Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689562

RESUMEN

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina , Cucurbita , Simulación del Acoplamiento Molecular , Péptidos , Peptidil-Dipeptidasa A , Semillas , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Cucurbita/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Semillas/química , Humanos , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Línea Celular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
2.
Fitoterapia ; 174: 105862, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354823

RESUMEN

Angiotensin I-converting enzyme (ACE) inhibition is currently a common method for the treatment and control of hypertension. In this study, four new (1-4) and one known (5) cycloartane triterpenoids were isolated from the leaves of Swietenia macrophylla by chromatographic techniques and identified by their spectroscopic data and a comprehensive comparison of published data. The triterpenoids were evaluated for their ACE inhibitory potential using in vitro inhibition assays and in silico methods. The inhibition assay and enzyme kinetics results showed that the most active triterpenoid, compound 4, inhibited ACE in a mixed-type manner with an IC50 value of 57.7 ± 6.07 µM. Computer simulations revealed that compound 4 reduces the catalytic efficiency of ACE by competitive insertion into the active pocket blocking the substrate, and the binding activity occurs mainly through hydrogen bonds and hydrophobic interactions. The study showed that S. macrophylla can be a source of bioactive material and the ACE inhibitory triterpenoid could be a potential antihypertensive agent.


Asunto(s)
Meliaceae , Triterpenos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Triterpenos/farmacología , Meliaceae/química , Angiotensinas
3.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284547

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Asunto(s)
Proteínas de Caenorhabditis elegans , Captopril , Animales , Humanos , Ratones , Captopril/farmacología , Captopril/metabolismo , Caenorhabditis elegans/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Envejecimiento , Longevidad/fisiología , Receptor de Insulina/metabolismo , Mutación/genética , Mamíferos/metabolismo
4.
Microb Biotechnol ; 17(1): e14387, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38263855

RESUMEN

In the current trend where plant-based foods are preferred over animal-based foods, pulses represent an alternative source of protein but also of bioactive peptides (BPs). We investigated the pattern of protein hydrolysis during fermentation of red lentils protein isolate (RLPI) with various lactic acid bacteria and yeast strains. Hanseniaspora uvarum SY1 and Fructilactobacillus sanfranciscensis E10 were the most proteolytic microorganisms. H. uvarum SY1 led to the highest antiradical, angiotensin-converting enzyme-inhibitory and antifungal activities, as found in low molecular weight water soluble extracts (LMW-WSE). The 2039 peptide sequences identified by LMW-WSE were screened using BIOPEP UWM database, and 36 sequences matched with known BPs. Fermentation of RLPI by lactic acid bacteria and yeasts generated 12 peptides undetected in raw RLPI. Besides, H. uvarum SY1 led to the highest abundance (peak areas) of BPs, in particular with antioxidant and ACE-inhibitory activities. The amino acid sequences LVR and LVL, identified in the fermented RLPI, represent novel findings, as they were detected for the first time in substrates subjected to microbial fermentation. KVI, another BP highly characteristic of RLPI-SY1, was previously observed only in dried bonito. 44 novel potential BPs, worthy of further characterization, were correlated with antifungal activity.


Asunto(s)
Lactobacillales , Lens (Planta) , Animales , Lactobacillales/metabolismo , Lens (Planta)/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antifúngicos , Filogenia , Péptidos/farmacología , Levaduras/metabolismo , Fermentación
5.
Arch Biochem Biophys ; 751: 109851, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065251

RESUMEN

In diabetes, increased oxidative stress and impaired trace element metabolism play an important role in the pathogenesis of diabetic nephropathy. The objective of this research was to examine the outcomes of blocking the renin-angiotensin system, using either the angiotensin-converting enzyme inhibitor (ACEI), perindopril, or the angiotensin II type 1 (AT1) receptor blocker, irbesartan, on oxidative stress and trace element levels such as Zn, Mg, Cu, and Fe in the kidneys of diabetic rats that had been induced with streptozotocin. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as a control. The second group of rats developed diabetes after receiving a single intraperitoneal dose of STZ. The third and fourth groups of rats had STZ-induced diabetes and received daily dosages of irbesartan (15 mg/kg b.w/day) and perindopril (6 mg/kg b.w/day) treatment, respectively. Biochemical analysis of the kidneys showed a distinct increase in oxidative stress, indicated by heightened levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD) activities, as well as reduced glutathione (GSH) levels in the kidneys of diabetic rats. In the kidneys of diabetic rats, the mean levels of Fe and Cu were found to be significantly higher than those of the control group. Additionally, the mean levels of Zn and Mg were significantly lower in the diabetic rats compared to the control rats. Both perindopril and irbesartan decreased significantly MDA content and increased SOD activities and GSH levels in the kidneys of rats with diabetes. The Zn and Mg concentrations in the kidneys of diabetic rats treated with perindopril and irbesartan were markedly higher than in untreated STZ-diabetic rats, while the Cu and Fe concentrations were significantly lower. The urinary excretion of rats treated with perindopril and irbesartan showed a pronounced increase in Cu levels, along with a significant reduction in Zn and Mg levels. Although diabetic rats demonstrated degenerative morphological alterations in their kidneys, both therapies also improved diabetes-induced histopathological modifications in the kidneys. Finally, the present results suggest that manipulating the levels of Zn, Mg, Cu, and Fe - either through ACE inhibition or by blocking AT1 receptors - could be advantageous in reducing lipid peroxidation and increasing antioxidant concentration in the kidneys of diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Oligoelementos , Ratas , Animales , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Irbesartán/metabolismo , Irbesartán/farmacología , Irbesartán/uso terapéutico , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Perindopril/metabolismo , Perindopril/farmacología , Perindopril/uso terapéutico , Estreptozocina/metabolismo , Estreptozocina/farmacología , Estreptozocina/uso terapéutico , Ratas Wistar , Diabetes Mellitus Experimental/metabolismo , Oligoelementos/metabolismo , Oligoelementos/farmacología , Oligoelementos/uso terapéutico , Riñón/patología , Nefropatías Diabéticas/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
6.
FEBS Lett ; 598(2): 242-251, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37904282

RESUMEN

Human somatic angiotensin-1-converting enzyme (sACE) is composed of a catalytic N-(nACE) and C-domain (cACE) of similar size with different substrate specificities. It is involved in the regulation of blood pressure by converting angiotensin I to the vasoconstrictor angiotensin II and has been a major focus in the development of therapeutics for hypertension. Bioactive peptides from various sources, including milk, have been identified as natural ACE inhibitors. We report the structural basis for the role of two lacototripeptides, Val-Pro-Pro and Ile-Pro-Pro, in domain-specific inhibition of ACE using X-ray crystallography and kinetic analysis. The lactotripeptides have preference for nACE due to altered polar interactions distal to the catalytic zinc ion. Elucidating the mechanism of binding and domain selectivity of these peptides also provides important insights into the functional roles of ACE.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Peptidil-Dipeptidasa A , Humanos , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Cinética , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Angiotensinas
7.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119649, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38097064

RESUMEN

Sarcopenia is associated with mortality in patients with nonalcoholic steatohepatitis (NASH). Angiotensin II receptor blocker (ARB) has been suggested to prevent sarcopenia, but reports on its effect on NASH-derived skeletal muscle atrophy in conjunction with insulin-like growth factor 1 (IGF-1)-mediated muscle homeostasis are few. Our aim was to examine the combined effect of the ARB losartan and IGF-1 replacement on skeletal muscle atrophy in a methionine-choline deficient (MCD) diet-fed murine steatohepatitis model. The MCD-fed mice developed steatohepatitis and skeletal muscle atrophy, as indicated by the reduction of psoas muscle mass and attenuation of forelimb and hindlimb grip strength. Significantly suppressed steatohepatitis and skeletal muscle atrophy was observed after single treatment with ARB or IGF-1, and these effects were augmented after combination treatment. Treatment with ARB and IGF-1 effectively inhibited ubiquitin proteasome-mediated protein degradation by reducing forkhead box protein O1 (FOXO1) and FOXO3a transcriptional activity in the skeletal muscle. Combined ARB and IGF-1 decreased the intramuscular expression of proinflammatory cytokines (i.e., TNFα, IL6, and IL1ß) and increased the Trolox equivalent antioxidant capacity and antioxidant enzymes (CAT, GPX1, SOD2, and CYTB). This antioxidant effect was based on downregulation of NADPH oxidase (NOX) 2, normalization of mitochondrial biogenesis and dynamics. Moreover, ARB increased the hepatic and plasma IGF-1 levels and improved steatohepatitis, leading to enhanced skeletal muscle protein synthesis mediated by IGF-1/ AKT/ mechanistic target of rapamycin signaling. Collectively, combined ARB and IGF-1 replacement could be a promising new therapeutic target for NASH-derived skeletal muscle wasting.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Sarcopenia , Humanos , Ratones , Animales , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Sarcopenia/tratamiento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Angiotensina II/uso terapéutico , Péptidos Similares a la Insulina , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Antioxidantes/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Homeostasis
8.
J Enzyme Inhib Med Chem ; 39(1): 2293639, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153110

RESUMEN

The Libyan Strawberry, Arbutus pavarii Pampan (ARB), is an endemic Jebel Akhdar plant used for traditional medicine. This study presents the antioxidant and hepatoprotective properties of ARB fruit-extract. ARB phytochemical analysis indicated the presence of 354.54 GAE and 36.2 RE of the phenolics and flavonoids. LC-MS analysis identified 35 compounds belonging to phenolic acids, procyanidins, and flavonoid glycosides. Gallic acid, procyanidin dimer B3, ß-type procyanidin trimer C, and quercetin-3-O-glucoside were the major constituents of the plant extract. ARB administration to paracetamol (PAR)-intoxicated rats reduced serum ALT, AST, bilirubin, hepatic tissue MDA and proinflammatory markers; TNF-α and IL-6 with an increase in tissue GSH level and SOD activity. Histological and immunohistochemical studies revealed that ARB restored the liver histology and significantly reduced the tissue expression of caspase 3, IL-1B, and NF-KB in PAR-induced liver damage. Docking analysis disclosed good binding affinities of some compounds with XO, COX-1, 5-LOX, and PI3K.


Asunto(s)
Antioxidantes , Frutas , Ratas , Animales , Antioxidantes/química , Antagonistas de Receptores de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hígado/metabolismo , Flavonoides/farmacología , Estrés Oxidativo
9.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003732

RESUMEN

Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Capilares/patología , Glicocálix/metabolismo , Lantano , Riñón/patología , Ratones Endogámicos
10.
Se Pu ; 41(11): 995-1001, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-37968818

RESUMEN

The aim of this study is to explore differences in the peptidomics of Saccharomyces pastorianus protein hydrolysates treated with different enzymes. Briefly, differences in the peptide fingerprints and active peptides of neutral protease/papain-hydrolyzed S. pastorianus were analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) combined with PEAKS Online 1.7 analysis software, Peptide Ranker, and the BIOPEP database. Compared to traditional databases, the PEAKS Online uses de novo sequencing for analysis to obtain oligopeptides smaller than pentapeptides. It provides more comprehensive data of the peptide sample. In this study, enzymatic hydrolysates of S. pastorianus protein were prepared under the optimum conditions of neutral protease and papain respectively. In total, 7221 and 7062 polypeptides were identified in the hydrolysates of neutral protease and papain, respectively; among these polypeptides, 980 were common to the two enzymes. The 6241 and 6082 unique peptides found in the hydrolysates of neutral protease and papain, respectively, indicated that the peptide fingerprints of the two hydrolysates are quite different. Peptide Ranker predicted that 3013 (41.73%) and 3095 (43.83%) peptides were potentially bioactive in the hydrolysates of neutral protease and papain, respectively. According to the BIOPEP database, neutral protease and papain contained 295 and 357 active peptides, respectively; these peptides were mainly composed of angiotensin converting enzyme (ACE) inhibitors and dipeptidyl peptidase IV inhibitors and antioxidant peptides. The number of active peptides in the hydrolysate of papain was higher than that in the hydrolysate of neutral protease, but the total ion intensity of active peptides in the former was lower than that in the latter. This study revealed the influence of protease type on the composition of enzymatic hydrolysates from S. pastorianus protein. The above results provide a reference for the development of functional products of S. pastorianus protein peptides and the high-value utilization of yeast resources.


Asunto(s)
Papaína , Hidrolisados de Proteína , Papaína/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Péptidos/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/análisis , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Hidrólisis
11.
Sci Total Environ ; 905: 166880, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709097

RESUMEN

Microplastics could act as vectors for the transport of harmful bacteria, such as pathogens and antibiotic resistance bacteria (ARB), but their combined effects have not been reported yet. Here, ARB Shigella flexneri with sulfonamides resistance and micro-polystyrene (micro-PS) were used to investigate their possible combined effects on the growth and expression of functional genes in Daphnia magna. Results showed that micro-PS colonized with S. flexneri were ingested by D. magna and blocked in their intestine after 24 h exposure. Changes were observed in the life history and morphology of D. magna, as well as the expression of functional genes in all treatments, but with no difference in the survival rate. We also determined the expression of six functional genes involved in energy and metabolism (arginine kinase, AK) and oxidative stress response (thioredoxin reductase, TRxR, catalase, CAT, and glutathione S-transferases, GSTs), as well as in growth, development and reproduction (vitellogenin, Vtg1 and ecdysone receptor, EcR). AK and Vtg1 did not show significant differences, however, EcR was down-regulated and the other three genes (TRxR, CAT, GSTs) were up-regulated in the combined-treated group. Antibiotic resistance gene (ARGs) sul1 was detected when exposed to micro-PS colonized with S. flexneri., suggesting that D. magna could acquire resistance genes through microplastic biofilms. These results indicated that MPs could act as a carrier of ARB to transfer ARGs into D. magna, and affect the life history, morphology, and the expression of related functional genes of D. magna, to adapt to the stress caused by MPs and ARB.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/metabolismo , Plásticos/metabolismo , Antibacterianos/toxicidad , Antibacterianos/metabolismo , Daphnia , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Poliestirenos/metabolismo , Bacterias , Contaminantes Químicos del Agua/análisis
12.
Chemosphere ; 333: 138946, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37196792

RESUMEN

Azo dyes wastewater contains refractory pollutant and nitrogen, which threatens human health and ecological environment when discharged into environment directly. Electron shuttle (ES) is able to participate in the extracellular electron transfer, and thus enhances the removal efficiency of refractory pollutant. However, the continuous dosing of soluble ES would rise operation cost and cause contamination inevitably. In this study, a type of insoluble ES (carbonylated graphene oxide (C-GO)) was developed and melt blended into polyethylene (PE) to prepare novel C-GO-modified suspended carriers. Compared to those of conventional carrier (31.60%), the surface active sites of novel C-GO-modified carrier increased to 52.95%. An integrated hydrolysis/acidification (HA, filled with C-GO-modified carrier) - anoxic/aerobic (AO, filled with clinoptilolite-modified carrier) process was applied to remove azo dye acid red B (ARB) and nitrogen simultaneously. ARB removal efficiency was significantly improved in the reactor filled with C-GO-modified carriers (HA2) compared to the reactor filled with conventional PE carriers (HA1) or activated sludge (HA0). Total nitrogen (TN) removal efficiency of the proposed process increased by 25.95-32.64% compared to the reactor filled with activated sludge. Moreover, the intermediates of ARB were identified by liquid chromatograph-mass spectrometer (LC-MS), and the degradation pathway of ARB through ES was proposed. C-GO-modified carriers induced ARB-removal-related bacterial enrichment (such as Chloroflexi, Lactivibrio, Longilinea, Bacteroidales and Anaerolineaceae). Besides, the relative abundance of denitrifiers and nitrifiers in the AO reactor filled with clinoptilolite-modified carrier was increased by 11.60% compared with activated sludge. Copy numbers of genes related to membrane transport, carbon/energy metabolism and nitrogen metabolism increased significantly on the surface-modified carriers. This study proposed an efficient approach for simultaneous azo dyes and nitrogen removal, showing potential in actual application.


Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Humanos , Aguas del Alcantarillado/química , Hidrólisis , Nitrógeno/metabolismo , Contaminantes Ambientales/metabolismo , Electrones , Antagonistas de Receptores de Angiotensina/metabolismo , Reactores Biológicos/microbiología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Hipoxia , Bacterias/metabolismo , Biopelículas , Compuestos Azo/metabolismo , Concentración de Iones de Hidrógeno , Desnitrificación , Eliminación de Residuos Líquidos
13.
Nutrients ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242257

RESUMEN

Torreya grandis meal has a high protein content and an appropriate amino acid ratio, making it an excellent protein source for producing ACE inhibitory peptides. To promote its application in food, medicine, and other fields, an alkaline protease hydrolysate of Torreya grandis was used in this study to isolate and identify a novel angiotensin-converting enzyme inhibitory peptide, VNDYLNW (VW-7), using ultrafiltration, gel chromatography purification, LC-MS/MS, and in silico prediction. The results show that the IC50 value of VW-7 was 205.98 µM. The Lineweaver-Burk plot showed that VW-7 had a mixed-type inhibitory effect on ACE. Meanwhile, according to the results of molecular docking, VW-7 demonstrated a strong affinity for ACE (binding energy -10 kcal/mol). VW-7 was bound to ACE through multiple binding sites. In addition, VW-7 could remain active during gastrointestinal digestion in vitro. Nitric oxide (NO) generation in human endothelial cells could rise after receiving a pretreatment with VW-7. These results indicated that Torreya grandis meal protein can be developed into products with antihypertensive function, and VW-7 has broad application prospects in the field of antihypertensive.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Humanos , Antihipertensivos/farmacología , Antihipertensivos/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Células Endoteliales/metabolismo , Espectrometría de Masas en Tándem , Péptidos/química , Peptidil-Dipeptidasa A/metabolismo , Hidrolisados de Proteína/metabolismo
14.
Antiviral Res ; 215: 105636, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37207821

RESUMEN

Although the clinical manifestation of COVID-19 is mainly respiratory symptoms, approximately 20% of patients suffer from cardiac complications. COVID-19 patients with cardiovascular disease have higher severity of myocardial injury and poor outcomes. The underlying mechanism of myocardial injury caused by SARS-CoV-2 infection remains unclear. Using a non-transgenic mouse model infected with Beta variant (B.1.351), we found that the viral RNA could be detected in lungs and hearts of infected mice. Pathological analysis showed thinner ventricular wall, disorganized and ruptured myocardial fiber, mild inflammatory infiltration, and mild epicardia or interstitial fibrosis in hearts of infected mice. We also found that SARS-CoV-2 could infect cardiomyocytes and produce infectious progeny viruses in human pluripotent stem cell-derived cardiomyocyte-like cells (hPSC-CMs). SARS-CoV-2 infection caused apoptosis, reduction of mitochondrial integrity and quantity, and cessation of beating in hPSC-CMs. In order to dissect the mechanism of myocardial injury caused by SARS-CoV-2 infection, we employed transcriptome sequencing of hPSC-CMs at different time points after viral infection. Transcriptome analysis showed robust induction of inflammatory cytokines and chemokines, up-regulation of MHC class I molecules, activation of apoptosis signaling and cell cycle arresting. These may cause aggravate inflammation, immune cell infiltration, and cell death. Furthermore, we found that Captopril (hypotensive drugs targeting ACE) treatment could alleviate SARS-CoV-2 induced inflammatory response and apoptosis in cardiomyocytes via inactivating TNF signaling pathways, suggesting Captopril may be beneficial for reducing COVID-19 associated cardiomyopathy. These findings preliminarily explain the molecular mechanism of pathological cardiac injury caused by SARS-CoV-2 infection, providing new perspectives for the discovery of antiviral therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ratones , Animales , Captopril/farmacología , Captopril/metabolismo , Miocitos Cardíacos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Apoptosis
15.
Sci Total Environ ; 881: 163407, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37044331

RESUMEN

The safe reuse of reclaimed water for agricultural irrigation has been considered as an alternative, feasible and sustainable option to address water scarcity. This work aims to validate the capability of the solar water photochemical process based on the synergistic effect between peroxymonosulfate (PMS) and natural solar radiation for actual urban wastewater (UWW) purification at a pilot plant scale using a solar Compound Parabolic Collector photo-reactor. The PMS/Solar process performance was assessed by monitoring simultaneously the inactivation of naturally occurring bacteria (Escherichia coli, Total coliforms, Enterococcus spp. and Pseudomonas spp.) as a potential tertiary treatment to fit the minimum bacterial requirements for UWW purification but also additional challenges have been in deep analysed simultaneously. In this regard, a global analysis including the degradation of three Contaminants of Emerging Concern (CECs) (Diclofenac-DCF, Sulfamethoxazole-SMX and Trimethoprim-TMP), the removal of antibiotic resistant elements, the residual toxicity and the treatment cost has been analysed. Different PMS concentrations (0-1 mM) were tested and an enhancement in the process performance was obtained with increasing oxidant load, obtaining the best results with 1 mM of PMS, at which detection limit (DL) of 2 CFU/mL was reached for all microbial targets after 15 min (1.1 kJ/L of accumulated solar UV-A radiation (QUV)) and 80 % of CECs removal was reached after 27 min (2.0 kJ/L of QUV) of solar treatment time. Inactivation of naturally occurring antibiotic resistant bacteria (ARB) and removal of 16S rRNA and selected antibiotic resistance genes (ARGs) (i.e., intI1, sul1, qnrS, blaTEM, blaCTX-M32, tetM) were also investigated. ARB was successfully inactivated to values below the DL, but the process was not able to completely remove ARGs. A total reduction of intI1 (30 %), 16S rRNA (19 %), sul1 (14 %), blaCTX-M32 (12 %), qnrS (10 %), blaTEM (8 %), and tetM (7 %), was obtained after 120 min (11.5 kJ/L of QUV). An absence of an eco and phytotoxic effect of treated samples was observed towards Aliivibrio fischeri and three seeds, respectively. Finally, an estimated treatment cost of 0.96 €/m3 for the simultaneous UWW disinfection and decontamination demonstrates the promising capability of this solar treatment for UWW reclamation and reuse in agriculture, especially in areas with a high solar radiation incidence.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Purificación del Agua , ARN Ribosómico 16S/genética , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Peróxido de Hidrógeno/química , Aguas Residuales , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Bacterias/genética , Sulfametoxazol/metabolismo , Purificación del Agua/métodos , Antibacterianos/farmacología
16.
Indian J Dermatol Venereol Leprol ; 89(6): 842-849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37067128

RESUMEN

Objective To investigate the protective effects of an angiotensin-converting enzyme inhibitor after inducing oxidative stress on keloid fibroblasts. Methods Primary keloid fibroblasts were isolated and cultured by enzyme digestion combined with the tissue adhesion method in vitro, and the third to fifth generations of cells were selected for the experiment. For 24 hours, keloid fibroblasts were treated with different concentrations of hydrogen peroxide. Different concentrations of angiotensin-converting enzyme inhibitor were added to the keloid fibroblast culture medium, and then the cells were treated with hydrogen peroxide for 24 hours. Results With the increase of hydrogen peroxide concentration, the growth of keloid fibroblasts was inhibited and the levels of malondialdehyde, superoxide dismutase, and reactive oxygen species increased gradually, accompanied by an increase in the expression of nicotinamide adenine dinucleotide phosphate oxidase and collagen I mRNA. The expression of nicotinamide adenine dinucleotide phosphate oxidase-mRNA in keloid fibroblasts and the formation of reactive oxygen species in keloid fibroblasts were induced by different concentrations of angiotensin II, and the most significant effect was at 10-5 mmol/mL. The effects of diphenyleneiodonium chloride (NOX inhibitor), N-acetylcysteine (reactive oxygen species inhibitor) and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) RNA treatment on angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase and collagen I increased significantly. Hydrogen peroxide and angiotensin II alone or combined can induce NADPH oxidase and reactive oxygen species expression in keloid fibroblasts. When the angiotensin-converting enzyme inhibitor was added, the expression of NADPH oxidase and reactive oxygen species in keloid induced by hydrogen peroxide and angiotensin II could be inhibited. Conclusion Oxidative stress can lead to increased expression of reactive oxygen species, NADPH oxidase and collagen I in keloid fibroblasts, suggesting oxidative stress mediates the migration of human keloid fibroblasts and extracellular matrix synthesis.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Queloide , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Peróxido de Hidrógeno , NADP/metabolismo , NADP/farmacología , Estrés Oxidativo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Colágeno , ARN Mensajero/metabolismo , Células Cultivadas
17.
Tissue Cell ; 82: 102056, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36921493

RESUMEN

The aim of this study was to investigate the effects of arbutin (ARB) administration on oxidative stress, inflammation, endoplasmic reticulum (ER) stress and apoptosis in an experimental testicular torsion/detorsion (T/D)-induced testicular injury model for the first time. A total of 24 male Sprague-Dawley rats were divided into four groups with six rats in each group: sham control, T/D, T/D+ARB (50 mg/kg) and T/D+ARB (100 mg/kg). Torsion and detorsion times were applied as 4 h and 2 h, respectively. The levels of lipid peroxidation [malondialdehyde (MDA)] and oxidative stress [total oxidant status (TOS) and total antioxidant status (TAS)] in testicular tissues were determined using colorimetric methods. The levels of DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)], antioxidant system [superoxide dismutase (SOD) and catalase (CAT)], pro-inflammatory cytokines [high mobility group box 1 (HMGB1), nuclear factor kappa B protein 65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and myeloperoxidase (MPO)], ER stress [78-kDa glucose-regulated protein (GRP78), activating transcription factor 6 (ATF6) and CCAAT-enhancer-binding protein homologous protein (CHOP)] and apoptosis (caspase-3) markers in testicular tissues were determined using commercial enzyme-linked immunosorbent assay (ELISA) kits. Johnsen's testicle scoring system was used for histological evaluation. In the T/D group, it was determined that statistically significant increasing in the levels of oxidative stress, inflammation, ER stress and apoptosis compared with sham control group (p < 0.05). ARB administrations statistically significantly restored testicular I/R damage in a dose dependent manner (p < 0.05). In addition, it was determined that the data of histological examinations supported the biochemical results. Our findings support the hypothesis that ARB may be used as a protective agent against T/D-induced testicular damage.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Ratas , Masculino , Animales , Humanos , Testículo/metabolismo , Antioxidantes/metabolismo , Ratas Sprague-Dawley , Arbutina/metabolismo , Arbutina/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Torsión del Cordón Espermático/tratamiento farmacológico , Torsión del Cordón Espermático/metabolismo , Torsión del Cordón Espermático/patología , Daño por Reperfusión/metabolismo , Estrés Oxidativo , Inflamación/patología , Isquemia , Malondialdehído/metabolismo
18.
Nutrients ; 15(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36678328

RESUMEN

Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.


Asunto(s)
Antihipertensivos , Hipertensión , Animales , Antihipertensivos/farmacología , Antihipertensivos/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Pollos/metabolismo , Mataderos , Hidrolisados de Proteína/farmacología , Péptidos/farmacología , Hipertensión/tratamiento farmacológico
19.
Brain Behav Immun ; 108: 255-268, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535607

RESUMEN

The metabolic syndrome has been associated to chronic peripheral inflammation and related with neuroinflammation and neurodegeneration, including Parkinson's disease. However, the responsible mechanisms are unclear. Previous studies have involved the brain renin-angiotensin system in progression of Parkinson's disease and the angiotensin receptor type 1 (AT1) has been recently revealed as a major marker of dopaminergic vulnerability in humans. Dysregulation of tissue renin-angiotensin system is a key common mechanism for all major components of metabolic syndrome. Circulating AT1 agonistic autoantibodies have been observed in several inflammation-related peripheral processes, and activation of AT1 receptors of endothelial cells, dopaminergic neurons and glial cells have been observed to disrupt endothelial blood -brain barrier and induce neurodegeneration, respectively. Using a rat model, we observed that metabolic syndrome induces overactivity of nigral pro-inflammatory renin-angiotensin system axis, leading to increase in oxidative stress and neuroinflammation and enhancing dopaminergic neurodegeneration, which was inhibited by treatment with AT1 receptor blockers (ARBs). In rats, metabolic syndrome induced the increase in circulating levels of LIGHT and other major pro-inflammatory cytokines, and 27-hydroxycholesterol. Furthermore, the rats showed a significant increase in serum levels of proinflammatory AT1 and angiotensin converting enzyme 2 (ACE2) autoantibodies, which correlated with levels of several metabolic syndrome parameters. We also found AT1 and ACE2 autoantibodies in the CSF of these rats. Effects of circulating autoantibodies were confirmed by chronic infusion of AT1 autoantibodies, which induced blood-brain barrier disruption, an increase in the pro-inflammatory renin-angiotensin system activity in the substantia nigra and a significant enhancement in dopaminergic neuron death in two different rat models of Parkinson's disease. Observations in the rat models, were analyzed in a cohort of parkinsonian and non-parkinsonian patients with or without metabolic syndrome. Non-parkinsonian patients with metabolic syndrome showed significantly higher levels of AT1 autoantibodies than non-parkinsonian patients without metabolic syndrome. However, there was no significant difference between parkinsonian patients with metabolic syndrome or without metabolic syndrome, which showed higher levels of AT1 autoantibodies than non-parkinsonian controls. This is consistent with our recent studies, showing significant increase of AT1 and ACE2 autoantibodies in parkinsonian patients, which was related to dopaminergic degeneration and neuroinflammation. Altogether may lead to a vicious circle enhancing the progression of the disease that may be inhibited by strategies against production of these autoantibodies or AT1 receptor blockers (ARBs).


Asunto(s)
Síndrome Metabólico , Enfermedad de Parkinson , Animales , Humanos , Ratas , Angiotensina II/metabolismo , Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Autoanticuerpos/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Síndrome Metabólico/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo
20.
Perit Dial Int ; 43(2): 159-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35946050

RESUMEN

BACKGROUND: Peritoneal dialysis (PD) is limited by reduced efficacy over time. We previously showed that a Janus kinase 1/2 inhibitor (JAK1/2i) reduced inflammation, hypervascularity and fibrosis induced by 4.25% dextrose dialysate (4.25%D) intraperitoneally (IP) infused for 10 days in rats with normal kidney function. JAK/STAT signalling mediates inflammatory pathways, including angiotensin signalling. We now tested the effect of long-term JAK1/2i and/or an angiotensin receptor blocker (ARB) on peritoneal membrane (PM) in polycystic kidneys (PCK) rats infused with 4.25%D. METHODS: Except for controls, all PCK rats had a tunnelled PD catheter: (1) no infusions; (2) 4.25%D; (3) 4.25%D + JAK1/2i (5 mg/kg); (4) 4.25%D +losartan (5 mg/kg); and (5) 4.25%D + losartan +JAK1/2i (5 mg/kg each) IP BID × 16 weeks (N = 5/group). PM VEGFR2 staining areas and submesothelial compact zone (SMCZ) width were morphometrically measured. Peritoneal equilibration testing measured peritoneal ultrafiltration (UF) by calculating dialysate glucose at time 0 and 90 min (D/D0 glucose). RESULTS: 4.25%D caused hypervascularity, SMCZ widening, fibrosis and UF functional decline in PCK rats. Angiogenesis was significantly attenuated by JAK1/2i ± ARB but not by ARB monotherapy. Both treatments reduced SMCZ area. UF was preserved consistently by dual therapy (p < 0.05) but with inconsistent responses by monotherapies. CONCLUSION: Long-term JAK1/2i ± ARB reduced angiogenesis and fibrosis, and the combination consistently maintained UF. In clinical practice, angiotensin inhibition has been advocated to maintain residual kidney function. Our study suggests that adding JAK1/2i to angiotensin inhibition may preserve PM structure and UF.


Asunto(s)
Diálisis Peritoneal , Insuficiencia Renal Crónica , Ratas , Animales , Soluciones para Diálisis/metabolismo , Diálisis Peritoneal/efectos adversos , Losartán/metabolismo , Losartán/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Peritoneo/metabolismo , Fibrosis , Glucosa/metabolismo , Angiotensinas/metabolismo , Angiotensinas/farmacología , Insuficiencia Renal Crónica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...