Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Diabetes ; 71(3): 394-411, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029277

RESUMEN

Pancreatic ß-cells adapt to compensate for increased metabolic demand during obesity. Although the miRNA pathway has an essential role in ß-cell expansion, whether it is involved in adaptive proliferation is largely unknown. First, we report that EGR2 binding to the miR-455 promoter induced miR-455 upregulation in the pancreatic islets of obesity mouse models. Then, in vitro gain- or loss-of-function studies showed that miR-455 overexpression facilitated ß-cell proliferation. Knockdown of miR-455 in ob/ob mice via pancreatic intraductal infusion prevented compensatory ß-cell expansion. Mechanistically, our results revealed that increased miR-455 expression inhibits the expression of its target cytoplasmic polyadenylation element binding protein 1 (CPEB1), an mRNA binding protein that plays an important role in regulating insulin resistance and cell proliferation. Decreased CPEB1 expression inhibits elongation of the poly(A) tail and the subsequent translation of Cdkn1b mRNA, reducing the CDKN1B expression level and finally promoting ß-cell proliferation. Taken together, our results show that the miR-455/CPEB1/CDKN1B pathway contributes to adaptive proliferation of ß-cells to meet metabolic demand during obesity.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Células Secretoras de Insulina/patología , MicroARNs/fisiología , Obesidad/genética , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Factores de Escisión y Poliadenilación de ARNm/fisiología , Animales , Proliferación Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , MicroARNs/genética , Obesidad/patología , ARN Mensajero/análisis , Factores de Transcripción/genética , Regulación hacia Arriba , Factores de Escisión y Poliadenilación de ARNm/genética
2.
Clin Transl Oncol ; 24(2): 266-275, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34318428

RESUMEN

PURPOSE: Increasing evidences suggest dysfunctions of microRNAs (miRNAs) are playing important part in tumors. Therefore, the role of miR-802 in osteosarcoma (OS) was exploited. The object was to evaluate the effect of miR-802 and verify its influence on p27 Kip1 (p27) in OS. METHODS: RT-qPCR experiment was used to detect miR-802 and p27 expression in OS tissues and cells. We explored the function of miR-802 through Transwell assays. The phosphoinositide 3-kinase (PI3K)/AKT serine/threonine kinase pathway and epithelial-mesenchymal transition (EMT) was detected by Western blot assays. Luciferase assay was used to testify the target of miR-802. RESULTS: MiR-802 expression was elevated in OS, which was related to poor clinical outcome in OS patients. MiR-802 overexpression promoted OS migration, invasion and EMT. Further, p27 is a direct target of miR-802. P27 elevation counteracted the promotion effect of OS on EMT, migration and invasion induced by miR-802. In addition, miR-802 overexpression inactivated PI3K/AKT pathway via targeting p27 in OS. CONCLUSION: MiR-802 promoted the progress of EMT, migration and invasion in OS via targeting p27. This newly identified miR-802/p27/PI3K/AKT axis may represent potential targets for OS.


Asunto(s)
Neoplasias Óseas/etiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , MicroARNs/fisiología , Osteosarcoma/etiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Adolescente , Neoplasias Óseas/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Osteosarcoma/patología , Adulto Joven
3.
PLoS One ; 15(1): e0226725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31929545

RESUMEN

The cell cycle regulator p27Kip1 is a critical factor controlling cell number in many lineages. While its anti-proliferative effects are well-established, the extent to which this is a result of its function as a cyclin-dependent kinase (CDK) inhibitor or through other known molecular interactions is not clear. To genetically dissect its role in the developing corneal endothelium, we examined mice harboring two loss-of-function alleles, a null allele (p27-) that abrogates all protein function and a knockin allele (p27CK-) that targets only its interaction with cyclins and CDKs. Whole-animal mutants, in which all cells are either homozygous knockout or knockin, exhibit identical proliferative increases (~0.6-fold) compared with wild-type tissues. On the other hand, use of mosaic analysis with double markers (MADM) to produce infrequently-occurring clones of wild-type and mutant cells within the same tissue environment uncovers a roughly three- and six-fold expansion of individual p27CK-/CK- and p27-/- cells, respectively. Mosaicism also reveals distinct migration phenotypes, with p27-/- cells being highly restricted to their site of production and p27CK-/CK- cells more widely scattered within the endothelium. Using a density-based clustering algorithm to quantify dispersal of MADM-generated clones, a four-fold difference in aggregation is seen between the two types of mutant cells. Overall, our analysis reveals that, in developing mouse corneal endothelium, p27 regulates cell number by acting cell autonomously, both through its interactions with cyclins and CDKs and through a cyclin-CDK-independent mechanism(s). Combined with its parallel influence on cell motility, it constitutes a potent multi-functional effector mechanism with major impact on tissue organization.


Asunto(s)
Movimiento Celular , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Endotelio Corneal/citología , Animales , Ciclo Celular , Células Cultivadas , Endotelio Corneal/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
4.
Sci Rep ; 9(1): 18693, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822694

RESUMEN

Cell cycle stimulation is a major transforming mechanism of Myc oncoprotein. This is achieved through at least three concomitant mechanisms: upregulation of cyclins and Cdks, downregulation of the Cdk inhibitors p15 and p21 and the degradation of p27. The Myc-p27 antagonism has been shown to be relevant in human cancer. To be degraded, p27 must be phosphorylated at Thr-187 to be recognized by Skp2, a component of the ubiquitination complex. We previously described that Myc induces Skp2 expression. Here we show that not only Cdk2 but Cdk1 phosphorylates p27 at the Thr-187. Moreover, Myc induced p27 degradation in murine fibroblasts through Cdk1 activation, which was achieved by Myc-dependent cyclin A and B induction. In the absence of Cdk2, p27 phosphorylation at Thr-187 was mainly carried out by cyclin A2-Cdk1 and cyclin B1-Cdk1. We also show that Cdk1 inhibition was enough for the synthetic lethal interaction with Myc. This result is relevant because Cdk1 is the only Cdk strictly required for cell cycle and the reported synthetic lethal interaction between Cdk1 and Myc.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Proteína Quinasa CDC2/fisiología , Ciclo Celular , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , División Celular , Línea Celular , Quinasa 2 Dependiente de la Ciclina , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Proto-Oncogénicas c-myc/fisiología , Transducción de Señal
5.
PLoS Genet ; 15(3): e1008002, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30893315

RESUMEN

Mammary epithelial progenitors are the normal cell-of-origin of breast cancer. We previously defined a population of p27+ quiescent hormone-responsive progenitor cells in the normal human breast whose frequency associates with breast cancer risk. Here, we describe that deletion of the Cdkn1b gene encoding the p27 cyclin-dependent kinase inhibitor in the estrogen-induced mammary tumor-susceptible ACI rat strain leads to a decrease in the relative frequencies of Cd49b+ mammary luminal epithelial progenitors and pregnancy-related differentiation. We show by comprehensive gene expression profiling of purified progenitor and differentiated mammary epithelial cell populations that p27 deletion has the most pronounced effects on luminal progenitors. Cdkn1b-/- females have decreased fertility, but rats that are able to get pregnant had normal litter size and were able to nurse their pups implying that loss of p27 in ACI rats does not completely abrogate ovarian function and lactation. Reciprocal mammary gland transplantation experiments indicate that the p27-loss-induced changes in mammary epithelial cells are not only caused by alterations in their intrinsic properties, but are likely due to altered hormonal signaling triggered by the perturbed systemic endocrine environment observed in Cdkn1b-/- females. We also observed a decrease in the frequency of mammary epithelial cells positive for progesterone receptor (Pr) and FoxA1, known direct transcriptional targets of the estrogen receptor (Erα), and an increase in phospho-Stat5 positive cells commonly induced by prolactin (Prl). Characterization of genome-wide Pr chromatin binding revealed distinct binding patterns in mammary epithelial cells of Cdkn1b+/+ and Cdkn1b-/- females and enrichment in genes with known roles in Notch, ErbB, leptin, and Erα signaling and regulation of G1-S transition. Our data support a role for p27 in regulating the pool size of hormone-responsive luminal progenitors that could impact breast cancer risk.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Animales , Animales Modificados Genéticamente/genética , Neoplasias de la Mama/genética , Diferenciación Celular , Proliferación Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Endocrinas/fisiología , Células Epiteliales , Receptor alfa de Estrógeno , Estrógenos , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Integrina alfa1 , Glándulas Mamarias Animales , Glándulas Mamarias Humanas/crecimiento & desarrollo , Embarazo , Progesterona , Ratas , Ratas Endogámicas ACI , Ratas Sprague-Dawley , Receptores de Estrógenos , Receptores de Progesterona , Factores de Riesgo , Transducción de Señal , Células Madre
6.
DNA Repair (Amst) ; 69: 63-72, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30075372

RESUMEN

The cell cycle is controlled by precise mechanisms to prevent malignancies such as cancer, and the cell needs these tight and advanced controls. Cyclin dependent kinase inhibitor p27 (also known as KIP1) is a factor that inhibits the progression of the cell cycle by using specific molecular mechanisms. The inhibitory effect of p27 on the cell cycle is mediated by CDKs inhibition. Other important functions of p27 include cell proliferation, cell differentiation and apoptosis. Post- translational modification of p27 by phosphorylation and ubiquitination respectively regulates interaction between p27 and cyclin/CDK complex and degradation of p27. In this review, we focus on the multiple function of p27 in cell cycle regulation, apoptosis, epigenetic modifications and post- translational modification, and briefly discuss the mechanisms and factors that have important roles in p27 functions.


Asunto(s)
Ciclo Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Animales , Apoptosis , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Procesamiento Proteico-Postraduccional
7.
Nucleic Acids Res ; 46(16): 8454-8470, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30085096

RESUMEN

Long interspersed element-1 (LINE-1, L1) composes ∼17% of the human genome. However, genetic interactions between L1 and human immunodeficiency virus type 1 (HIV-1) remain poorly understood. In this study, we found that HIV-1 suppresses L1 retrotransposition. Notably, HIV-1 Vpr strongly inhibited retrotransposition without inhibiting L1 promoter activity. Since Vpr is known to regulate host cell cycle, we examined the possibility whether Vpr suppresses L1 retrotransposition in a cell cycle dependent manner. We showed that the inhibitory effect of a mutant Vpr (H71R), which is unable to arrest the cell cycle, was significantly relieved compared with that of wild-type Vpr, suggesting that Vpr suppresses L1 mobility in a cell cycle dependent manner. Furthermore, a host cell cycle regulator p21Waf1 strongly suppressed L1 retrotransposition. The N-terminal kinase inhibitory domain (KID) of p21 was required for this inhibitory effect. Another KID-containing host cell cycle regulator p27Kip1 also strongly suppressed L1 retrotransposition. We showed that Vpr and p21 coimmunoprecipitated with L1 ORF2p and they suppressed the L1 reverse transcriptase activity in LEAP assay, suggesting that Vpr and p21 inhibit ORF2p-mediated reverse transcription. Altogether, our results suggest that viral and host cell cycle regulatory machinery limit L1 mobility in cultured cells.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , VIH-1/fisiología , Elementos de Nucleótido Esparcido Largo/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/fisiología , Ciclo Celular , Línea Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Endonucleasas/metabolismo , Genes Reporteros , Genes prv , VIH-1/genética , Humanos , Dominios Proteicos , Proteínas/metabolismo , Interferencia de ARN , ADN Polimerasa Dirigida por ARN/metabolismo , Transcripción Genética , Virión/metabolismo
9.
Tumour Biol ; 39(4): 1010428317694574, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28381184

RESUMEN

Glioblastoma multiforme is the most common primary brain tumor and is highly lethal. This study aims to figure out signatures for predicting the survival time of patients with glioblastoma multiforme. Clinical information, messenger RNA expression, microRNA expression, and single-nucleotide polymorphism array data of patients with glioblastoma multiforme were retrieved from The Cancer Genome Atlas. Patients were separated into two groups by using 1 year as a cutoff, and a logistic regression model was used to figure out any variables that can predict whether the patient was able to live longer than 1 year. Furthermore, Cox's model was used to find out features that were correlated with the survival time. Finally, a Cox model integrated the significant clinical variables, messenger RNA expression, microRNA expression, and single-nucleotide polymorphism was built. Although the classification method failed, signatures of clinical features, messenger RNA expression levels, and microRNA expression levels were figured out by using Cox's model. However, no single-nucleotide polymorphisms related to prognosis were found. The selected clinical features were age at initial diagnosis, Karnofsky score, and race, all of which had been suggested to correlate with survival time. Both of the two significant microRNAs, microRNA-221 and microRNA-222, were targeted to p27Kip1 protein, which implied the important role of p27Kip1 on the prognosis of glioblastoma multiforme patients. Our results suggested that survival modeling was more suitable than classification to figure out prognostic biomarkers for patients with glioblastoma multiforme. An integrated model containing clinical features, messenger RNA levels, and microRNA expression levels was built, which has the potential to be used in clinics and thus to improve the survival status of glioblastoma multiforme patients.


Asunto(s)
Neoplasias Encefálicas/mortalidad , Glioblastoma/mortalidad , Neoplasias Encefálicas/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Femenino , Glioblastoma/genética , Humanos , Modelos Logísticos , Masculino , MicroARNs/análisis , Polimorfismo de Nucleótido Simple , Pronóstico , Modelos de Riesgos Proporcionales
10.
Clin Res Hepatol Gastroenterol ; 41(4): 445-458, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28286054

RESUMEN

OBJECTIVE: To investigate the role of chromosome region maintenance-1 (CRM1) in Crohn's disease (CD) and its potential pathological mechanisms. METHODS: The expression and distribution of CRM1 in mucosal biopsies from patients with active CD and normal controls were detected by immunohistochemistry (IHC). We established a murine model of acute colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). Western blot was performed to investigate the expression levels of CRM1, apoptotic markers (active caspase-3 and cleaved PARP), p27kip1 and p-p27ser10. IHC was performed to evaluate the distribution of CRM1, and double immunofluorescence (IF) was performed to evaluate the co-localization of CRM1 and active capase-3. Cells of the human intestinal epithelial cell line HT-29 were incubated with tumor necrosis factor-α (TNF-α) to establish an apoptotic in vitro model. Western blot was performed to determine the expression levels of CRM1, active caspase-3, cleaved PARP and p-p27ser10. Cytoplasmic and nuclear extracts were assessed to examine the translocation of CRM1. The interaction between CRM1 and p27kip1 was assessed by co-immunoprecipitation (co-IP) assays. Furthermore, we used small interfering RNA (siRNA) to knock down the protein expression of CRM1 in HT-29 cells and then measured the expression of active caspase-3, cleaved PARP and p-p27ser10. Flow cytometry was used to determine the effect of CRM1 on intestinal epithelial cell (IEC) apoptosis. RESULTS: We observed up-regulation of CRM1 accompanied by elevated levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and p-p27ser10 in IECs of patients with active CD and in TNBS-induced colitis model cells. However, the expression of p27kip1 was negatively correlated with the expression patterns of CRM1, p-p27ser10 and apoptotic biochemical markers. Co-localization of CRM1 and active caspase-3 in IECs of the TNBS group further indicated the possible involvement of CRM1 in IEC apoptosis. By employing TNF-α-treated HT-29 cells as an in vitro IEC apoptosis model, we found that the expression levels of CRM1 and p-p27ser10 were in accordance with active caspase-3 and cleaved PARP. In addition, immunoprecipitation confirmed the physical interaction between CRM1 and p27kip1. siRNA knockdown of CRM1 significantly inhibited the phosphorylation of p27kip1 and the expression of active caspase-3 and cleaved PARP. In addition, flow cytometry analysis also showed that silencing CRM1 by siRNA inhibited TNF-α-induced cellular apoptosis in HT-29 cells. CONCLUSIONS: Up-regulated CRM1 may facilitate IEC apoptosis possibly through p27kip1 in CD, indicating an important role of CRM1 in the pathophysiology of CD.


Asunto(s)
Apoptosis , Enfermedad de Crohn/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Células Epiteliales , Carioferinas/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Humanos , Mucosa Intestinal/citología , Ratones , Proteína Exportina 1
11.
Nucleic Acids Res ; 45(9): 5086-5099, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28158851

RESUMEN

The cyclin-dependent kinase inhibitor p27Kip1 (p27) also behaves as a transcriptional repressor. Data showing that the p300/CBP-associated factor (PCAF) acetylates p27 inducing its degradation suggested that PCAF and p27 could collaborate in the regulation of transcription. However, this possibility remained to be explored. We analyzed here the transcriptional programs regulated by PCAF and p27 in the colon cancer cell line HCT116 by chromatin immunoprecipitation sequencing (ChIP-seq). We identified 269 protein-encoding genes that contain both p27 and PCAF binding sites being the majority of these sites different for PCAF and p27. PCAF or p27 knock down revealed that both regulate the expression of these genes, PCAF as an activator and p27 as a repressor. The double knock down of PCAF and p27 strongly reduced their expression indicating that the activating role of PCAF overrides the repressive effect of p27. We also observed that the transcription factor Pax5 interacts with both p27 and PCAF and that the knock down of Pax5 induces the expression of p27/PCAF target genes indicating that it also participates in the transcriptional regulation mediated by p27/PCAF. In summary, we report here a previously unknown mechanism of transcriptional regulation mediated by p27, Pax5 and PCAF.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Regulación de la Expresión Génica , Factor de Transcripción PAX5/fisiología , Factores de Transcripción p300-CBP/fisiología , Animales , Sitios de Unión , Línea Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Ratones , Unión Proteica , Proteínas/genética , Análisis de Matrices Tisulares , Transcripción Genética
12.
Nat Commun ; 7: 13719, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941799

RESUMEN

Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients.


Asunto(s)
Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Notch/antagonistas & inhibidores , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Próstata/patología , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Tetrahidronaftalenos/uso terapéutico , Regulación hacia Arriba , Valina/análogos & derivados , Valina/uso terapéutico
13.
Biomed Pharmacother ; 84: 1967-1971, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27842905

RESUMEN

OBJECTIVE: The aim of this study is to explore the influence of miR-148a on cell proliferation and cell cycle of multiple myeloma (MM) cell line RPMI8226 and the related molecular mechanism. METHODS: The expression of miR-148a and CDKN1B in MM cells and primary cells of normal bone marrow were determined by RT-PCR and western blotting. The cell proliferation and cell cycle of miR-148a knockdown MM cells and normal MM cells were determined by flow cytometry. The protein expression of p-NPAT, p-Rb and p-CDC6 was determined in normal and miR-148a knockdown MM cells. Luciferase reported assay was used to explore the relationship between miR-148a and CDKN1B. RESULTS: The level of miR-148a in MM cells was much higher than that in primary cells from healthy bone marrow samples, while the expression of CDKN1B was lower in MM cells. After knockdown of miR-148a, cell cycle mainly distributed at G0/G1 and the proliferation capacity of MM cells decreased. Knockdown of miR-148a significantly reduced protein expression of p-NPAT, p-Rb and p-CDC6. Luciferase reported assay showed that miR-148a could directly target CDKN1B at 3'-UTR. CONCLUSIONS: High level of miR-148a inhibits CDK activity and promotes the proliferation of MM cells at least partly by downregulating CDKN1B.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , MicroARNs/biosíntesis , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Técnicas de Silenciamiento del Gen , Humanos
14.
Mol Vis ; 22: 1103-1121, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27703306

RESUMEN

PURPOSE: p27KIP1 (p27), originally identified as a cell cycle inhibitor, is now known to have multifaceted roles beyond cell cycle regulation. p27 is required for the normal histogenesis of the RPE, but the role of p27 in the mature RPE remains elusive. To define the role of p27 in the maintenance and function of the RPE, we investigated the effects of p27 deletion on the responses of the RPE after photoreceptor damage. METHODS: Photoreceptor damage was induced in wild-type (WT) and p27 knockout (KO) mice with N-methyl-N-nitrosourea (MNU) treatment. Damage-induced responses of the RPE were investigated with bromodeoxyuridine (BrdU) incorporation assays, immunofluorescence, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays at different stages after MNU treatment. Subcellular localization of p27 in the WT RPE was also analyzed in vivo and in vitro. RESULTS: MNU treatment induced photoreceptor-specific degeneration in the WT and KO retinas. BrdU incorporation assays revealed virtually no proliferation of RPE cells in the WT retinas while, in the KO retinas, approximately 16% of the RPE cells incorporated BrdU at day 2 after MNU treatment. The RPE in the KO retinas developed aberrant protrusions into the outer nuclear layer in response to photoreceptor damage and engulfed outer segment debris, as well as TUNEL-positive photoreceptor cells. Increased phosphorylation of myosin light chains and their association with rhodopsin-positive phagosomes were observed in the mutant RPE, suggesting possible deregulation of cytoskeletal dynamics. In addition, WT RPE cells exhibited evidence of the epithelial-mesenchymal transition (EMT), including morphological changes, induction of α-smooth muscle actin expression, and attenuated expression of tight junction protein ZO-1 while these changes were absent in the KO retinas. In the normal WT retinas, p27 was localized to the nuclei of RPE cells while nuclear and cytoplasmic p27 was detected in RPE cells undergoing EMT, suggesting a role for cytoplasmic p27 in the phenotype changes of RPE cells. CONCLUSIONS: p27 loss promoted proliferation and phagocytic activity of RPE cells while preventing EMT after photoreceptor damage. These findings provide evidence for the role of p27 in the control of RPE responses to retinal damage.


Asunto(s)
Proliferación Celular/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Transición Epitelial-Mesenquimal , Fagocitosis/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Degeneración Retiniana/fisiopatología , Epitelio Pigmentado de la Retina/metabolismo , Animales , Recuento de Células , Células Cultivadas , Replicación del ADN , Técnica del Anticuerpo Fluorescente Indirecta , Etiquetado Corte-Fin in Situ , Metilnitrosourea/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/inducido químicamente
15.
Oncotarget ; 7(34): 54102-54119, 2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27472461

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive cancer with current therapies only marginally impacting on patient survival. Glioma stem cells (GSCs), a subpopulation of highly tumorigenic cells, are considered major contributors to glioma progression and play seminal roles in therapy resistance, immune evasion and increased invasion. Despite clinical relevance, effective/selective therapeutic targeting strategies for GSCs do not exist, potentially due to the lack of a definitive understanding of key regulators of GSCs. Consequently, there is a pressing need to identify therapeutic targets and novel options to effectively target this therapy-resistant cell population. The precise roles of GSCs in governing GBM development, progression and prognosis are under intense scrutiny, but key upstream regulatory genes remain speculative. MDA-9/Syntenin (SDCBP), a scaffold protein, regulates tumor pathogenesis in multiple cancers. Highly aggressive cancers like GBM express elevated levels of MDA-9 and contain increased populations of GSCs. We now uncover a unique function of MDA-9 as a facilitator and determinant of glioma stemness and survival. Mechanistically, MDA-9 regulates multiple stemness genes (Nanog, Oct4 and Sox2) through activation of STAT3. MDA-9 controls survival of GSCs by activating the NOTCH1 pathway through phospho-Src and DLL1. Once activated, cleaved NOTCH1 regulates C-Myc expression through RBPJK, thereby facilitating GSC growth and proliferation. Knockdown of MDA-9 affects the NOTCH1/C-Myc and p-STAT3/Nanog pathways causing a loss of stemness and initiation of apoptosis in GSCs. Our data uncover a previously unidentified relationship between MDA-9 and GSCs, reinforcing relevance of this gene as a potential therapeutic target in GBM.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Células Madre Neoplásicas/fisiología , Sinteninas/fisiología , Animales , Astrocitos/fisiología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Femenino , Glioma/tratamiento farmacológico , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/fisiología , Receptor Notch1/fisiología , Factor de Transcripción STAT3/fisiología , Sinteninas/antagonistas & inhibidores , Sinteninas/genética
16.
Proc Natl Acad Sci U S A ; 113(20): 5616-21, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27140628

RESUMEN

Peptide motifs embedded within intrinsically disordered regions (IDRs) of proteins are often the sites of posttranslational modifications that control cell-signaling pathways. How do IDR sequences modulate the functionalities of motifs? We answer this question using the polyampholytic C-terminal IDR of the cell cycle inhibitory protein p27(Kip1) (p27). Phosphorylation of Thr-187 (T187) within the p27 IDR controls entry into S phase of the cell division cycle. Additionally, the conformational properties of polyampholytic sequences are predicted to be influenced by the linear patterning of oppositely charged residues. Therefore, we designed sequence variants of the p27 IDR to alter charge patterning outside the primary substrate motif containing T187. Computer simulations and biophysical measurements confirm predictions regarding the impact of charge patterning on the global dimensions of IDRs. Through functional studies, we uncover cryptic sequence features within the p27 IDR that influence the efficiency of T187 phosphorylation. Specifically, we find a positive correlation between T187 phosphorylation efficiency and the weighted net charge per residue of an auxiliary motif. We also find that accumulation of positive charges within the auxiliary motif can diminish the efficiency of T187 phosphorylation because this increases the likelihood of long-range intra-IDR interactions that involve both the primary and auxiliary motifs and inhibit their contributions to function. Importantly, our findings suggest that the cryptic sequence features of the WT p27 IDR negatively regulate T187 phosphorylation signaling. Our approaches provide a generalizable strategy for uncovering the influence of sequence contexts on the functionalities of primary motifs in other IDRs.


Asunto(s)
Ciclo Celular/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/química , Humanos , Fosforilación , Conformación Proteica
17.
Cell Death Differ ; 23(3): 430-41, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26292757

RESUMEN

Cell-cycle inhibitors of the Ink4 and Cip/Kip families are involved in cellular senescence and tumor suppression. These inhibitors are individually dispensable for the cell cycle and inactivation of specific family members results in increased proliferation and enhanced susceptibility to tumor development. We have now analyzed the consequences of eliminating a substantial part of the cell-cycle inhibitory activity in the cell by generating a mouse model, which combines the absence of both p21(Cip1) and p27(Kip1) proteins with the endogenous expression of a Cdk4 R24C mutant insensitive to Ink4 inhibitors. Pairwise combination of Cdk4 R24C, p21-null and p27-null alleles results in frequent hyperplasias and tumors, mainly in cells of endocrine origin such as pituitary cells and in mesenchymal tissues. Interestingly, complete abrogation of p21(Cip1) and p27(Kip1) in Cdk4 R24C mutant mice results in a different phenotype characterized by perinatal death accompanied by general hypoplasia in most tissues. This phenotype correlates with increased replicative stress in developing tissues such as the nervous system and subsequent apoptotic cell death. Partial inhibition of Cdk4/6 rescues replicative stress signaling as well as p53 induction in the absence of cell-cycle inhibitors. We conclude that one of the major physiological activities of cell-cycle inhibitors is to prevent replicative stress during development.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Replicación del ADN , Animales , Autorrenovación de las Células , Quinasa 4 Dependiente de la Ciclina/fisiología , Genes Letales , Hemangiosarcoma/genética , Ratones , Ratones Noqueados , Células-Madre Neurales/fisiología , Neoplasias Hipofisarias/genética , Estrés Fisiológico
18.
Cell Cycle ; 14(23): 3734-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26654769

RESUMEN

Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Movimiento Celular/genética , Invasividad Neoplásica/genética , Proteínas Nucleares/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Apoptosis/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Microtúbulos/metabolismo , Metástasis de la Neoplasia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , Estatmina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Proc Natl Acad Sci U S A ; 112(45): 13916-21, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26512117

RESUMEN

The cyclin-dependent kinase (CDK) inhibitor p27(kip1) is a critical regulator of the G1/S-phase transition of the cell cycle and also regulates microtubule (MT) stability. This latter function is exerted by modulating the activity of stathmin, an MT-destabilizing protein, and by direct binding to MTs. We recently demonstrated that increased proliferation in p27(kip1)-null mice is reverted by concomitant deletion of stathmin in p27(kip1)/stathmin double-KO mice, suggesting that a CDK-independent function of p27(kip1) contributes to the control of cell proliferation. Whether the regulation of MT stability by p27(kip1) impinges on signaling pathway activation and contributes to the decision to enter the cell cycle is largely unknown. Here, we report that faster cell cycle entry of p27(kip1)-null cells was impaired by the concomitant deletion of stathmin. Using gene expression profiling coupled with bioinformatic analyses, we show that p27(kip1) and stathmin conjunctly control activation of the MAPK pathway. From a molecular point of view, we observed that p27(kip1), by controlling MT stability, impinges on H-Ras trafficking and ubiquitination levels, eventually restraining its full activation. Our study identifies a regulatory axis controlling the G1/S-phase transition, relying on the regulation of MT stability by p27(kip1) and finely controlling the spatiotemporal activation of the Ras-MAPK signaling pathway.


Asunto(s)
Ciclo Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Microtúbulos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Activación Enzimática , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Estatmina/metabolismo
20.
Cell Cycle ; 14(13): 2109-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26030190

RESUMEN

UNLABELLED: Cancer stem-like cells (CSCs) are a rare subpopulation of cancer cells capable of propagating the disease and causing cancer recurrence. In this study, we found that the cellular localization of PKB/Akt kinase affects the maintenance of CSCs. When Akt tagged with nuclear localization signal (Akt-NLS) was overexpressed in SKBR3 and MDA-MB468 cells, these cells showed a 10-15% increase in the number of cells with CSCs enhanced ALDH activity and demonstrated a CD44(+High)/CD24(-Low) phenotype. This effect was completely reversed in the presence of Akt-specific inhibitor, triciribine. Furthermore, cells overexpressing Akt or Akt-NLS were less likely to be in G0/G1 phase of the cell cycle by inactivating p21(Waf1/Cip1) and exhibited increased clonogenicity and proliferation as assayed by colony-forming assay (mammosphere formation). Thus, our data emphasize the importance the intracellular localization of Akt has on stemness in human breast cancer cells. It also indicates a new robust way for improving the enrichment and culture of CSCs for experimental purposes. Hence, it allows for the development of simpler protocols to study stemness, clonogenic potency, and screening of new chemotherapeutic agents that preferentially target cancer stem cells. SUMMARY: The presented data, (i) shows new, stemness-promoting role of nuclear Akt/PKB kinase, (ii) it underlines the effects of nuclear Akt on cell cycle regulation, and finally (iii) it suggests new ways to study cancer stem-like cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Núcleo Celular/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Núcleo Celular/química , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...