Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.898
Filtrar
2.
Eur J Med Chem ; 271: 116386, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38614063

RESUMEN

Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aß oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.


Asunto(s)
Enfermedades Neurodegenerativas , Inhibidores de Fosfodiesterasa , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/uso terapéutico , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Estructura Molecular
3.
Front Immunol ; 15: 1365484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524120

RESUMEN

T-cell activation is a pivotal process of the adaptive immune response with 3',5'-cyclic adenosine monophosphate (cAMP) as a key regulator of T-cell activation and function. It governs crucial control over T-cell differentiation and production of pro-inflammatory cytokines, such as IFN-γ. Intriguingly, levels of intracellular cAMP differ between regulatory (Treg) and conventional T-cells (Tcon). During cell-cell contact, cAMP is transferred via gap junctions between these T-cell subsets to mediate the immunosuppressive function of Treg. Moreover, the activation of T-cells via CD3 and CD28 co-stimulation leads to a transient upregulation of cAMP. Elevated intracellular cAMP levels are balanced precisely by phosphodiesterases (PDEs), a family of enzymes that hydrolyze cyclic nucleotides. Various PDEs play distinct roles in regulating cAMP and cyclic guanosine monophosphate (cGMP) in T-cells. Research on PDEs has gained growing interest due to their therapeutic potential to manipulate T-cell responses. So far, PDE4 is the best-described PDE in T-cells and the first PDE that is currently targeted in clinical practice to treat autoimmune diseases. But also, other PDE families harbor additional therapeutic potential. PDE2A is a dual-substrate phosphodiesterase which is selectively upregulated in Tcon upon activation. In this Mini-Review, we will highlight the impact of cAMP regulation on T-cell activation and function and summarize recent findings on different PDEs regulating intracellular cAMP levels in T-cells.


Asunto(s)
Dietilestilbestrol/análogos & derivados , Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Inhibidores de Fosfodiesterasa/uso terapéutico , AMP Cíclico , Linfocitos T
4.
Cells ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391934

RESUMEN

Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5-6/grp) and post-CIE (n = 6-8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.


Asunto(s)
Etanol , Compuestos Orgánicos , Inhibidores de Fosfodiesterasa , Masculino , Femenino , Ratas , Animales , Etanol/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Ratas Wistar , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Expresión Génica
5.
Physiol Rev ; 104(2): 765-834, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971403

RESUMEN

Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.


Asunto(s)
Enfermedades Cardiovasculares , Dietilestilbestrol/análogos & derivados , Hidrolasas Diéster Fosfóricas , Humanos , Inhibidores de Fosfodiesterasa/uso terapéutico , AMP Cíclico , GMP Cíclico , Isoformas de Proteínas
6.
JACC Heart Fail ; 12(1): 100-113, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921801

RESUMEN

BACKGROUND: Intracellular second messenger cyclic guanosine monophosphate (cGMP) mediates bioactivity of the natriuretic peptides and nitric oxide, and is key to circulatory homeostasis and protection against cardiovascular disease. Inhibition of cGMP-degrading phosphodiesterases (PDEs) PDE5 and PDE9 are emerging as pharmacological targets in heart failure (HF). OBJECTIVES: The present study investigated dual enhancement of cGMP in experimental HF by combining inhibition of PDE-5 (P5-I) and PDE-9 (P9-I). METHODS: Eight sheep with pacing-induced HF received on separate days intravenous P5-I (sildenafil), P9-I (PF-04749982), P5-I+P9-I, and vehicle control, in counterbalanced order. RESULTS: Compared with control, separate P5-I and P9-I significantly increased circulating cGMP concentrations in association with reductions in mean arterial pressure (MAP), left atrial pressure (LAP), and pulmonary arterial pressure (PAP), with effects of P5-I on cGMP, MAP, and PAP greater than those of P9-I. Only P5-I decreased pulmonary vascular resistance. Combination P5-I+P9-I further reduced MAP, LAP, and PAP relative to inhibition of either phosphodiesterase alone. P9-I and, especially, P5-I elevated urinary cGMP levels relative to control. However, whereas inhibition of either enzyme increased urine creatinine excretion and clearance, only P9-I induced a significant diuresis and natriuresis. Combined P5-I+P9-I further elevated urine cGMP with concomitant increases in urine volume, sodium and creatinine excretion, and clearance similar to P9-I alone, despite the greater MAP reductions induced by combination treatment. CONCLUSIONS: Combined P5-I+P9-I amalgamated the superior renal effects of P9-I and pulmonary effects of P5-1, while concurrently further reducing cardiac preload and afterload. These findings support combination P5-I+P9-I as a therapeutic strategy in HF.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Animales , Ovinos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Creatinina , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , GMP Cíclico
7.
mBio ; 15(2): e0305623, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132724

RESUMEN

Apicomplexa encompasses a large number of intracellular parasites infecting a wide range of animals. Cyclic nucleotide signaling is crucial for a variety of apicomplexan life stages and cellular processes. The cyclases and kinases that synthesize and respond to cyclic nucleotides (i.e., 3',5'-cyclic guanosine monophosphate and 3',5'-cyclic adenosine monophosphate) are highly conserved and essential throughout the parasite phylum. Growing evidence indicates that phosphodiesterases (PDEs) are also critical for regulating cyclic nucleotide signaling via cyclic nucleotide hydrolysis. Here, we discuss recent advances in apicomplexan PDE biology and opportunities for therapeutic interventions, with special emphasis on the major human apicomplexan parasite genera Plasmodium, Toxoplasma, Cryptosporidium, and Babesia. In particular, we show a highly flexible repertoire of apicomplexan PDEs associated with a wide range of cellular requirements across parasites and lifecycle stages. Despite this phylogenetic diversity, cellular requirements of apicomplexan PDEs for motility, host cell egress, or invasion are conserved. However, the molecular wiring of associated PDEs is extremely malleable suggesting that PDE diversity and redundancy are key for the optimization of cyclic nucleotide turnover to respond to the various environments encountered by each parasite and life stage. Understanding how apicomplexan PDEs are regulated and integrating multiple signaling systems into a unified response represent an untapped avenue for future exploration.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Dietilestilbestrol/análogos & derivados , Animales , Humanos , Hidrolasas Diéster Fosfóricas/genética , Nucleótidos Cíclicos , Inhibidores de Fosfodiesterasa/uso terapéutico , Filogenia , GMP Cíclico , 3',5'-AMP Cíclico Fosfodiesterasas
8.
Biochem Pharmacol ; 220: 116006, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142838

RESUMEN

Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.


Asunto(s)
Neoplasias , Hidrolasas Diéster Fosfóricas , Humanos , Adenosina , Difosfatos , Inmunoterapia , Neoplasias/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas/metabolismo , Microambiente Tumoral
9.
J Med Chem ; 66(21): 14597-14608, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37862143

RESUMEN

Phosphodiesterase 11A4 (PDE11A4) is a dual-acting cyclic nucleotide hydrolase expressed in neurons in the CA1, subiculum, amygdalostriatal transition area and amygdalohippocampal area of the extended hippocampal formation. PDE11A4 is the only PDE enzyme to emanate solely from hippocampal formation, a key brain region for the formation of long-term memory. PDE11A4 expression increases in the hippocampal formation of both humans and rodents as they age. Interestingly, PDE11A knockout mice do not show age-related deficits in associative memory and show no gross histopathology. This suggests that inhibition of PDE11A4 might serve as a therapeutic option for age-related cognitive decline. A novel, yeast-based high throughput screen previously identified moderately potent, selective PDE11A4 inhibitors, and this work describes initial efforts that improved potency more than 10-fold and improved some pharmaceutical properties of one of these scaffolds, leading to selective, cell-penetrant PDE11A4 inhibitors, one of which is 10-fold more potent compared to tadalafil in cell-based activity.


Asunto(s)
Disfunción Cognitiva , Inhibidores de Fosfodiesterasa , Humanos , Animales , Ratones , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/metabolismo , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Encéfalo/metabolismo , Ratones Noqueados , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo
10.
Eur J Med Chem ; 259: 115682, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37536210

RESUMEN

Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas , Inhibidores de Fosfodiesterasa , GMP Cíclico , Farmacóforo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas
11.
J Med Chem ; 66(17): 12468-12478, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37584424

RESUMEN

Phosphodiesterase 1 (PDE1) is a subfamily of PDE super enzyme families that can hydrolyze cyclic adenosine monophosphate and cyclic guanosine monophosphate simultaneously. Currently, the number of PDE1 inhibitors is relatively few, significantly limiting their application. Herein, a novel series of quinolin-2(1H)-ones were designed rationally, leading to compound 10c with an IC50 of 15 nM against PDE1C, high selectivity across other PDEs, and remarkable safety properties. Furthermore, we used the lead compound 10c as a chemical tool to explore whether PDE1 could work as a novel potential target for the treatment of inflammatory bowel disease (IBD), a disease which is a chronic, relapsing disorder of the gastrointestinal tract inflammation lacking effective treatment. Our results showed that administration of 10c exerted significant anti-IBD effects in the dextran sodium sulfate-induced mice model and alleviated the inflammatory response, indicating that PDE1 could work as a potent target for IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Inhibidores de Fosfodiesterasa , Ratones , Animales , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas , GMP Cíclico , AMP Cíclico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico
12.
J Biochem Mol Toxicol ; 37(11): e23459, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431890

RESUMEN

Diabetic neuropathy (DN) is the most prevalent complication of diabetes. Pharmacological treatments for DN are often limited in efficacy, so the development of new agents to alleviate DN is essential. The aim of this study was to evaluate the effects of rolipram, a selective phosphodiesterase-4 inhibitor (PDE-4I), and pentoxifylline, a general PDE inhibitor, using a rat model of DN. In this study, a diabetic rat model was established by i.p. injection of STZ (55 mg/kg). Rats were treated with rolipram (1 mg/kg), pentoxifylline (100 mg/kg), and combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for 5 weeks. After treatments, sensory function was assessed by hot plate test. Then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP, adenosine diphosphate and mitochondrial membrane potential (MMP) levels, Cytochrome c release, Bax, Bcl-2, caspase-3 proteins expression in DRG neurons were assessed by biochemical and ELISA methods, and western blot analysis. DRG neurons were histologically examined using hematoxylin and eosin (H&E) staining method. Rolipram and/or pentoxifylline significantly attenuated sensory dysfunction by modulating nociceptive threshold. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, prevented mitochondrial dysfunction, apoptosis and degeneration of DRG neurons, which appears to be mediated by inducing ATP and MMP, improving cytochrome c release, as well as regulating the expression of Bax, Bcl-2, and caspase-3 proteins, and improving morphological abnormalities of DRG neurons. We found maximum effectiveness with rolipram and pentoxifylline combination on mentioned factors. These findings encourage the use of rolipram and pentoxifylline combination as a novel experimental evidence for further clinical investigations in the treatment of DN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Pentoxifilina , Ratas , Animales , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Rolipram/farmacología , Rolipram/metabolismo , Rolipram/uso terapéutico , Neuropatías Diabéticas/metabolismo , Caspasa 3/metabolismo , Citocromos c/metabolismo , Ganglios Espinales/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/metabolismo , Inhibidores de Fosfodiesterasa/uso terapéutico , Apoptosis , Neuronas/metabolismo , Adenosina Trifosfato/metabolismo , Mitocondrias , Diabetes Mellitus/metabolismo
13.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 82-91, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300686

RESUMEN

Cardiovascular failure is the main cause of death in industrialized societies. The results of recent studies have shown that some mutations in the MEFV gene are common in heart failure patients. For this reason, the study of mutations and genetic factors has been of great help in the treatment of this disease, but despite this, due to the heterogeneity of clinical symptoms, multiple pathophysiological processes, and environmental genetic factors, the complete understanding of the genetic causes of this disease is very complicated. As the new generation of phosphodiesterase (PDE) III inhibitor, olprinone, the inhibition of human heart PDE III by olprinone is highly selective. It is suitable for the treatment of acute heart failure (HF) and acute cardiac insufficiency after cardiac surgery. In this study Olprinone, milrinone, PDE inhibitors, cardiac failure, and HF were selected as the search terms to retrieve articles published between January 1999 and March 2022. RevMan5.3 and Stata were employed to analyze and evaluate the risk bias of the included articles. Besides, the Q test and heterogeneity were utilized to evaluate the heterogeneity between articles. The results of this research showed No heterogeneity was found between each research group. The sensitivity (Sen) and specificity (Spe) of the two methods were compared. Olprinone showed more significant therapeutic effects than other PDE inhibitors. Besides, the therapeutic effect on the patients with HF in the two groups was obvious. The incidence of postoperative adverse reactions among the patients without relieving HF was low. The influences on urine flow of the two group's demonstrated heterogeneity, and its effect revealed no statistical meaning. The meta-analysis confirmed that the Spe and Sen of olprinone treatment were higher than those of other PDE inhibitors. In terms of hemodynamics, there was little difference between various treatment methods.


Asunto(s)
Insuficiencia Cardíaca , Imidazoles , Piridonas , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Imidazoles/uso terapéutico , Milrinona/uso terapéutico , Inhibidores de Fosfodiesterasa/uso terapéutico , Piridonas/uso terapéutico
14.
Brain Res ; 1815: 148443, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290608

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder, presenting with a variety of aetiological and phenotypical features. Ibudilast is known to produce beneficial effects in several neurological disorders including neuropathic pain, multiple sclerosis, etc. by displaying its neuroprotective and anti-inflammatory properties. Here, in our study, the pharmacological outcome of ibudilast administration was investigated in the prenatal valproic acid (VPA)-model of ASD in Wistar rats. METHODS: Autistic-like symptoms were induced in Wistar male pups of dams administered with Valproic acid (VPA) on embryonic day 12.5. VPA-exposed male pups were administered with two doses of ibudilast (5 and10 mg/kg) and all the groups were evaluated for behavioral parameters like social interaction, spatial memory/learning, anxiety, locomotor activity, and nociceptive threshold. Further, the possible neuroprotective effect of ibudilast was evaluated by assessing oxidative stress, neuroinflammation (IL-1ß, TNF-α, IL-6, IL-10) in the hippocampus, % area of Glial fibrillary acidic protein (GFAP)-positive cells and neuronal damage in the cerebellum. KEY FINDINGS: Treatment with ibudilast significantly attenuated prenatal VPA exposure associated social interaction and spatial learning/memory deficits, anxiety, hyperactivity, and increased nociceptive threshold, and it decreased oxidative stress markers, pro-inflammatory markers (IL-1ß, TNF-α, IL-6), and % area of GFAP-positive cells and restored neuronal damage. CONCLUSIONS: Ibudilast treatment has restored crucial ASD-related behavioural abnormalities, potentially through neuroprotection. Therefore, benefits of ibudilast administration in animal models of ASD suggest that ibudilast may have therapeutic potential in the treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista , Inhibidores de Fosfodiesterasa , Efectos Tardíos de la Exposición Prenatal , Ácido Valproico , Animales , Femenino , Embarazo , Ratas , Ansiedad/tratamiento farmacológico , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Agitación Psicomotora/tratamiento farmacológico , Ratas Wistar , Conducta Social , Aprendizaje Espacial/efectos de los fármacos , Ácido Valproico/administración & dosificación , Ácido Valproico/efectos adversos , Masculino
15.
JAMA ; 329(18): 1567-1578, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37159034

RESUMEN

Importance: There is a major need for effective, well-tolerated treatments for idiopathic pulmonary fibrosis (IPF). Objective: To assess the efficacy and safety of the autotaxin inhibitor ziritaxestat in patients with IPF. Design, Setting, and Participants: The 2 identically designed, phase 3, randomized clinical trials, ISABELA 1 and ISABELA 2, were conducted in Africa, Asia-Pacific region, Europe, Latin America, the Middle East, and North America (26 countries). A total of 1306 patients with IPF were randomized (525 patients at 106 sites in ISABELA 1 and 781 patients at 121 sites in ISABELA 2). Enrollment began in November 2018 in both trials and follow-up was completed early due to study termination on April 12, 2021, for ISABELA 1 and on March 30, 2021, for ISABELA 2. Interventions: Patients were randomized 1:1:1 to receive 600 mg of oral ziritaxestat, 200 mg of ziritaxestat, or placebo once daily in addition to local standard of care (pirfenidone, nintedanib, or neither) for at least 52 weeks. Main Outcomes and Measures: The primary outcome was the annual rate of decline for forced vital capacity (FVC) at week 52. The key secondary outcomes were disease progression, time to first respiratory-related hospitalization, and change from baseline in St George's Respiratory Questionnaire total score (range, 0 to 100; higher scores indicate poorer health-related quality of life). Results: At the time of study termination, 525 patients were randomized in ISABELA 1 and 781 patients in ISABELA 2 (mean age: 70.0 [SD, 7.2] years in ISABELA 1 and 69.8 [SD, 7.1] years in ISABELA 2; male: 82.4% and 81.2%, respectively). The trials were terminated early after an independent data and safety monitoring committee concluded that the benefit to risk profile of ziritaxestat no longer supported their continuation. Ziritaxestat did not improve the annual rate of FVC decline vs placebo in either study. In ISABELA 1, the least-squares mean annual rate of FVC decline was -124.6 mL (95% CI, -178.0 to -71.2 mL) with 600 mg of ziritaxestat vs -147.3 mL (95% CI, -199.8 to -94.7 mL) with placebo (between-group difference, 22.7 mL [95% CI, -52.3 to 97.6 mL]), and -173.9 mL (95% CI, -225.7 to -122.2 mL) with 200 mg of ziritaxestat (between-group difference vs placebo, -26.7 mL [95% CI, -100.5 to 47.1 mL]). In ISABELA 2, the least-squares mean annual rate of FVC decline was -173.8 mL (95% CI, -209.2 to -138.4 mL) with 600 mg of ziritaxestat vs -176.6 mL (95% CI, -211.4 to -141.8 mL) with placebo (between-group difference, 2.8 mL [95% CI, -46.9 to 52.4 mL]) and -174.9 mL (95% CI, -209.5 to -140.2 mL) with 200 mg of ziritaxestat (between-group difference vs placebo, 1.7 mL [95% CI, -47.4 to 50.8 mL]). There was no benefit with ziritaxestat vs placebo for the key secondary outcomes. In ISABELA 1, all-cause mortality was 8.0% with 600 mg of ziritaxestat, 4.6% with 200 mg of ziritaxestat, and 6.3% with placebo; in ISABELA 2, it was 9.3% with 600 mg of ziritaxestat, 8.5% with 200 mg of ziritaxestat, and 4.7% with placebo. Conclusions and Relevance: Ziritaxestat did not improve clinical outcomes compared with placebo in patients with IPF receiving standard of care treatment with pirfenidone or nintedanib or in those not receiving standard of care treatment. Trial Registration: ClinicalTrials.gov Identifiers: NCT03711162 and NCT03733444.


Asunto(s)
Fibrosis Pulmonar Idiopática , Fármacos del Sistema Respiratorio , Anciano , Humanos , Masculino , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Resultado del Tratamiento , Ensayos Clínicos Fase III como Asunto , Estudios Multicéntricos como Asunto , Administración Oral , Persona de Mediana Edad , Femenino , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Fármacos del Sistema Respiratorio/farmacología , Fármacos del Sistema Respiratorio/uso terapéutico
16.
J Med Chem ; 66(2): 1157-1171, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36624931

RESUMEN

PDE10A is an important regulator of striatal signaling that, when inhibited, can normalize dysfunctional activity. Given the involvement of dysfunctional striatal activity with schizophrenia, PDE10A inhibition represents a potentially novel means for its treatment. With the goal of developing PDE10A inhibitors, early optimization of a fragment hit through rational design led to a series of potent pyrimidine PDE10A inhibitors that required further improvements in physicochemical properties, off-target activities, and pharmacokinetics. Herein we describe the discovery of an isomeric pyrimidine series that addresses the liabilities seen with earlier compounds and resulted in the invention of compound 18 (MK-8189), which is currently in Phase 2b clinical development for the treatment of schizophrenia.


Asunto(s)
Inhibidores de Fosfodiesterasa , Esquizofrenia , Humanos , Cristalografía por Rayos X , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/química , Esquizofrenia/tratamiento farmacológico , Relación Estructura-Actividad
17.
Nat Rev Cardiol ; 20(2): 90-108, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36050457

RESUMEN

Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.


Asunto(s)
Insuficiencia Cardíaca , Inhibidores de Fosfodiesterasa , Humanos , Inhibidores de Fosfodiesterasa/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Cardiomegalia/tratamiento farmacológico , Nucleótidos Cíclicos/metabolismo , GMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo
18.
PLoS One ; 17(12): e0278216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454774

RESUMEN

Phosphodiesterase 1B (PDE1B) and PDE10A are dual-specificity PDEs that hydrolyse both cyclic adenosine monophosphate and cyclic guanosine monophosphate, and are highly expressed in the striatum. Several reports have suggested that PDE10A inhibitors may present a promising approach for the treatment of positive symptoms of schizophrenia, whereas PDE1B inhibitors may present a novel mechanism to modulate cognitive deficits. Previously, we have reported a novel dual inhibitor of PDE1B and PDE10A, compound 2 [(3-fluorophenyl)(2-methyl-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)methanone] which has shown inhibitory activity for human recombinant PDE1B and PDE10A in vitro. In the present study, the safety profile of compound 2 has been evaluated in rats in the acute oral toxicity study, as well as; the antipsychotic-like effects in the rat model of schizophrenia. Compound 2 was tolerated up to 1 g/kg when administered at a single oral dose. Additionally, compound 2 has strongly suppressed ketamine-induced hyperlocomotion, which presented a model for the positive symptoms of schizophrenia. It has also shown an ability to attenuate social isolation induced by chronic administration of ketamine and enhanced recognition memory of rats ​in the novel object recognition test. Altogether, our results suggest that compound 2 represents a promising therapy for the treatment of the three symptomatic domains of schizophrenia.


Asunto(s)
Antipsicóticos , Trastornos del Conocimiento , Ketamina , Esquizofrenia , Humanos , Animales , Ratas , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas
19.
Mol Divers ; 26(5): 2877-2892, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932437

RESUMEN

PDE9 enzyme hydrolyzes cGMP, which is involved in the regulation of synaptic plasticity through the NMDA pathway (a well-known excitotoxic target for AD) via activation of calcium/calmodulin-dependent neuronal NO synthases in the postsynaptic neurons. The inhibition of PDE9 leads to elevated cGMP levels, causing enhanced NMDA signaling and thus contributing to an increase in synaptic plasticity and stabilization. Therefore, it could be considered a pertinent target for AD drug discovery. PF-04447943 and BI-409306 targeting PDE9 are undergoing clinical trials (Phase II). The present study encompasses a pharmacophoric approach to identify potent PDE9 inhibitors using various computational methods. Pharmacophores generated from the PDB 6A3N yielded 37,554 virtual hits, which underwent drug likeliness and PAINS filtering to arrive at a few virtual leads. The leads were further subjected to extra precision docking, ADMET predictions, and molecular dynamics. The final hits, ZINC000001305675 and ZINC000000377099, showed superior docking scores of - 10.90 and - 10.30 kcal/mol and satisfactory predicted ADMET scores. The hits were subjected to molecular dynamics (MD) studies, wherein they formed stable complexes with PDE9 protein and had ligand RMSDs within acceptable limits. The processes involved in the combined ligand and structure-based strategies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Calcio/uso terapéutico , Calmodulina/uso terapéutico , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , N-Metilaspartato/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico
20.
Front Immunol ; 13: 883886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935981

RESUMEN

Successful TB treatment is hampered by increasing resistance to the two most effective first-line anti-TB drugs, namely isoniazid and rifampicin, thus innovative therapies focused on host processes, termed host-directed therapies (HDTs), are promising novel approaches for increasing treatment efficacy without inducing drug resistance. We assessed the ability of Sildenafil, a type-5 phosphodiesterase inhibitor, as a repurposed compound, to serve as HDT target, by counteracting the suppressive effects of myeloid-derived suppressor cells (MDSC) obtained from active TB cases on T-cell responsiveness. We confirm that MDSC suppress non-specific T-cell activation. We also show that Sildenafil treatment fails to reverse the MDSC-mediated suppression of T-cell functions measured here, namely activation and proliferation. The impact of Sildenafil treatment on improved immunity, using the concentration tested here, is likely to be minimal, but further identification and development of MDSC-targeting TB host-directed therapies are warranted.


Asunto(s)
Mycobacterium tuberculosis , Células Supresoras de Origen Mieloide , Tuberculosis , Humanos , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Citrato de Sildenafil/farmacología , Citrato de Sildenafil/uso terapéutico , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...