by local farmers and developed to current biotechnology-based breeding to feed over 7 billion people. For most cereal crops, yield relates to grain production, which could be enhanced by increasing grain number and weight. Grain number is typically determined during inflorescence development. Many mutants and genes for inflorescence development have already been characterized in cereal crops. Therefore, optimization of such genes could fine-tune yield-related traits, such as grain number. With the rapidly advancing genome-editing technologies and understanding of yield-related traits, knowledge-driven breeding by design is becoming a reality. This review introduces knowledge about inflorescence yield-related traits in cereal crops, focusing on rice, maize, and wheat. Next, emerging genome-editing technologies and recent studies that apply this technology to engineer crop yield improvement by targeting inflorescence development are reviewed. These approaches promise to usher in a new era of breeding practice.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Edición Génica , Genoma de Planta , Inflorescencia/crecimiento & desarrollo , Fitomejoramiento , Proteínas de Plantas/genética , Productos Agrícolas/genética , Grano Comestible/genética , Inflorescencia/genética
14.
Molecules ; 26(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068911

RESUMEN

The chemical profile of the female inflorescence extracts from seven Cannabis sativa L. dioecious cultivars (Carmagnola, Fibranova, Eletta Campana, Antal, Tiborszallasi, Kompolti, and Tisza) was monitored at three harvesting stages (4, 14, and 30 September), reaching from the beginning of flowering to end of flowering/beginning of seed formation, using untargeted nuclear magnetic resonance (NMR) and targeted (ultra-high-performance liquid chromatography (UHPLC) and spectrophotometry) analyses. The tetrahydrocannabinol content was always below the legal limits (<0.6%) in all the analyzed samples. The NMR metabolite profile (sugars, organic acids, amino acids, and minor compounds) subjected to principal components analysis (PCA) showed a strong variability according to the harvesting stages: samples harvested in stage I were characterized by a high content of sucrose and myo-inositol, whereas the ones harvested in stage II showed high levels of succinic acid, alanine, valine, isoleucine, phenylalanine, and threonine. Samples harvested in stage III were characterized by high levels of glucose, fructose, choline, trigonelline, malic acid, formic acid, and some amino acids. The ratio between chlorophylls and carotenoids content indicated that all plants grew up exposed to the sun, the Eletta Campana cultivar having the highest pigment amount. Tiborszallasi cultivar showed the highest polyphenol content. The highest antioxidant activity was generally observed in stage II. All these results suggested that the Cannabis sativa L. inflorescences of each analyzed dioecious hemp cultivar presented a peculiar chemical profile affected by the harvesting stage. This information could be useful for producers and industries to harvest inflorescences in the appropriate stage to obtain samples with a peculiar chemical profile suitable for proper applications.


Asunto(s)
Cannabis/crecimiento & desarrollo , Inflorescencia/crecimiento & desarrollo , Antioxidantes/análisis , Cannabinoides/análisis , Italia , Espectroscopía de Resonancia Magnética , Metabolómica , Fenoles/análisis , Fitoquímicos/análisis , Pigmentos Biológicos/análisis , Extractos Vegetales/química , Análisis de Componente Principal
15.
Nat Plants ; 7(8): 1093-1107, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34183784

RESUMEN

Temperature stresses affect plant phenotypic diversity. The developmental stability of the inflorescence, required for reproductive success, is tightly regulated by the interplay of genetic and environmental factors. However, the mechanisms underpinning how plant inflorescence architecture responds to temperature are largely unknown. We demonstrate that the barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures, while the loss-of-function mutant forms a branched inflorescence-like structure. HvMADS1 exhibits increased binding to target promoters via A-tract CArG-box motifs, which change conformation with temperature. Target genes for high-temperature-dependent HvMADS1 activation are predominantly associated with inflorescence differentiation and phytohormone signalling. HvMADS1 directly regulates the cytokinin-degrading enzyme HvCKX3 to integrate temperature response and cytokinin homeostasis, which is required to repress meristem cell cycle/division. Our findings reveal a mechanism by which genetic factors direct plant thermomorphogenesis, extending the recognized role of plant MADS-box proteins in floral development.


Asunto(s)
Hordeum/anatomía & histología , Hordeum/crecimiento & desarrollo , Hordeum/genética , Calor , Inflorescencia/crecimiento & desarrollo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Australia , Productos Agrícolas/anatomía & histología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Inflorescencia/anatomía & histología , Inflorescencia/genética , Fenotipo
16.
Sci Rep ; 11(1): 9875, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972570

RESUMEN

In-planta mechanisms of biochar (BC)-mediated improved growth were evaluated by examining oxidative stress, metabolic, and hormonal changes of Arabidopsis wild-type plants under basal or acute heat stress (-HS/ + HS) conditions with or without BC (+ BC/-BC). The oxidative stress was evaluated by using Arabidopsis expressing redox-sensitive green fluorescent protein in the plastids (pla-roGFP2). Fresh biomass and inflorescence height were greater in + BC(‒HS) plants than in the -BC(‒HS) plants, despite similar leaf nutrient levels, photosystem II (PSII) maximal efficiencies and similar oxidative poise. Endogenous levels of jasmonic and abscisic acids were higher in the + BC(‒HS) treatment, suggesting their role in growth improvement. HS in ‒BC plants caused reductions in inflorescence height and PSII maximum quantum yield, as well as significant oxidative stress symptoms manifested by increased lipid peroxidation, greater chloroplast redox poise (oxidized form of roGFP), increased expression of DNAJ heat shock proteins and Zn-finger genes, and reduced expression of glutathione-S-transferase gene in addition to higher abscisic acid and salicylic acid levels. Oxidative stress symptoms were significantly reduced by BC. Results suggest that growth improvements by BC occurring under basal and HS conditions are induced by acclimation mechanisms to 'microstresses' associated with basal growth and to oxidative stress of HS, respectively.


Asunto(s)
Arabidopsis/fisiología , Carbón Orgánico/química , Producción de Cultivos/métodos , Suelo/química , Termotolerancia/fisiología , Ácido Abscísico/metabolismo , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bovinos , Cloroplastos/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología , Estiércol , Estrés Oxidativo , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo
17.
Theor Appl Genet ; 134(7): 1925-1943, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33961064

RESUMEN

KEY MESSAGE: Genetic modification of spike architecture is essential for improving wheat yield. Newly identified loci for the 'Miracle wheat' phenotype on chromosomes 1AS and 2BS have significant effects on spike traits. The wheat (Triticum ssp.) inflorescence, also known as a spike, forms an unbranched inflorescence in which the inflorescence meristem generates axillary spikelet meristems (SMs) destined to become sessile spikelets. Previously, we identified the putatively causative mutation in the branched headt (bht) gene (TtBH-A1) of tetraploid wheat (T. turgidum convar. compositum (L.f.) Filat.) responsible for the loss of SM identity, converting the non-branching spike to a branched wheat spike. In the current study, we performed whole-genome quantitative trait loci (QTL) analysis using 146 recombinant inbred lines (RILs) derived from a cross between spike-branching wheat ('Miracle wheat') and an elite durum wheat cultivar showing broad phenotypic variation for spike architecture. Besides the previously found gene at the bht-A1 locus on the short arm of chromosome 2A, we also mapped two new modifier QTL for spike-branching on the short arm of chromosome 1A, termed bht-A2, and 2BS. Using biparental mapping population and GWAS in 302 diverse accessions, the 2BS locus was highly associated with coding sequence variation found at the homoeo-allele of TtBH-B1 (bht-B1). Thus, RILs that combined both bht-A1 and bht-B1 alleles showed additive genetic effects leading to increased penetrance and expressivity of the supernumerary spikelet and/or mini-spike formation.


Asunto(s)
Inflorescencia/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Estudios de Asociación Genética , Inflorescencia/genética , Fenotipo , Tetraploidía
18.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805287

RESUMEN

Flowering plants develop new organs throughout their life cycle. The vegetative shoot apical meristem (SAM) generates leaf whorls, branches and stems, whereas the reproductive SAM, called the inflorescence meristem (IM), forms florets arranged on a stem or an axis. In cereal crops, the inflorescence producing grains from fertilized florets makes the major yield contribution, which is determined by the numbers and structures of branches, spikelets and florets within the inflorescence. The developmental progression largely depends on the activity of IM. The proper regulations of IM size, specification and termination are outcomes of complex interactions between promoting and restricting factors/signals. Here, we focus on recent advances in molecular mechanisms underlying potential pathways of IM identification, maintenance and differentiation in cereal crops, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), highlighting the researches that have facilitated grain yield by, for example, modifying the number of inflorescence branches. Combinatorial functions of key regulators and crosstalk in IM determinacy and specification are summarized. This review delivers the knowledge to crop breeding applications aiming to the improvements in yield performance and productivity.


Asunto(s)
Grano Comestible , Inflorescencia/genética , Meristema/genética , Poaceae/metabolismo , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Inflorescencia/anatomía & histología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/fisiología , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Poaceae/genética , Poaceae/crecimiento & desarrollo , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
19.
Nat Commun ; 12(1): 2378, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888716

RESUMEN

Structural variation in plant genomes is a significant driver of phenotypic variability in traits important for the domestication and productivity of crop species. Among these are traits that depend on functional meristems, populations of stem cells maintained by the CLAVATA-WUSCHEL (CLV-WUS) negative feedback-loop that controls the expression of the WUS homeobox transcription factor. WUS function and impact on maize development and yield remain largely unexplored. Here we show that the maize dominant Barren inflorescence3 (Bif3) mutant harbors a tandem duplicated copy of the ZmWUS1 gene, ZmWUS1-B, whose novel promoter enhances transcription in a ring-like pattern. Overexpression of ZmWUS1-B is due to multimerized binding sites for type-B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. Hypersensitivity to cytokinin causes stem cell overproliferation and major rearrangements of Bif3 inflorescence meristems, leading to the formation of ball-shaped ears and severely affecting productivity. These findings establish ZmWUS1 as an essential meristem size regulator in maize and highlight the striking effect of cis-regulatory variation on a key developmental program.


Asunto(s)
Proteínas de Homeodominio/genética , Inflorescencia/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Zea mays/crecimiento & desarrollo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Citocininas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Inflorescencia/citología , Meristema/crecimiento & desarrollo , Mutagénesis , Mutación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo , RNA-Seq , Transducción de Señal/genética , Células Madre , Factores de Transcripción/genética , Zea mays/genética
20.
Plant Physiol ; 186(4): 1985-2002, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33914872

RESUMEN

The production of seed in flowering plants is complicated by the need to first invest in reproductive shoots, inflorescences, flowers, and fruit. Furthermore, in many species, it will be months between plants generating flowers and setting seed. How can plants therefore produce an optimal seed-set relative to environmental resources when the "reproductive architecture" that supports seed-set needs to be elaborated so far in advance? Here, we address this question by investigating the spatio-temporal control of reproductive architecture in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We show that resource and resource-related signals such as substrate volume play a key role in determining the scale of reproductive effort, and that this is reflected in the earliest events in reproductive development, which broadly predict the subsequent reproductive effort. We show that a series of negative feedbacks both within and between developmental stages prevent plants from over-committing to early stages of development. These feedbacks create a highly plastic, homeostatic system in which additional organs can be produced in the case of reproductive failure elsewhere in the system. We propose that these feedbacks represent an "integrated dominance" mechanism that allows resource use to be correctly sequenced between developmental stages to optimize seed set.


Asunto(s)
Arabidopsis/fisiología , Brassica napus/fisiología , Flores/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Brassica napus/crecimiento & desarrollo , Inflorescencia/crecimiento & desarrollo , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...