Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Molecules ; 26(12)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34202929

RESUMEN

Mexico is the center of origin of the species popularly known as toronjil or lemon balm (Agastache mexicana Linton & Epling). Two subspecies have been identified and are commonly called purple or red (Agastache mexicana Linton & Epling subspecies. mexicana) and white (Agastache mexicana subspecies xolocotziana Bye, E.L. Linares & Ramamoorthy). Plants from these subspecies differ in the size and form of inflorescence and leaves. They also possess differences in their chemical compositions, including volatile compounds. Traditional Mexican medicine employs both subspecies. A. mexicana exhibits a broad range of pharmacological properties, such as anti-inflammatory, anxiolytic, and antioxidant. A systematic vision of these plant's properties is discussed in this review, exposing its significant potential as a source of valuable bioactive compounds. Furthermore, this review provides an understanding of the elements that make up the species' holistic system to benefit from lemon balm sustainably.


Asunto(s)
Agastache/química , Agricultura , Antiinflamatorios/farmacología , Biología/normas , Inflorescencia/efectos de los fármacos , Fitoquímicos/química , Extractos Vegetales/farmacología , Animales , Humanos , México , Fitoterapia , Extractos Vegetales/química , Hojas de la Planta/química
2.
Plant Physiol ; 183(3): 1126-1144, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32332089

RESUMEN

Ovule formation is essential for realizing crop yield because it determines seed number. The underlying molecular mechanism, however, remains elusive. Here, we show that cell wall invertase (CWIN) functions as a positive regulator of ovule initiation in Arabidopsis (Arabidopsis thaliana). In situ hybridization revealed that CWIN2 and CWIN4 were expressed at the placenta region where ovule primordia initiated. Specific silencing of CWIN2 and CWIN4 using targeted artificial microRNA driven by an ovule-specific SEEDSTICK promoter (pSTK) resulted in a substantial reduction of CWIN transcript and activity, which blocked ovule initiation and aggravated ovule abortion. There was no induction of carbon (C) starvation genes in the transgenic lines, and supplementing newly forming floral buds with extra C failed to recover the ovule phenotype. This indicates that suppression of CWIN did not lead to C starvation. A group of hexose transporters was downregulated in the transgenic plants. Among them, two representative ones were spatially coexpressed with CWIN2 and CWIN4, suggesting a coupling between CWIN and hexose transporters for ovule initiation. RNA-sequencing analysis identified differentially expressed genes encoding putative extracellular receptor-like kinases, MADS-box transcription factors, including STK, and early auxin response genes in response to CWIN-silencing. Our data demonstrate the essential role of CWIN in ovule initiation, which is most likely to occur through sugar signaling instead of C nutrient contribution. We propose that CWIN-mediated sugar signaling may be perceived by, and transmitted through, hexose transporters or receptor-like kinases to regulate ovule formation by modulating downstream auxin signaling and MADS-box transcription factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Carbono/metabolismo , Pared Celular/enzimología , Óvulo Vegetal/crecimiento & desarrollo , Transducción de Señal , Azúcares/metabolismo , beta-Fructofuranosidasa/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas , Ácidos Indolacéticos/farmacología , Inflorescencia/efectos de los fármacos , Inflorescencia/enzimología , Meristema/efectos de los fármacos , Meristema/enzimología , Óvulo Vegetal/efectos de los fármacos , Óvulo Vegetal/enzimología , Óvulo Vegetal/genética , Fenotipo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/genética , Transducción de Señal/efectos de los fármacos
3.
J Sci Food Agric ; 100(5): 2099-2109, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31875967

RESUMEN

BACKGROUND: Cruciferous foods rich in health-promoting metabolites are of particular interest to consumers as well as being a good source of bioactives-enriched ingredients. Several elicitors have been used to stimulate the biosynthesis and accumulation of secondary metabolites in foods; however, little is known about the response of new hybrid varieties, such as Bimi®, under field-crop production conditions. Therefore, this study was designed to evaluate the effect of salicylic acid (200 µmol L-1 , SA), methyl jasmonate (100 µmol L-1 , MeJA), and their combination on Bimi plant organs (inflorescences and aerial vegetative tissues - stems and leaves). For this, the composition of the glucosinolates present in the tissues was evaluated. Also, aqueous extracts of the plant material, obtained with different times of extraction with boiling water, were studied. RESULTS: The results indicate that the combined treatment (SA + MeJA) significantly increased the content of glucosinolates in the inflorescences and that MeJA was the most effective elicitor in leaves. Regarding the aqueous extracts, the greatest amount of glucosinolates was extracted at 30 min - except for the leaves elicited with MeJA, for which 15 min was optimal. CONCLUSION: The elicitation in the field enriched leaves in glucobrassicin (GB), 4-methoxyglucobrassicin (MGB), and neoglucobrassicin (NGB) and stems and inflorescences in glucoraphanin, 4-hydroxyglucobrassicin, GB, MGB, and NGB. In this way, this enhanced vegetable material favored the presence of bioactives in the extracts, which is of great interest regarding enriched foods and ingredients with added value obtained from them. © 2019 Society of Chemical Industry.


Asunto(s)
Brassica/química , Análisis de los Alimentos , Acetatos/farmacología , Brassica/efectos de los fármacos , Ciclopentanos/farmacología , Glucosinolatos/análisis , Imidoésteres/análisis , Indoles/análisis , Inflorescencia/química , Inflorescencia/efectos de los fármacos , Oximas , Oxilipinas/farmacología , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Tallos de la Planta/química , Tallos de la Planta/efectos de los fármacos , Ácido Salicílico/farmacología , Sulfóxidos
4.
Int J Mol Sci ; 20(9)2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083521

RESUMEN

ADP-ribosylation factor-guanine nucleotide exchange factors (ARF-GEFs) act as key regulators of vesicle trafficking in all eukaryotes. In Arabidopsis, there are eight ARF-GEFs, including three members of the GBF1 subfamily and five members of the BIG subfamily. These ARF-GEFs have different subcellular localizations and regulate different trafficking pathways. Until now, the roles of these BIG-subfamily ARF-GEFs have not been fully revealed. Here, analysis of the BIGs expression patterns showed that BIG3 and BIG5 have similar expression patterns. big5-1 displayed a dwarf growth and big3-1 big5-1 double mutant showed more severe defects, indicating functional redundancy between BIG3 and BIG5. Moreover, both big5-1 and big3-1 big5-1 exhibited a reduced sensitivity to Brassinosteroid (BR) treatment. Brefeldin A (BFA)-induced BR receptor Brassinosteroid insensitive 1 (BRI1) aggregation was reduced in big5-1 mutant, indicating that the action of BIG5 is required for BRI1 recycling. Furthermore, BR-induced dephosphorylation of transcription factor BZR1 was decreased in big3-1 big5-1 double mutants. The introduction of the gain-of-function of BZR1 mutant BZR1-1D in big3-1 big5-1 mutants can partially rescue the big3-1 big5-1 growth defects. Our findings revealed that BIG5 functions redundantly with BIG3 in plant growth and gravitropism, and BIG5 participates in BR signal transduction pathway through regulating BRI1 trafficking.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Gravitropismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Desarrollo de la Planta , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/farmacología , Prueba de Complementación Genética , Gravitropismo/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Inflorescencia/efectos de los fármacos , Inflorescencia/crecimiento & desarrollo , Mutación/genética , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934840

RESUMEN

Chestnut (Castanea mollissima) is a deciduous tree species with major economic and ecological value that is widely used in the study of floral development in woody plants due its monoecious and out-of-proportion characteristics. Squamosa promoter-binding protein-like (SPL) is a plant-specific transcription factor that plays an important role in floral development. In this study, a total of 18 SPL genes were identified in the chestnut genome, of which 10 SPL genes have complementary regions of CmmiR156. An analysis of the phylogenetic tree of the squamosa promoter-binding protein (SBP) domains of the SPL genes of Arabidopsis thaliana, Populus trichocarpa, and C. mollissima divided these SPL genes into eight groups. The evolutionary relationship between poplar and chestnut in the same group was similar. A structural analysis of the protein-coding regions (CDSs) showed that the domains have the main function of SBP domains and that other domains also play an important role in determining gene function. The expression patterns of CmmiR156 and CmSPLs in different floral organs of chestnut were analyzed by real-time quantitative PCR. Some CmSPLs with similar structural patterns showed similar expression patterns, indicating that the gene structures determine the synergy of the gene functions. The application of gibberellin (GA) and its inhibitor (Paclobutrazol, PP333) to chestnut trees revealed that these exert a significant effect on the number and length of the male and female chestnut flowers. GA treatment significantly increased CmmiR156 expression and thus significantly decreased the expression of its target gene, CmSPL6/CmSPL9/CmSPL16, during floral bud development. This finding indicates that GA might indirectly affect the expression of some of the SPL target genes through miR156. In addition, RNA ligase-mediated rapid amplification of the 5' cDNA ends (RLM-RACE) experiments revealed that CmmiR156 cleaves CmSPL9 and CmSPL16 at the 10th and 12th bases of the complementary region. These results laid an important foundation for further study of the biological function of CmSPLs in the floral development of C. mollissima.


Asunto(s)
Fagaceae/crecimiento & desarrollo , Fagaceae/genética , Flores/crecimiento & desarrollo , Flores/genética , Giberelinas/farmacología , MicroARNs/genética , Familia de Multigenes , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Fagaceae/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Inflorescencia/efectos de los fármacos , Inflorescencia/genética , MicroARNs/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados
6.
Cells ; 8(2)2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704139

RESUMEN

Weak stem mechanical strength severely restrains cut flowers quality and stem weakness can be alleviated by calcium (Ca) treatment, but the mechanisms underlying Ca-mediated enhancement of stem mechanical strength remain largely unknown. In this study, we performed a comparative transcriptomic, proteomic, and metabolomic analysis of herbaceous peony (Paeonia lactiflora Pall.) inflorescence stems treated with nanometer Ca carbonate (Nano-CaCO3). In total, 2643 differentially expressed genes (DEGs) and 892 differentially expressed proteins (DEPs) were detected between the Control and nano-CaCO3 treatment. Among the 892 DEPs, 152 were coregulated at both the proteomic and transcriptomic levels, and 24 DEPs related to the secondary cell wall were involved in signal transduction, energy metabolism, carbohydrate metabolism and lignin biosynthesis, most of which were upregulated after nano-CaCO3 treatment during the development of inflorescence stems. Among these four pathways, numerous differentially expressed metabolites (DEMs) related to lignin biosynthesis were identified. Furthermore, structural observations revealed the thickening of the sclerenchyma cell walls, and the main wall constitutive component lignin accumulated significantly in response to nano-CaCO3 treatment, thereby indicating that Ca can enhance the mechanical strength of the inflorescence stems by increasing the lignin accumulation. These results provided insights into how Ca treatment enhances the mechanical strength of inflorescence stems in P. lactiflora.


Asunto(s)
Calcio/farmacología , Inflorescencia/fisiología , Metaboloma , Paeonia/genética , Paeonia/fisiología , Tallos de la Planta/fisiología , Proteoma/metabolismo , Transcriptoma/genética , Fenómenos Biomecánicos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inflorescencia/efectos de los fármacos , Inflorescencia/ultraestructura , Nanopartículas/química , Paeonia/efectos de los fármacos , Paeonia/metabolismo , Fotosíntesis/efectos de los fármacos , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/ultraestructura
7.
Plant Physiol ; 179(2): 391-401, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30459264

RESUMEN

Nature often creates complex structures by rearranging pre-existing units. One such example is the flower head (capitulum) in daisies, where a group of flowers (florets) and phyllaries (modified bracts) are arranged to superficially mimic a single flower. The capitulum is a key taxonomical innovation that defines the daisy family (Asteraceae), the largest flowering plant group. However, patterning mechanisms underlying its structure remain elusive. Here, we show that auxin, a plant hormone, provides a developmental patterning cue for the capitulum. During capitulum development, a temporal auxin gradient occurs, regulating the successive and centripetal formation of distinct florets and phyllaries. Disruption of the endogenous auxin gradient led to homeotic conversions of florets and phyllaries in the capitulum. Furthermore, auxin regulates floral meristem identity genes, such as Matricaria inodora RAY2 and M inodora LEAFY, which determine floret and phyllary identity. This study reveals the mechanism of capitulum patterning and highlights how common developmental tools, such as hormone gradients, have independently evolved in plants and animals.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Inflorescencia/crecimiento & desarrollo , Matricaria/crecimiento & desarrollo , Flores/anatomía & histología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Inflorescencia/anatomía & histología , Inflorescencia/efectos de los fármacos , Matricaria/anatomía & histología , Matricaria/genética , Filogenia , Plantas Modificadas Genéticamente
8.
G3 (Bethesda) ; 8(4): 1379-1390, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29487187

RESUMEN

Protein folding and degradation are both required for protein quality control, an essential cellular activity that underlies normal growth and development. We investigated how BOB1, an Arabidopsis thaliana small heat shock protein, maintains normal plant development. bob1 mutants exhibit organ polarity defects and have expanded domains of KNOX gene expression. Some of these phenotypes are ecotype specific suggesting that other genes function to modify them. Using a genetic approach we identified an interaction between BOB1 and FIL, a gene required for abaxial organ identity. We also performed an EMS enhancer screen using the bob1-3 allele to identify pathways that are sensitized by a loss of BOB1 function. This screen identified genetic, but not physical, interactions between BOB1 and the proteasome subunit RPT2a Two other proteasome subunits, RPN1a and RPN8a, also interact genetically with BOB1 Both BOB1 and the BOB1-interacting proteasome subunits had previously been shown to interact genetically with the transcriptional enhancers AS1 and AS2, genes known to regulate both organ polarity and KNOX gene expression. Our results suggest a model in which BOB1 mediated protein folding and proteasome mediated protein degradation form a functional proteostasis module required for ensuring normal plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Epistasis Genética , Proteínas de Choque Térmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/metabolismo , Proteostasis/genética , Alelos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Ecotipo , Epistasis Genética/efectos de los fármacos , Proteínas de Choque Térmico/química , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Inflorescencia/efectos de los fármacos , Inflorescencia/ultraestructura , Leupeptinas/farmacología , Mutación/genética , Fenotipo , Desarrollo de la Planta/efectos de los fármacos , Proteostasis/efectos de los fármacos
9.
Plant Cell Physiol ; 59(3): 458-468, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29401229

RESUMEN

Hd3a, a rice homolog of FLOWERING LOCUS T (FT), is a florigen that induces flowering. Hd3a forms a ternary 'florigen activation complex' (FAC) with 14-3-3 protein and OsFD1 transcription factor, a rice homolog of FD that induces transcription of OsMADS15, a rice homolog of APETALA1 (AP1), which leads to flowering. TERMINAL FLOWER 1 (TFL1) represses flowering and controls inflorescence architecture. However, the molecular basis for floral repression by TFL1 remains poorly understood. Here we show that RICE CENTRORADIALIS (RCN), rice TFL1-like proteins, compete with Hd3a for 14-3-3 binding. All four RCN genes are predominantly expressed in the vasculature, and RCN proteins are transported to the shoot apex to antagonize florigen activity and regulate inflorescence development. The antagonistic function of RCN to Hd3a is dependent on its 14-3-3 binding activity. Our results suggest a molecular basis for regulation of the balance between florigen FT and anti-florigen TFL1.


Asunto(s)
Proteínas 14-3-3/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Florigena/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Inflorescencia/efectos de los fármacos , Meristema/efectos de los fármacos , Meristema/metabolismo , Modelos Biológicos , Especificidad de Órganos/genética , Oryza/efectos de los fármacos , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos
10.
Nat Commun ; 9(1): 822, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483511

RESUMEN

Grain number per panicle (GNP) is a major determinant of grain yield in cereals. However, the mechanisms that regulate GNP remain unclear. To address this issue, we isolate a series of sorghum [Sorghum bicolor (L.) Moench] multiseeded (msd) mutants that can double GNP by increasing panicle size and altering floral development so that all spikelets are fertile and set grain. Through bulk segregant analysis by next-generation sequencing, we identify MSD1 as a TCP (Teosinte branched/Cycloidea/PCF) transcription factor. Whole-genome expression profiling reveals that jasmonic acid (JA) biosynthetic enzymes are transiently activated in pedicellate spikelets. Young msd1 panicles have 50% less JA than wild-type (WT) panicles, and application of exogenous JA can rescue the msd1 phenotype. Our results reveal a new mechanism for increasing GNP, with the potential to boost grain yield, and provide insight into the regulation of plant inflorescence architecture and development.


Asunto(s)
Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Inflorescencia/efectos de los fármacos , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Semillas/efectos de los fármacos , Sorghum/efectos de los fármacos , Grano Comestible , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Anotación de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal , Sorghum/genética , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Plant Cell ; 30(1): 48-66, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263085

RESUMEN

Inflorescence architecture is a key determinant of yield potential in many crops and is patterned by the organization and developmental fate of axillary meristems. In cereals, flowers and grain are borne from spikelets, which differentiate in the final iteration of axillary meristem branching. In Setaria spp, inflorescence branches terminate in either a spikelet or a sterile bristle, and these structures appear to be paired. In this work, we leverage Setaria viridis to investigate a role for the phytohormones brassinosteroids (BRs) in specifying bristle identity and maintaining spikelet meristem determinacy. We report the molecular identification and characterization of the Bristleless1 (Bsl1) locus in S. viridis, which encodes a rate-limiting enzyme in BR biosynthesis. Loss-of-function bsl1 mutants fail to initiate a bristle identity program, resulting in homeotic conversion of bristles to spikelets. In addition, spikelet meristem determinacy is altered in the mutants, which produce two florets per spikelet instead of one. Both of these phenotypes provide avenues for enhanced grain production in cereal crops. Our results indicate that the spatiotemporal restriction of BR biosynthesis at boundary domains influences meristem fate decisions during inflorescence development. The bsl1 mutants provide insight into the molecular basis underlying morphological variation in inflorescence architecture.


Asunto(s)
Brasinoesteroides/farmacología , Diferenciación Celular/efectos de los fármacos , Inflorescencia/citología , Meristema/citología , Setaria (Planta)/citología , Alelos , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sitios Genéticos , Inflorescencia/efectos de los fármacos , Inflorescencia/ultraestructura , Meristema/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Setaria (Planta)/efectos de los fármacos , Setaria (Planta)/genética , Setaria (Planta)/ultraestructura , Transducción de Señal/efectos de los fármacos
12.
New Phytol ; 217(4): 1610-1624, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29218850

RESUMEN

Auxin gradients are sustained by series of influx and efflux carriers whose subcellular localization is sensitive to both exogenous and endogenous factors. Recently the localization of the Arabidopsis thaliana auxin efflux carrier PIN-FORMED (PIN) 6 was reported to be tissue-specific and regulated through unknown mechanisms. Here, we used genetic, molecular and pharmacological approaches to characterize the molecular mechanism(s) controlling the subcellular localization of PIN6. PIN6 localizes to endomembrane domains in tissues with low PIN6 expression levels such as roots, but localizes at the plasma membrane (PM) in tissues with increased PIN6 expression such as the inflorescence stem and nectary glands. We provide evidence that this dual localization is controlled by PIN6 phosphorylation and demonstrate that PIN6 is phosphorylated by mitogen-activated protein kinases (MAPKs) MPK4 and MPK6. The analysis of transgenic plants expressing PIN6 at PM or in endomembrane domains reveals that PIN6 subcellular localization is critical for Arabidopsis inflorescence stem elongation post-flowering (bolting). In line with a role for PIN6 in plant bolting, inflorescence stems elongate faster in pin6 mutant plants than in wild-type plants. We propose that PIN6 subcellular localization is under the control of developmental signals acting on tissue-specific determinants controlling PIN6-expression levels and PIN6 phosphorylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Membrana Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Ácidos Indolacéticos/farmacología , Inflorescencia/efectos de los fármacos , Inflorescencia/metabolismo , Mutación con Pérdida de Función , Meristema/efectos de los fármacos , Meristema/metabolismo , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/metabolismo
13.
Plant Cell Environ ; 40(9): 1819-1833, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28545156

RESUMEN

Boron (B) is an essential micronutrient for plants, but the molecular mechanisms underlying the uptake and distribution of B in allotetraploid rapeseed (Brassica napus) are unclear. Here, we identified a B transporter of rapeseed, BnaC4.BOR1;1c, which is expressed in shoot nodes and involved in distributing B to the reproductive organs. Transgenic Arabidopsis plants containing a BnaC4.BOR1;1c promoter-driven GUS reporter gene showed strong GUS activity in roots, nodal regions of the shoots and immature floral buds. Overexpressing BnaC4.BOR1;1c in Arabidopsis wild type or in bor1-1 mutants promoted wild-type growth and rescued the bor1-1 mutant phenotype. Conversely, knockdown of BnaC4.BOR1;1c in a B-efficient rapeseed line reduced B accumulation in flower organs, eventually resulting in severe sterility and seed yield loss. BnaC4.BOR1;1c RNAi plants exhibited large amounts of disintegrated stigma papilla cells with thickened cell walls accompanied by abnormal proliferation of lignification under low-B conditions, indicating that the sterility may be a result of altered cell wall properties in flower organs. Taken together, our results demonstrate that BnaC4.BOR1;1c is a AtBOR1-homologous B transporter gene expressing in both roots and shoot nodes that is essential for the developing inflorescence tissues, which highlights its diverse functions in allotetraploid rapeseed compared with diploid model plant Arabidopsis.


Asunto(s)
Boro/farmacología , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Inflorescencia/crecimiento & desarrollo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Boro/metabolismo , Brassica napus/genética , Ecotipo , Fertilidad/efectos de los fármacos , Flores/efectos de los fármacos , Flores/metabolismo , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Inflorescencia/efectos de los fármacos , Inflorescencia/ultraestructura , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Interferencia de ARN , Fracciones Subcelulares/metabolismo
14.
PLoS One ; 12(4): e0176053, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28419137

RESUMEN

In Arabidopsis, treating shoots with uniconazole can result in enhanced primary root elongation and bolting delay. Uniconazole spraying has become an important cultivation technique in controlling the flowering and improving the fruit-setting of litchi. However, the mechanism by which uniconazole regulates the complicated developmental processes in litchi remains unclear. This study aimed to determine which signal pathways and genes drive the responses of litchi inflorescences to uniconazole treatment. We monitored the transcriptional activity in inflorescences after uniconazole treatment by Illumina sequencing technology. The global expression profiles of uniconazole-treated litchi inflorescences were compared with those of the control, and 4051 differentially expressed genes were isolated. KEGG pathway enrichment analysis indicated that the plant hormone signal transduction pathway served key functions in the flower developmental stage under uniconazole treatment. Basing on the transcriptional analysis of genes involved in flower development, we hypothesized that uniconazole treatment increases the ratio of female flowers by activating the transcription of pistil-related genes. This phenomenon increases opportunities for pollination and fertilization, thereby enhancing the fruit-bearing rate. In addition, uniconazole treatment regulates the expression of unigenes involved in numerous transcription factor families, especially the bHLH and WRKY families. These findings suggest that the uniconazole-induced morphological changes in litchi inflorescences are related to the control of hormone signaling, the regulation of flowering genes, and the expression levels of various transcription factors. This study provides comprehensive inflorescence transcriptome data to elucidate the molecular mechanisms underlying the response of litchi flowers to uniconazole treatment and enumerates possible candidate genes that can be used to guide future research in controlling litchi flowering.


Asunto(s)
Agroquímicos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inflorescencia/efectos de los fármacos , Litchi/efectos de los fármacos , Triazoles/metabolismo , Agricultura , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Litchi/genética , Litchi/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Transcriptoma/efectos de los fármacos
15.
J Plant Res ; 130(5): 873-883, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28421372

RESUMEN

The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA3) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.


Asunto(s)
Flores/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Vitis/crecimiento & desarrollo , Compuestos de Bencilo/farmacología , Metabolismo de los Hidratos de Carbono , Flores/efectos de los fármacos , Flores/fisiología , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/fisiología , Giberelinas/farmacología , Inflorescencia/efectos de los fármacos , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología , Floema/efectos de los fármacos , Floema/crecimiento & desarrollo , Floema/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Purinas/farmacología , Vitis/efectos de los fármacos , Vitis/fisiología , Xilema/efectos de los fármacos , Xilema/crecimiento & desarrollo , Xilema/fisiología
16.
Nat Genet ; 49(1): 157-161, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27841879

RESUMEN

Plant architecture has clear agronomic and economic implications for crops such as wheat and barley, as it is a critical factor for determining grain yield. Despite this, only limited molecular information is available about how grain-bearing inflorescences, called spikes, are formed and maintain their regular, distichous pattern. Here we elucidate the molecular and hormonal role of Six-rowed spike 2 (Vrs2), which encodes a SHORT INTERNODES (SHI) transcriptional regulator during barley inflorescence and shoot development. We show that Vrs2 is specifically involved in floral organ patterning and phase duration by maintaining hormonal homeostasis and gradients during normal spike development and similarly influences plant stature traits. Furthermore, we establish a link between the SHI protein family and sucrose metabolism during organ growth and development that may have implications for deeper molecular insights into inflorescence and plant architecture in crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hordeum/crecimiento & desarrollo , Inflorescencia/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Variación Genética , Hordeum/efectos de los fármacos , Hordeum/genética , Inflorescencia/efectos de los fármacos , Inflorescencia/genética , Meristema/efectos de los fármacos , Meristema/genética , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Transcriptoma
17.
J Exp Bot ; 67(5): 1209-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26685187

RESUMEN

Gibberellins (GAs) and cytokinins (CKs) are plant hormones that act either synergistically or antagonistically during the regulation of different developmental processes. In Arabidopsis thaliana, GAs and CKs overlap in the positive regulation of processes such as the transition from the vegetative to the reproductive phase and the development of epidermal adaxial trichomes. Despite the fact that both developmental processes originate in the rosette leaves, they occur separately in time and space. Here we review how, as genetic and molecular mechanisms are being unraveled, both processes might be closely related. Additionally, this shared genetic network is not only dependent on GA and CK hormone signaling but is also strictly controlled by specific clades of transcription factor families. Some key flowering genes also control other rosette leaf developmental processes such as adaxial trichome formation. Conversely, most of the trichome activator genes, which belong to the MYB, bHLH and C2H2 families, were found to positively control the floral transition. Furthermore, three MADS floral organ identity genes, which are able to convert leaves into floral structures, are also able to induce trichome proliferation in the flower. These data lead us to propose that the spatio-temporal regulation and integration of diverse signals control different developmental processes, such as floral induction and trichome formation, which are intimately connected through similar genetic pathways.


Asunto(s)
Flores/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/metabolismo , Tricomas/crecimiento & desarrollo , Flores/efectos de los fármacos , Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inflorescencia/efectos de los fármacos , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Tricomas/efectos de los fármacos , Tricomas/genética
18.
J Plant Physiol ; 191: 36-44, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26717010

RESUMEN

Pistacia chinensis Bunge (P. chinensis) is a deciduous and dioecious perennial arbor of the family Anacardiaceae that flowers from March to April and bears fruit from September to October. There are three rapidly growing stages in the annual growth process of P. chinensis. However, the knowledge of the secondary metabolites related to P. chinensis gender and growth season remains scant. In this study, HPLC was used to qualitatively and quantitatively determine the content of the catechin hydrate, rutin, quercetin, and kaempferol contents in male and female tree inflorescences and leaves. Total phenolics and flavonoids were also detected using a spectrophotometer. The results indicated that the contents of these compounds fluctuated with seasons and they reached the highest levels in nascent leaves. The fluctuations of these compounds followed different pathways of evolution, by increasing or decreasing in male and female trees throughout the whole growth process because they had their own biological functions. Moreover, the extracts exhibited DPPH radical scavenging bioactivity and showed no significant cytotoxicity towards 3T3-L1 preadipocytes. Together, these results demonstrated that P. chinensis has great potential as an antioxidant medicine, and the best harvest time is in the spring.


Asunto(s)
Flavonoides/metabolismo , Inflorescencia/metabolismo , Fenoles/metabolismo , Pistacia/metabolismo , Hojas de la Planta/metabolismo , Estaciones del Año , Compuestos de Bifenilo/química , Muerte Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Flavonoides/toxicidad , Inflorescencia/efectos de los fármacos , Picratos/química , Pistacia/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/efectos de los fármacos , Estándares de Referencia
19.
Planta ; 243(1): 97-114, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26345991

RESUMEN

MAIN CONCLUSION: Arabidopsis plants in NaCl suffering half growth inhibition do not suffer osmotic stress and seldom shoot Na (+) toxicity; overaccumulation of Na (+) plus K (+) might trigger the inhibition. It is widely assumed that salinity inhibits plant growth by osmotic stress and shoot Na(+) toxicity. This study aims to examine the growth inhibition of Arabidopsis thaliana by NaCl concentrations that allow the completion of the life cycle. Unaffected Col-0 wild-type plants were used to define nontoxic Na(+) contents; Na(+) toxicities in shoots and roots were analyzed in hkt1 and sos1 mutants, respectively. The growth inhibition of Col-0 plants at 40 mM Na(+) was mild and equivalent to that produced by 8 and 4 mM Na(+) in hkt1 and sos1 plants, respectively. Therefore, these mutants allowed to study the toxicity of Na(+) in the absence of an osmotic challenge. Col-0 and Ts-1 accessions showed very different Na(+) contents but similar growth inhibitions; Ts-1 plants showed very high leaf Na(+) contents but no symptoms of Na(+) toxicity. Ak-1, C24, and Fei-0 plants were highly affected by NaCl showing evident symptoms of shoot Na(+) toxicity. Increasing K(+) in isotonic NaCl/KCl combinations dramatically decreased the Na(+) content in all Arabidopsis accessions and eliminated the signs of Na(+) toxicity in most of them but did not relieve growth inhibition. This suggested that the dominant inhibition in these conditions was either osmotic or of an ionic nature unspecific for Na(+) or K(+). Col-0 and Ts-1 plants growing in sorbitol showed a clear osmotic stress characterized by a notable decrease of their water content, but this response did not occur in NaCl. Overaccumulation of Na(+) plus K(+) might trigger growth reduction in NaCl-treated plants.


Asunto(s)
Arabidopsis/fisiología , Potasio/metabolismo , Sodio/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Hidroponía , Inflorescencia/efectos de los fármacos , Inflorescencia/crecimiento & desarrollo , Inflorescencia/fisiología , Mutación , Presión Osmótica , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Cloruro de Potasio/farmacología , Salinidad , Sodio/toxicidad , Cloruro de Sodio/farmacología
20.
Proc Natl Acad Sci U S A ; 112(8): E901-10, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675495

RESUMEN

Floral induction is a crucial developmental step in higher plants. Florigen, a mobile floral activator that is synthesized in the leaf and transported to the shoot apex, was recently identified as a protein encoded by FLOWERING LOCUS T (FT) and its orthologs; the rice florigen is Heading date 3a (Hd3a) protein. The 14-3-3 proteins mediate the interaction of Hd3a with the transcription factor OsFD1 to form a ternary structure called the florigen activation complex on the promoter of OsMADS15, a rice APETALA1 ortholog. However, crucial information, including the spatiotemporal overlap among FT-like proteins and the components of florigen activation complex and downstream genes, remains unclear. Here, we confirm that Hd3a coexists, in the same regions of the rice shoot apex, with the other components of the florigen activation complex and its transcriptional targets. Unexpectedly, however, RNA-sequencing analysis of shoot apex from wild-type and RNA-interference plants depleted of florigen activity revealed that 4,379 transposable elements (TEs; 58% of all classifiable rice TEs) were expressed collectively in the vegetative and reproductive shoot apex. Furthermore, in the reproductive shoot apex, 214 TEs were silenced by florigen. Our results suggest a link between floral induction and regulation of TEs.


Asunto(s)
Elementos Transponibles de ADN/genética , Flores/fisiología , Silenciador del Gen , Meristema/fisiología , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Bases , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Florigena/farmacología , Flores/efectos de los fármacos , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas , Inflorescencia/efectos de los fármacos , Inflorescencia/metabolismo , Meristema/efectos de los fármacos , Meristema/genética , Organogénesis/efectos de los fármacos , Oryza/efectos de los fármacos , Fenotipo , Proteínas de Plantas/genética , Transporte de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados , Reproducción/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...