Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 15(731): eabm6046, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471943

RESUMEN

Chronic pain is a major health issue, and the search for new analgesics has become increasingly important because of the addictive properties and unwanted side effects of opioids. To explore potentially new drug targets, we investigated mutations in the NTRK1 gene found in individuals with congenital insensitivity to pain with anhidrosis (CIPA). NTRK1 encodes tropomyosin receptor kinase A (TrkA), the receptor for nerve growth factor (NGF) and that contributes to nociception. Molecular modeling and biochemical analysis identified mutations that decreased the interaction between TrkA and one of its substrates and signaling effectors, phospholipase Cγ (PLCγ). We developed a cell-permeable phosphopeptide derived from TrkA (TAT-pQYP) that bound the Src homology domain 2 (SH2) of PLCγ. In HEK-293T cells, TAT-pQYP inhibited the binding of heterologously expressed TrkA to PLCγ and decreased NGF-induced, TrkA-mediated PLCγ activation and signaling. In mice, intraplantar administration of TAT-pQYP decreased mechanical sensitivity in an inflammatory pain model, suggesting that targeting this interaction may be analgesic. The findings demonstrate a strategy to identify new targets for pain relief by analyzing the signaling pathways that are perturbed in CIPA.


Asunto(s)
Hipohidrosis , Mutación , Insensibilidad Congénita al Dolor , Fosfolipasa C gamma , Receptor trkA , Analgésicos/farmacología , Animales , Canalopatías/genética , Canalopatías/metabolismo , Células HEK293 , Humanos , Hipohidrosis/genética , Hipohidrosis/metabolismo , Ratones , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/farmacología , Dolor/genética , Dolor/metabolismo , Insensibilidad Congénita al Dolor/genética , Insensibilidad Congénita al Dolor/metabolismo , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo
2.
Cornea ; 40(12): 1610-1613, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34749381

RESUMEN

PURPOSE: To report the findings of a comprehensive eye examination from an individual with congenital insensitivity to pain because of loss-of-function mutations in the SCN9A gene. METHODS: Ophthalmologic examination and confocal microscopy were performed on a patient with congenital insensitivity to pain. RESULTS: A 39-year-old man with compound heterozygous mutations in the SCN9A gene underwent examination. Cochet-Bonnet esthesiometry readings averaged 38 mm (SD 8 mm) in the right eye and 55 mm (SD 7 mm) in the left eye. Other corneal findings included mild conjunctival lissamine green staining, nonvisually significant corneal scars, mild anterior basement membrane dystrophy, and a tear breakup time of 3 seconds in each eye. In vivo confocal microscopy of the corneal subbasal nerve plexus revealed relatively normal corneal nerve morphology, but a reduction in corneal nerve fiber density. CONCLUSIONS: An individual with loss-of-function mutations in SCN9A had reduced corneal nerve fiber density but normal corneal mechanoreception.


Asunto(s)
Enfermedades de la Córnea/diagnóstico , Microscopía Confocal/métodos , Fibras Nerviosas/patología , Insensibilidad Congénita al Dolor/diagnóstico , Sensación/fisiología , Adulto , Enfermedades de la Córnea/etiología , Enfermedades de la Córnea/fisiopatología , ADN/genética , Análisis Mutacional de ADN , Humanos , Masculino , Mecanorreceptores/fisiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Insensibilidad Congénita al Dolor/complicaciones , Insensibilidad Congénita al Dolor/metabolismo , Lágrimas/metabolismo
3.
BMC Med Genomics ; 13(1): 113, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807182

RESUMEN

BACKGROUND: Congenital insensitivity to pain with anhidrosis (CIPA) is an extremely rare autosomal recessive disorder characterized by insensitivity to pain, inability to sweat and intellectual disability. CIPA is caused by mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) that encodes the high-affinity receptor of nerve growth factor (NGF). CASE PRESENTATION: Here, we present clinical and molecular findings in a 9-year-old girl with CIPA. The high-altitude indigenous Ecuadorian patient presented several health problems such as anhidrosis, bone fractures, self-mutilation, osteochondroma, intellectual disability and Riga-Fede disease. After the mutational analysis of NTRK1, the patient showed a clearly autosomal recessive inheritance pattern with the pathogenic mutation rs763758904 (Arg602*) and the second missense mutation rs80356677 (Asp674Tyr). Additionally, the genomic analysis showed 69 pathogenic and/or likely pathogenic variants in 46 genes possibly related to phenotypic heterogeneity, including the rs324420 variant in the FAAH gene. The gene ontology enrichment analysis showed 28 mutated genes involved in several biological processes. As a novel contribution, the protein-protein interaction network analysis showed that NTRK1, SPTBN2 and GRM6 interact with several proteins of the pain matrix involved in the response to stimulus and nervous system development. CONCLUSIONS: This is the first study that associates clinical, genomics and networking analyses in a Native American patient with consanguinity background in order to better understand CIPA pathogenesis.


Asunto(s)
Altitud , Marcadores Genéticos , Hipohidrosis/patología , Mutación , Insensibilidad Congénita al Dolor/patología , Dolor/patología , Niño , Análisis Mutacional de ADN , Femenino , Genómica , Humanos , Hipohidrosis/genética , Hipohidrosis/metabolismo , Dolor/genética , Dolor/metabolismo , Insensibilidad Congénita al Dolor/genética , Insensibilidad Congénita al Dolor/metabolismo , Mapas de Interacción de Proteínas
4.
Neuron ; 101(5): 905-919.e8, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30795902

RESUMEN

Loss-of-function mutations in NaV1.7 cause congenital insensitivity to pain (CIP); this voltage-gated sodium channel is therefore a key target for analgesic drug development. Utilizing a multi-modal approach, we investigated how NaV1.7 mutations lead to human pain insensitivity. Skin biopsy and microneurography revealed an absence of C-fiber nociceptors in CIP patients, reflected in a reduced cortical response to capsaicin on fMRI. Epitope tagging of endogenous NaV1.7 revealed the channel to be localized at the soma membrane, axon, axon terminals, and the nodes of Ranvier of induced pluripotent stem cell (iPSC) nociceptors. CIP patient-derived iPSC nociceptors exhibited an inability to properly respond to depolarizing stimuli, demonstrating that NaV1.7 is a key regulator of excitability. Using this iPSC nociceptor platform, we found that some NaV1.7 blockers undergoing clinical trials lack specificity. CIP, therefore, arises due to a profound loss of functional nociceptors, which is more pronounced than that reported in rodent models, or likely achievable following acute pharmacological blockade. VIDEO ABSTRACT.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/genética , Nocicepción , Nociceptores/fisiología , Insensibilidad Congénita al Dolor/metabolismo , Potenciales de Acción , Adulto , Axones/metabolismo , Línea Celular , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Mutación , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Nociceptores/metabolismo , Nociceptores/patología , Insensibilidad Congénita al Dolor/genética , Insensibilidad Congénita al Dolor/fisiopatología , Nódulos de Ranvier/metabolismo , Bloqueadores de los Canales de Sodio/farmacología
5.
J Neurosci ; 38(47): 10180-10201, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30301756

RESUMEN

Strong human genetic evidence points to an essential contribution of the voltage-gated sodium channel Nav1.7 to pain sensation: loss of Nav1.7 function leads to congenital insensitivity to pain, whereas gain-of-function mutations in the SCN9A gene that encodes Nav1.7 cause painful neuropathies, such as inherited erythromelalgia, a syndrome characterized by episodic spontaneous pain. Selective Nav1.7 channel blockers thus hold promise as potential painkillers with improved safety and reduced unwanted side effects compared with existing therapeutics. To determine the maximum effect of a theoretically perfectly selective Nav1.7 inhibitor, we generated a tamoxifen-inducible KO mouse model enabling genetic deletion of Nav1.7 from adult mice. Electrophysiological recordings of sensory neurons from these mice following tamoxifen injection demonstrated the loss of Nav1.7 channel current and the resulting decrease in neuronal excitability of small-diameter neurons. We found that behavioral responses to most, but surprisingly not all, modalities of noxious stimulus are abolished following adult deletion of Nav1.7, pointing toward indications where Nav1.7 blockade should be efficacious. Furthermore, we demonstrate that isoform-selective acylsulfonamide Nav1.7 inhibitors show robust analgesic and antinociceptive activity acutely after a single dose in mouse pain models shown to be Nav1.7-dependent. All experiments were done with both male and female mice. Collectively, these data expand the depth of knowledge surrounding Nav1.7 biology as it relates to pain, and provide preclinical proof of efficacy that lays a clear path toward translation for the therapeutic use of Nav1.7-selective inhibitors in humans.SIGNIFICANCE STATEMENT Loss-of-function mutations in the sodium channel Nav1.7 cause congenital insensitivity to pain in humans, making Nav1.7 a top target for novel pain drugs. Targeting Nav1.7 selectively has been challenging, however, in part due to uncertainties in which rodent pain models are dependent on Nav1.7. We have developed and characterized an adult-onset Nav1.7 KO mouse model that allows us to determine the expected effects of a theoretically perfect Nav1.7 blocker. Importantly, many commonly used pain models, such as mechanical allodynia after nerve injury, appear to not be dependent on Nav1.7 in the adult. By defining which models are Nav1.7 dependent, we demonstrate that selective Nav1.7 inhibitors can approximate the effects of genetic loss of function, which previously has not been directly established.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/deficiencia , Insensibilidad Congénita al Dolor/metabolismo , Percepción del Dolor/fisiología , Dolor/metabolismo , Bloqueadores de los Canales de Sodio/uso terapéutico , Animales , Células Cultivadas , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/tratamiento farmacológico , Dolor/genética , Insensibilidad Congénita al Dolor/tratamiento farmacológico , Insensibilidad Congénita al Dolor/genética , Percepción del Dolor/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología
6.
J Clin Invest ; 127(7): 2805-2814, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28530638

RESUMEN

Voltage-gated sodium channel (NaV) mutations cause genetic pain disorders that range from severe paroxysmal pain to a congenital inability to sense pain. Previous studies on NaV1.7 and NaV1.8 established clear relationships between perturbations in channel function and divergent clinical phenotypes. By contrast, studies of NaV1.9 mutations have not revealed a clear relationship of channel dysfunction with the associated and contrasting clinical phenotypes. Here, we have elucidated the functional consequences of a NaV1.9 mutation (L1302F) that is associated with insensitivity to pain. We investigated the effects of L1302F and a previously reported mutation (L811P) on neuronal excitability. In transfected heterologous cells, the L1302F mutation caused a large hyperpolarizing shift in the voltage-dependence of activation, leading to substantially enhanced overlap between activation and steady-state inactivation relationships. In transfected small rat dorsal root ganglion neurons, expression of L1302F and L811P evoked large depolarizations of the resting membrane potential and impaired action potential generation. Therefore, our findings implicate a cellular loss of function as the basis for impaired pain sensation. We further demonstrated that a U-shaped relationship between the resting potential and the neuronal action potential threshold explains why NaV1.9 mutations that evoke small degrees of membrane depolarization cause hyperexcitability and familial episodic pain disorder or painful neuropathy, while mutations evoking larger membrane depolarizations cause hypoexcitability and insensitivity to pain.


Asunto(s)
Potenciales de Acción/genética , Activación del Canal Iónico/genética , Mutación Missense , Neuronas/metabolismo , Insensibilidad Congénita al Dolor , Adulto , Sustitución de Aminoácidos , Femenino , Humanos , Canal de Sodio Activado por Voltaje NAV1.9/genética , Canal de Sodio Activado por Voltaje NAV1.9/metabolismo , Insensibilidad Congénita al Dolor/genética , Insensibilidad Congénita al Dolor/metabolismo , Insensibilidad Congénita al Dolor/fisiopatología
8.
Nat Commun ; 6: 8967, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26634308

RESUMEN

Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids.


Asunto(s)
Encefalinas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Adulto , Animales , Encefalinas/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.7/genética , Insensibilidad Congénita al Dolor/genética , Insensibilidad Congénita al Dolor/fisiopatología , Sensación , Células Receptoras Sensoriales/metabolismo
9.
J Biol Chem ; 290(38): 22939-44, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26283785

RESUMEN

Congenital insensitivity to pain (CIP) or congenital analgesia is a rare monogenic hereditary condition. This disorder is characterized by the inability to perceive any form of pain. Nonsense mutations in Nav.1.7, the main pain signaling voltage-gated sodium channel, lead to its truncations and, consequently, to the inactivation of the channel functionality. However, a non-truncating homozygously inherited missense mutation in a Bedouin family with CIP (Nav1.7-R907Q) has also been reported. Based on our currently acquired in-depth knowledge of matrix metalloproteinase (MMP) cleavage preferences, we developed the specialized software that predicts the presence of the MMP cleavage sites in the peptide sequences. According to our in silico predictions, the peptide sequence of the exposed extracellular unstructured region linking the S5-S6 transmembrane segments in the DII domain of the human Nav1.7 sodium channel is highly sensitive to MMP-9 proteolysis. Intriguingly, the CIP R907Q mutation overlaps with the predicted MMP-9 cleavage site sequence. Using MMP-9 proteolysis of the wild-type, CIP, and control peptides followed by mass spectrometry of the digests, we demonstrated that the mutant sequence is severalfold more sensitive to MMP-9 proteolysis relative to the wild type. Because of the substantial level of sequence homology among sodium channels, our data also implicate MMP proteolysis in regulating the cell surface levels of the Nav1.7, Nav1.6, and Nav1.8 channels, but not Nav1.9. It is likely that the aberrantly accelerated MMP-9 proteolysis during neurogenesis is a biochemical rational for the functional inactivation in Nav1.7 and that the enhanced cleavage of the Nav1.7-R907Q mutant is a cause of CIP in the Bedouin family.


Asunto(s)
Metaloproteinasa 9 de la Matriz/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Dolor/metabolismo , Proteolisis , Transducción de Señal , Canales de Sodio Activados por Voltaje/metabolismo , Sustitución de Aminoácidos , Humanos , Metaloproteinasa 9 de la Matriz/química , Metaloproteinasa 9 de la Matriz/genética , Mutación Missense , Dolor/genética , Insensibilidad Congénita al Dolor/genética , Estructura Secundaria de Proteína , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
10.
J Neurosci ; 35(20): 7674-81, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995458

RESUMEN

The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.


Asunto(s)
Eritromelalgia/genética , Activación del Canal Iónico , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Insensibilidad Congénita al Dolor/genética , Dolor/genética , Recto/anomalías , Niño , Eritromelalgia/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Linaje , Fenotipo , Estructura Terciaria de Proteína , Recto/metabolismo
11.
Biochem Biophys Res Commun ; 391(1): 824-9, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19945432

RESUMEN

Nerve Growth Factor (NGF) signalling is mediated by the TrkA and p75NTR receptors. Besides its neurotrophic and survival activities, NGF displays a potent pro-nociceptive activity. Recently, a missense point mutation was found in the NGFB gene (C661T, leading to the aminoacid substitution R100W) of individuals affected by a form of hereditary loss of pain perception (hereditary sensory and autonomic neuropathy type V, HSAN V). In order to gain insights into the functional consequences of the HSAN V NGF mutation, two sets of hNGFR100 mutants were expressed in Escherichia coli and purified, as mature NGF or proNGF, for in vitro receptor binding studies. Here, we show by Surface Plasmon Resonance analysis that the R100 mutation selectively disrupts binding of hNGF to p75NTR receptor, to an extent which depends on the substituting residue at position 100, while the affinity of hNGFR100 mutants for TrkA receptor is not affected. As for unprocessed hproNGF, the binding of the R100 variants to p75NTR receptor shows only a limited impairment, showing that the impact of the R100 mutation on p75NTR receptor binding is greater in the context of mature, processed hNGF. These results provide a basis for elucidating the mechanisms underlying the clinical manifestations of HSAN V patients, and provide a basis for the development of "painless" hNGF molecules with therapeutic potential.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Receptor trkA/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Humanos , Mutación , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/genética , Insensibilidad Congénita al Dolor/genética , Conformación Proteica , Resonancia por Plasmón de Superficie
12.
Clin Auton Res ; 19(4): 193-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19593630

RESUMEN

Small-diameter afferents do not just subserve pain and temperature sensibilities, important for protection of the body though they are: there is a system of low-threshold unmyelinated afferents that respond to light stroking (C-tactile afferents) and they are believed to subserve the affective components of touch. Patients with large-fibre sensory neuropathies exhibit skin sympathetic responses to stroking, and report the stimuli as feeling pleasant. Moreover, the posterior insula is activated. Patients with small-diameter sensory neuropathies, specifically those with congenital insensitivity to pain, suffer from cumulative injuries that can lead to joint degeneration. There is evidence that the nociceptive (and sympathetic) axons die because nerve growth factor is not being produced by the target tissues; patients with congenital insensitivity to pain have mutations in the NTRK1 gene, the gene responsible for producing the TrkA receptor, but there is also evidence for mutations in the SCN9A gene, which codes for a specific subunit of the voltage-gated sodium channel. Specific mutations, leading to clusters of cases of congenital insensitivity to pain, have been found in several geographical locations, with several genetic mutations having been documented. Interestingly, even patients with congenital insensitivity to pain, despite having never experienced pain, can still empathise with the pain in others-we do not need to feel pain in order to empathise, but we do need to feel pain in order to ensure that our body looks after itself.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Insensibilidad Congénita al Dolor/genética , Dolor/fisiopatología , Enfermedades del Sistema Nervioso Periférico/genética , Tacto/fisiología , Vías Aferentes/fisiología , Vías Eferentes/fisiología , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Neuropatías Hereditarias Sensoriales y Autónomas/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.7 , Factor de Crecimiento Nervioso/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Canales de Sodio/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
13.
Neuroscience ; 162(4): 1322-32, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19482060

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1), vanilloid 2 (TRPV2) and melastatin 8 (TRPM8) are thermosensitive cation channels expressed on primary sensory neurons. In contrast to TRPV1, which is present on nociceptive primary afferents and keratinocytes in human skin, less is known about the distribution of TRPV2 and TRPM8 in this tissue. Immunohistochemistry of human forearm skin identified TRPV2 and TRPM8 immunoreactive nerve fibers in epidermis-papillary dermis and around blood vessels and hair follicles in dermis, although these nerve fibers were less abundant than TRPV1 immunoreactive nerve fibers throughout the skin. The TRPV2 and TRPM8 immunoreactive nerve fibers also showed immunoreactivity for calcitonin gene-related peptide (CGRP) and to a lesser extent substance P (SP). Neither of the TRP ion channels co-localized with neurofilament 200 kDa (NF200), vasoactive intestinal peptide (VIP) or tyrosine hydroxylase (TH). Nerve fibers immunoreactive for TRPV1, TRPV2, TRPM8, CGRP and SP were absent or substantially reduced in number in individuals with Norrbottnian congenital insensitivity to pain, an autosomal disease selectively affecting the development of C-fiber and Adelta-fiber primary afferents. Quantitative real time PCR detected mRNA transcripts encoding TRPV1 and TRPV2, but not TRPM8, in skin from healthy volunteers, suggesting that these ion channels are also expressed extraneuronally. In conclusion, nerve fibers in human skin express TRPV1, TRPV2 and TRPM8 that co-localize with the sensory neuropeptides CGRP and SP, but not with NF200, VIP or TH. A dramatic loss of such nerve fibers was seen in skin from individuals with Norrbottnian congenital insensitivity to pain, further suggesting that these ion channels are expressed primarily on nociceptive primary sensory neurons in human skin.


Asunto(s)
Fibras Nerviosas/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Piel/inervación , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insensibilidad Congénita al Dolor/genética , Adulto Joven
14.
J Clin Invest ; 117(12): 3603-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18060017

RESUMEN

The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in loss of Na(v)1.7 function and a condition known as channelopathy-associated insensitivity to pain, a rare disorder in which affected individuals are unable to feel physical pain. This review highlights these recent developments and discusses the critical role of Na(v)1.7 in pain sensation in humans.


Asunto(s)
Potenciales de Acción/genética , Mutación Missense , Insensibilidad Congénita al Dolor/genética , Dolor/genética , Canales de Sodio/genética , Humanos , Canal de Sodio Activado por Voltaje NAV1.7 , Neuronas/metabolismo , Neuronas/patología , Dolor/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Insensibilidad Congénita al Dolor/patología , Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Canales de Sodio/metabolismo
18.
Braz J Med Biol Res ; 17(3-4): 271-9, 1984.
Artículo en Inglés | MEDLINE | ID: mdl-6085021

RESUMEN

The congenital pain insensitivity syndrome is accompanied by: a) the presence of a yellow-brown pigment in the basal layer of the epidermis with the histochemical properties of melanin, b) decrease of urinary and blood concentration of dopamine and norepinephrine, c) excretion of melanin and of an abnormal as yet unidentified phenolic metabolite, d) increase in urinary p-hydroxyphenyllactic acid, p-hydroxyphenylacetic acid, indole acetic acid, and e) a high homovanillic acid/vanillylmandelic acid (HVA/VMA) ratio. In this report we show that analgesic patients differ from controls by: a) an increase in norepinephrine excretion after L-tyrosine administration, and b) an increase in norepinephrine, dopamine, DOPA + DOPAC excretion after L-DOPA administration. The administration of L-DOPA eliminates the difference in HVA/VMA ratio between patients and controls. Serum and platelet monoamine oxidase, dopamine beta-hydroxylase and catechol-O-methyltransferase are normal and urinary excretion of biopterins, morphine-like compounds and endorphins is also within the normal range. The comparison of catecholamine metabolism in patients with phenylketonuria, Lesh-Nyham syndrome, congenital sensory neuropathy with anhydrosis and familial dysautonomia on the basis of our data and those in the literature suggests that patients with congenital pain insensitivity display abnormal catecholamine metabolism.


Asunto(s)
Dopamina/metabolismo , Epinefrina/metabolismo , Norepinefrina/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Disautonomía Familiar/metabolismo , Neuropatías Hereditarias Sensoriales y Autónomas/metabolismo , Humanos , Síndrome de Lesch-Nyhan/metabolismo , Levodopa/administración & dosificación , Fenilcetonurias/metabolismo , Piel/patología , Tirosina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA