Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Dermatolog Treat ; 35(1): 2309305, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38297481

RESUMEN

Background: Psoriatic patients tend to develop metabolic syndrome (MS). MS accelerates psoriasis, but the exact molecular mechanisms are poorly understood.Objectives: We aim to investigate the impact of leptin on keratinocyte insulin sensitivity and explore its underlying molecular mechanism, which might play a role in the pathogenesis of this disease.Methods: ELISA and immunohistochemistry were applied respectively to detect the level of leptin in serum and in lesion of psoriatic patients with and without MS. The HaCaT cell line was cultured and western-blot assay was performed to assess the change of insulin sensibility. q-PCR and western-blot assay were applied to detect the SOCS3 expressions. Knockdown of SOCS3 were generated in HaCaT cell line by siRNA. Leptin and insulin were treated for 6 days and K10 expression was evaluated by western-blot assay.Results: Patients with MS had higher level of leptin in serum and lesions than their counterparts without MS. Serum levels of leptin was negatively correlated to PASI decline index in psoriatic patients. Long-term treatment of leptin induced insulin resistance in HaCaT cell line, as indicated by elevated expression of p-IRS-1 (ser636) and lower p-PKB (ser473). Leptin treatment up-regulated the mRNA and protein expression of SOCS3. Knockdown of SOCS3 blocked the effect of leptin-induced insulin resistance. Leptin treatment attenuated insulin-elicited K10 expression.Conclusions: Leptin induces insulin resistance by upregulating SOCS3 and give rise to differentiation disorder of keratinocyte. Insulin resistance may serve as a target for anti-psoriatic therapies.


Asunto(s)
Resistencia a la Insulina , Insulinas , Síndrome Metabólico , Psoriasis , Humanos , Leptina , Psoriasis/inducido químicamente , Queratinocitos , Insulinas/efectos adversos , Insulinas/metabolismo
3.
Medicine (Baltimore) ; 102(43): e35488, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37904345

RESUMEN

BACKGROUND: Tirzepatide (TZP) is a novel drug for type 2 diabetes mellitus (T2DM), but the gastrointestinal (GI) adverse events (AEs) is a limiting factor in clinical application. Therefore, this study systematically evaluated the GI AEs of TZP for T2DM. METHODS: Clinical trials of TZP for T2DM were retrieved from eight databases published only from the establishment of the database to February 2023. Revman5.3 and TSA0.9.5.10 Beta were used for meta-analysis and trials sequential analysis (TSA). RESULTS: Meta-analysis showed that compared with placebo, total GI AEs, nausea, decreased appetite, constipation and vomiting were significantly higher in all dose groups of TZP (P < .05), while abdominal pain and abdominal distension were comparable (P > .05). TSA showed that the differences in total GI AEs, nausea, decreased appetite and constipation were conclusive. Compared with insulin, nausea, diarrhea, vomiting and decreased appetite were significantly increased in all doses of TZP (P < .05), and dyspepsia was significantly increased with TZP 15 mg (P < .05). TSA showed that these differences were all conclusive. Compared with GLP-1 RA, decreased appetite was significantly higher with TZP 5 mg, total GI AEs, decreased appetite and diarrhea were significantly higher with TZP 10 mg (P < .05), while nausea, vomiting, dyspepsia and constipation were significantly different in all dose groups, abdominal pain were not significantly different (P < .05) and TSA showed no conclusive results in this group. CONCLUSION: The GI AEs of TZP were significantly higher than those of placebo and insulin, but comparable to GLP-1 RA. Nausea, diarrhea and decreased appetite are very common GI AEs of TZP, and the incidence is positively correlated with dose. GI AEs of TZP decrease gradually over time, so long-term steady medication may be expected to reduce GI AEs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Humanos , Dolor Abdominal/inducido químicamente , Dolor Abdominal/epidemiología , Dolor Abdominal/tratamiento farmacológico , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diarrea/inducido químicamente , Diarrea/epidemiología , Diarrea/tratamiento farmacológico , Dispepsia/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Hipoglucemiantes/efectos adversos , Insulinas/efectos adversos , Náusea/inducido químicamente , Náusea/epidemiología , Náusea/tratamiento farmacológico , Vómitos/inducido químicamente , Vómitos/epidemiología , Vómitos/tratamiento farmacológico , Ensayos Clínicos como Asunto
4.
J Cardiovasc Electrophysiol ; 34(8): 1776-1780, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37393607

RESUMEN

INTRODUCTION: Dynamic ECG changes in Brugada syndrome (BrS) are influenced by several factors, may not be apparent, and can be unmasked by a drug test. METHODS AND RESULTS: Four of six patients with nondiagnostic Brugada ECG index patterns underwent a dextrose-insulin challenge test that resulted in J-ST segment elevation and triggered arrhythmias. CONCLUSION: Insulin action may be due in part to an outward shift in the K+ current at the end of action potential phase 1 and the dispersion of repolarization, leading to local re-entry with arrhythmogenicity. This effect is likely a phenomenon-specific to BrS.


Asunto(s)
Síndrome de Brugada , Insulinas , Humanos , Síndrome de Brugada/diagnóstico , Arritmias Cardíacas , Glucosa/efectos adversos , Electrocardiografía , Insulinas/efectos adversos
5.
Toxicol Appl Pharmacol ; 470: 116558, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211320

RESUMEN

Lauric acid, a 12­carbon atom medium chain fatty acid (MCFA) has strong antioxidant and antidiabetic activities. However, whether lauric acid can ameliorate hyperglycaemia-induced male reproductive damage remains unclear. The study aimed to determine the optimal dose of lauric acid with glucose-lowering activity, antioxidant potential and tissue-protective effects on the testis and epididymis of streptozotocin (STZ)-induced diabetic rats. Hyperglycaemia was induced in Sprague Dawley rats by an intravenous injection of STZ at a dose of 40 mg/kg body weight (bwt). Lauric acid (25, 50 and 100 mg/kg bwt) was administered orally for eight weeks. Weekly fasting blood glucose (FBG), glucose tolerance and insulin sensitivity were examined. Hormonal profiles (insulin and testosterone), lipid peroxidation (MDA) and antioxidant enzyme (SOD and CAT) activities were measured in the serum, testis and epididymis. The reproductive analyses were evaluated based on sperm quality and histomorphometry. Lauric acid administration significantly improved FBG levels, glucose tolerance, hormones-related fertility and oxidant-antioxidant balance in the serum, testis and epididymis compared to untreated diabetic rats. Treatment with lauric acid preserved the testicular and epididymal histomorphometry, along with the significant improvements in sperm characteristics. It is shown for the first time that lauric acid treatment at 50 mg/kg bwt is the optimal dose for ameliorating hyperglycaemia-induced male reproductive complications. We conclude that lauric acid reduced hyperglycaemia by restoring insulin and glucose homeostasis, which attributes to the regeneration of tissue damage and sperm quality in STZ-induced diabetic rats. These findings support the correlation between oxidative stress and hyperglycaemia-induced male reproductive dysfunctions.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Infertilidad Masculina , Insulinas , Humanos , Masculino , Ratas , Animales , Testículo , Antioxidantes/metabolismo , Epidídimo , Estreptozocina , Diabetes Mellitus Experimental/complicaciones , Ratas Wistar , Ratas Sprague-Dawley , Semen/metabolismo , Espermatozoides , Estrés Oxidativo , Infertilidad Masculina/tratamiento farmacológico , Infertilidad Masculina/etiología , Infertilidad Masculina/prevención & control , Hiperglucemia/complicaciones , Glucosa/metabolismo , Insulinas/efectos adversos , Insulinas/metabolismo
6.
Pestic Biochem Physiol ; 192: 105391, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105618

RESUMEN

The use of arsenic in arsenic-based pesticides has been common in many countries in the past and today. There is considerable evidence linking arsenic exposure to hepatotoxicity and diabetes. Destructive phenomena such as hepatic oxidative stress and inflammation can interfere with glucose uptake and insulin function. In the present study, the antioxidant, anti-inflammatory, and molecular mechanism of citicoline against sodium arsenite-induced hepatotoxicity and glucose intolerance were investigated in mice. Citicoline improved glucose tolerance impaired by sodium arsenite. Citicoline increased the hepatic activity of catalase, superoxide dismutase, and glutathione peroxidase enzymes. Moreover, we found that citicoline prevents an increase in the levels of thiobarbituric acid reactive substances. Citicoline reduced levels of caspase 3, tumor necrosis factor-alpha, and interleukin 6 in sodium arsenite intoxicated groups. It was shown that citicoline increased the expression of arsenite methyltransferase, vesicle-associated membrane protein 2, peroxisome proliferator-activated receptor gamma, and sirtuin 3 to combat sodium arsenite toxicity. Citicoline reduced glucose intolerance, which was disrupted by sodium arsenite, by affecting the pancreatic and extra-pancreatic pathways involved in insulin production, secretion, and action. Based on our results, citicoline can be considered a modulating agent against arsenic-induced hepatotoxicity and hyperglycemia. Considering the relationship between arsenic exposure and the occurrence of side effects such as liver toxicity and diabetes, it is necessary to monitor and awareness of arsenic residues from sources such as drinking water.


Asunto(s)
Arsénico , Enfermedad Hepática Inducida por Sustancias y Drogas , Diabetes Mellitus , Intolerancia a la Glucosa , Insulinas , Sirtuina 3 , Ratones , Animales , Arsénico/toxicidad , Arsénico/metabolismo , Sirtuina 3/efectos adversos , Sirtuina 3/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/farmacología , PPAR gamma/metabolismo , Citidina Difosfato Colina/efectos adversos , Citidina Difosfato Colina/metabolismo , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/tratamiento farmacológico , Diabetes Mellitus/inducido químicamente , Antioxidantes/farmacología , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Insulinas/efectos adversos , Insulinas/metabolismo , Metiltransferasas
7.
J Oncol Pharm Pract ; 29(5): 1259-1263, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36734125

RESUMEN

INTRODUCTION: Nivolumab is an immune checkpoint inhibitor used in the treatment of several malignancies. A number of immune-related endocrinopathies have been linked to its use. CASE REPORT: We report a unique case of a 74-year-old man with well-controlled diabetes mellitus type 2 and metastatic mucosal anorectal melanoma who presented with diabetic ketoacidosis after receiving his third cycle of nivolumab 240 mg intravenous (IV) every 2 weeks. He was found to have autoantibodies against glutamic acid decarboxylase 65. Genotyping for human leukocyte antigens showed the presence of DQB1*02:01 and DRB1*03:01. MANAGEMENT AND OUTCOME: His presentation was complicated by acute renal failure. He required aggressive fluid resuscitation and insulin supplementation to reverse severe acid-base disturbance and multiple electrolyte abnormalities. After an 8-week interruption, the patient restarted nivolumab without any further evidence of adverse events over the next 12 weeks. He continues to require insulin replacement therapy. DISCUSSION AND CONCLUSION: Development of type 1 diabetes with the use of immune checkpoint inhibitors has been increasingly reported in the literature. The exact mechanism for autoimmune diabetes precipitated by nivolumab is yet to be elucidated. Patient education about the symptoms of diabetes and regular glucose monitoring cannot be overemphasized. Testing for antibodies against glutamic acid decarboxylase 65, insulin receptors, and islet cells may also prove useful. Human leukocyte antigen DQ and DR haplotyping prior to immune checkpoint inhibitor treatment might help determine susceptibility toward developing type 1 diabetes, and provide opportunities for earlier recognition, intervention, and possibly prevention.


Asunto(s)
Diabetes Mellitus Tipo 1 , Cetoacidosis Diabética , Insulinas , Melanoma , Masculino , Humanos , Anciano , Nivolumab , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/diagnóstico , Cetoacidosis Diabética/inducido químicamente , Cetoacidosis Diabética/diagnóstico , Cetoacidosis Diabética/complicaciones , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Glutamato Descarboxilasa/efectos adversos , Automonitorización de la Glucosa Sanguínea/efectos adversos , Glucemia , Melanoma/complicaciones , Insulinas/efectos adversos
8.
Diabetes Obes Metab ; 25(5): 1351-1360, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36692230

RESUMEN

AIMS: To perform an integrated analysis of the safety and efficacy of dasiglucagon, a glucagon analogue available in a ready-to-use aqueous formulation, to treat severe hypoglycaemia (SH) in type 1 diabetes (T1D). MATERIALS AND METHODS: An integrated analysis of dasiglucagon safety was conducted on data from two placebo-controlled trials (placebo-controlled pool) and two placebo-controlled and four non-placebo-controlled trials (broad pool) in adults with T1D. An integrated analysis of dasiglucagon efficacy was conducted of pooled data and within demographic subgroups from the two placebo-controlled and two non-placebo-controlled trials in adults with T1D. RESULTS: Dasiglucagon had a similar safety and tolerability profile to that of reconstituted glucagon. In the placebo-controlled datasets, no serious adverse events (AEs), AEs leading to withdrawal from the trial, or deaths were reported. The most common causally related AEs were nausea (56.5%) and vomiting (24.6%). The broad pool safety analysis showed similar results. Dasiglucagon efficacy in time to plasma glucose recovery from insulin-induced SH was similar to that of reconstituted glucagon (median 10.0 and 12.0 minutes, respectively) and superior to placebo (median 40.0 minutes; P < 0.0001). The median recovery time was consistent across all placebo-controlled trial subgroups. CONCLUSIONS: Dasiglucagon was well tolerated and effective as a rapid rescue agent for insulin-induced SH in people with T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipoglucemia , Insulinas , Adulto , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Glucagón , Hipoglucemiantes/efectos adversos , Glucemia , Insulinas/efectos adversos
9.
Pharmacology ; 108(1): 47-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36423586

RESUMEN

INTRODUCTION: Luteolin is a flavonoid polyphenolic compound exerting broad pharmacological and medicinal properties. Diabetes-related obesity increases the total blood volume and cardiac output and may increase the myocardial hypertrophy progression. However, the mechanism of luteolin in diabetic myocardial hypertrophy remains uncertain. Therefore, this study aimed to evaluate whether luteolin improved diabetic cardiomyopathy (DCM) by inhibiting the proteasome activity. METHODS: Cardiomyopathy was induced in streptozotocin-treated diabetes mellitus (DM) and db/db mice. Luteolin (20 mg kg-1·day-1) was administrated via gavage for 12 weeks. In vitro, high glucose and high insulin (HGI, glucose at 25.5 mM and insulin at 0.1 µM) inducing primary neonatal rat cardiomyocytes (NRCMs) were treated with or without luteolin for 48 h. Echocardiography, reverse transcription quantitative polymerase chain reaction, histology, immunofluorescence, and Western blotting were conducted. Proteasome activities were also detected using a fluorescent peptide substrate. RESULTS: Luteolin administration significantly prevented the onset of cardiac hypertrophy, fibrosis, and dysfunction in type 1 DM (T1DM) and type 2 DM (T2DM). Compared with DCM mice, luteolin groups showed lower serum triglyceride and total cholesterol levels. Furthermore, luteolin attenuated HGI-induced myocardial hypertrophy and reduced atrial natriuretic factor mRNA level in NRCMs. Proteasome activities were inhibited by luteolin in vitro. Luteolin also reduces the proteasome subunit levels (PSMB) 1, PSMB2, and PSMB5 of the 20S proteasome, as well as proteasome-regulated particles (Rpt) 1 and Rpt4 levels of 19S proteasome. Furthermore, luteolin treatment increased protein kinase B (AKT) and GSK-3α/ß (inactivation of GSK-3) phosphorylation. The phosphorylation level of AMPK activity was also reversed after the treatment with luteolin in comparison with the HGI-treated group. CONCLUSION: This study indicates that luteolin protected against DCM in mice, including T1DM and T2DM, by upregulating phosphorylated protein AMPK and AKT/GSK-3 pathways while decreasing the proteasome activity. These findings suggest that luteolin may be a potential therapeutic agent for DCM.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insulinas , Ratas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3/efectos adversos , Glucógeno Sintasa Quinasa 3/metabolismo , Luteolina/farmacología , Luteolina/uso terapéutico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/uso terapéutico , Transducción de Señal , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/prevención & control , Insulinas/efectos adversos
10.
Am J Case Rep ; 23: e938609, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36523136

RESUMEN

BACKGROUND Prevention of lethal arrhythmias in congenital long QT syndrome type 1 (LQT1) requires avoidance of sympathoexcitation, drugs that prolong QT, and electrolyte abnormalities. However, it is often difficult to avoid all these risks in the perioperative period of open heart surgery. Herein, we report hypokalemia-induced cardiac arrest in a postoperative cardiac patient with LQT1 on catecholamine. CASE REPORT A 79-year-old woman underwent surgical aortic valve replacement for severe aortic stenosis. Although the initial plan was not to use catecholamine, catecholamine was used in the Postoperative Intensive Care Unit with attention to QT interval and electrolytes due to heart failure caused by postoperative bleeding. Serum potassium levels were controlled above 4.5 mEq/L, and no arrhythmic events occurred. On postoperative day 4, the patient was started on insulin owing to hyperglycemia. Cardiac arrest occurred after the first insulin dose; the implantable cardioverter defibrillator was activated, and the patient's own heartbeat resumed. Subsequent examination revealed that a marked decrease in serum potassium level had occurred after insulin administration. The electrocardiogram showed obvious QT prolongation and ventricular fibrillation following R on T. Thereafter, under strict potassium management, there was no recurrence of cardiac arrest events. CONCLUSIONS A patient with LQT1 who underwent open heart surgery developed ventricular fibrillation after Torsades de Pointes, probably due to hypokalemia after insulin administration in addition to catecholamine. It is important to check serum potassium levels to avoid the onset of Torsades de Pointes in patients with long QT syndrome. In addition, the impact of insulin administration was reaffirmed.


Asunto(s)
Paro Cardíaco , Hipopotasemia , Insulinas , Síndrome de QT Prolongado , Síndrome de Romano-Ward , Torsades de Pointes , Femenino , Humanos , Anciano , Torsades de Pointes/etiología , Torsades de Pointes/diagnóstico , Hipopotasemia/complicaciones , Fibrilación Ventricular/complicaciones , Válvula Aórtica , Catecolaminas , Síndrome de QT Prolongado/diagnóstico , Electrocardiografía , Paro Cardíaco/complicaciones , Arritmias Cardíacas/complicaciones , Potasio , Insulinas/efectos adversos
11.
Phytomedicine ; 107: 154464, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36215789

RESUMEN

BACKGROUND: Abietic acid (AA) has been reported to exhibit anti-inflammatory activity, however its protective effect against inflammation and its trigger factor i.e., oxidative stress and the related sequelae i.e., apoptosis and fibrosis in the kidney in diabetes mellitus (DM) is unknown. PURPOSE: To identify the ability of AA to mitigate the inflammatory and inflammation-related insults to the kidney in DM. METHODS & STUDY DESIGN: Adult male rats were induced type-2 DM by feeding with a high-fat diet for twelve weeks followed by injection with a single dose of streptozotocin (STZ) (30 mg/kg/bw) intraperitoneally at twelve weeks. Following DM confirmation, AA (10 and 20 mg/kg/day) was given orally for another four weeks. Then the fasting blood glucose (FBG) and renal profile were determined and oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) tests were performed. A day after the last treatment, rats were sacrificed and kidneys were harvested and subjected for histopathological and molecular biological analysis. RESULTS: AA treatment was found to reduce the FBG, serum urea and creatinine levels (p < 0.05) while improving the OGTT and ITT (p < 0.05) in diabetic rats. Besides, AA treatment also mitigated kidney histopathological changes, reduces kidney oxidative stress as reflected by reduced levels of RAGE and Keap1 but increased levels of kidney antioxidants Nrf2, SOD, CAT, GPX, HO-1 & NQO-1 (p < 0.05). Additionally, AA treatment also decreases kidney inflammation (NF-kB p65, IL-1ß, IL-6, TNF-α and iNOS) and fibrosis (TGF-ß1 and GSK-3ß) (p < 0/05). Kidney apoptosis decreased as reflected by decreased levels of Bax, caspase-3 and caspase-9 while its anti-apoptosis Bcl-2 protein levels increased (p < 0.05). CONCLUSION: AA helps to mitigate nephropathy development in DM via counteracting oxidative stress, inflammation and apoptosis.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Insulinas , Abietanos , Animales , Antiinflamatorios/farmacología , Glucemia/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Creatinina , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Dieta Alta en Grasa/efectos adversos , Fibrinógeno/metabolismo , Fibrosis , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Inflamación/metabolismo , Insulinas/efectos adversos , Insulinas/metabolismo , Interleucina-6/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas , Estreptozocina/efectos adversos , Superóxido Dismutasa/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
Molecules ; 27(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36296534

RESUMEN

This study was designed to investigate the chemical profile, antihyperglycemic and antilipidemic effect of total methanolic extract (TME) of Bassia eriophora and isolated pure compound umbelliferone (UFN) in high-fat diet (HFD)- and streptozotocin (STZ)- induced diabetic rats. TME was subjected to various techniques of chromatography to yield UFN. Diabetes was induced after eight weeks of HFD by administration of STZ (40 mg/kg) intraperitoneally, and experimental subjects were divided into five groups. The diabetic control showed an increase in levels of blood glucose throughout the experiment. Treatments were initiated in the other four groups with glibenclamide (GLB) (6 mg/kg), TME (200 mg/kg and 400 mg/kg) and isolated UFN (50 mg/kg) orally. The effect on blood glucose, lipid profile and histology of the pancreatic and adipose tissues was assessed. Both 200 and 400 mg/kg of TME produced a comparably significant decrease in blood glucose levels and an increase in insulin levels with GLB. UFN began to show a better blood sugar-lowering effect after 14 days of treatment, comparatively. However, both 400 mg/kg TME and UFN significantly returned blood glucose levels in diabetic rats compared to normal rats. Analysis of the lipid profile showed that while HFD + STZ increased all lipid profile parameters, TME administration produced a significant decrease in their levels. Histopathological examinations showed that treatment with TME and UFN revealed an improved cellular architecture, with the healthy islets of Langerhans and compact glandular cells for pancreatic cells distinct from damaged cells in non-treated groups. Conversely, the adipose tissue displayed apparently normal polygonal fat cells. Therefore, these results suggest that TME has the potential to ameliorate hyperglycemia conditions and control lipid profiles in HFD + STZ-induced diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Insulinas , Ratas , Animales , Estreptozocina , Hipoglucemiantes/farmacología , Glucemia , Dieta Alta en Grasa/efectos adversos , Gliburida/farmacología , Diabetes Mellitus Experimental/patología , Extractos Vegetales , Umbeliferonas/farmacología , Lípidos , Insulinas/efectos adversos
13.
Nutr Hosp ; 39(6): 1256-1263, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36173186

RESUMEN

Introduction: Introduction: type 2 diabetes (T2DM) is a complex disease affected by lifestyle and genetic factors. Although the drugs currently used to treat T2DM have certain curative effects, they still have some adverse side effects. Therefore, it is urgent to find new effective drugs with few side effects to cure T2DM. Objective: to study the role of Inonotus obliquus (IO) in diabetic model mice. Methods: we used high-fat diet (HFD) combined with streptozocin (STZ) to establish a diabetic mouse model. Mice were divided into non-high-fat diet group (ND), diabetes model group (HFD + STZ) and IO-treated diabetes model group (IO). The mice in the IO group were orally treated with IO (150 mg/kg) at 10 ml/kg for five weeks. Body weight, glucose level, food intake and water consumption, glucose tolerance and insulin tolerance were evaluated in all mice. The pathological sections of liver, kidney and pancreas were observed by hematoxylin-eosin staining. Results: after IO administration, the blood glucose level, water consumption, low-density lipoprotein (LDL) and triacylglycerol (TG) levels of mice decreased. Compared with the HFD + STZ group, the number of normal islet ß cells increased and focal necrosis of the liver was significantly reduced in the IO administration group. Conclusions: IO reduced the levels of blood glucose, restored body weight, and enhanced insulin sensitivity along with insulin tolerance and glucose tolerance in diabetic mice. Additionally, IO also reversed HFD and STZ-induced organ injury.


Introducción: Introducción: la diabetes mellitus tipo 2 (T2DM) es una enfermedad compleja influenciada por el estilo de vida y los factores genéticos. En la actualidad, aunque los medicamentos para la diabetes tipo 2 tienen cierto efecto curativo, todavía tienen algunos efectos secundarios. Por lo tanto, es urgente encontrar nuevos medicamentos para la diabetes tipo 2 que tengan un buen efecto curativo y menos efectos secundarios. Objetivo: estudiar el papel del Inonotus obliquus (IO) en ratones diabéticos. Métodos: se estableció un modelo de ratón diabético con dieta de alto contenido en grasas (HFD) y estreptozocina (STZ). Los ratones se dividieron en el grupo de dieta no alta en grasas (ND), el grupo modelo de diabetes mellitus (HFD + STZ) y el grupo modelo de diabetes mellitus tratado con IO. Los ratones del grupo IO recibieron 10 ml/kg de IO (150 mg/kg) durante cinco semanas. Se observaron el peso corporal, el nivel de azúcar en sangre, la ingesta de alimentos, la ingesta de agua potable, la tolerancia a la glucosa y la tolerancia a la insulina de los ratones de cada grupo, y se estudiaron muestras de biopsias hepáticas, renales y pancreáticas mediante tinción de hematoxilina eosina. Resultados: los niveles de glucosa en sangre, el consumo de agua, la lipoproteína de baja densidad (LDL) y los triglicéridos (TG) disminuyeron después de la administración de IO. En comparación con el grupo HFD+STZ, el número de células ß pancreáticas normales y la necrosis focal hepática disminuyeron significativamente en el grupo IO. Conclusiones: el IO redujo el nivel de glucosa en sangre, ayudó a recuperar el peso corporal y mejorar la sensibilidad a la insulina, la tolerancia a la insulina y la tolerancia a la glucosa en ratones diabéticos. Además, el IO revirtió el daño orgánico inducido por HFD y STZ.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulinas , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Estreptozocina/efectos adversos , Glucemia , Diabetes Mellitus Experimental/tratamiento farmacológico , Peso Corporal , Insulinas/efectos adversos , Extractos Vegetales/uso terapéutico , Insulina
14.
Lipids Health Dis ; 21(1): 73, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982452

RESUMEN

Syntaxin regulates pancreatic ß cell mass and participates in insulin secretion by regulating insulin exocytosis. In addition, syntaxin 4 reduces IFNγ and TNF-α signaling via NF-ĸB in islet ß-cells that facilitates plasma glucose sensing and appropriate insulin secretion. Arachidonic acid (AA) has potent anti-inflammatory actions and prevents the cytotoxic actions of alloxan and streptozotocin (STZ) against pancreatic ß cells and thus, prevents the development of type 1 diabetes mellitus (induced by alloxan and STZ) and by virtue of its anti-inflammatory actions protects against the development of type 2 diabetes mellitus (DM) induced by STZ in experimental animals that are models of type 1 and type 2 DM in humans. AA has been shown to interact with syntaxin and thus, potentiate exocytosis. AA enhances cell membrane fluidity, increases the expression of GLUT and insulin receptors, and brings about its anti-inflammatory actions at least in part by enhancing the formation of its metabolite lipoxin A4 (LXA4). Prostaglandin E2 (PGE2), the pro-inflammatory metabolite of AA, activates ventromedial hypothalamus (VMH) neurons of the hypothalamus and inhibits insulin secretion leading to reduced glucose tolerance and decreases insulin sensitivity in the skeletal muscle and liver. This adverse action of PGE2 on insulin release and action can be attributed to its (PGE2) pro-inflammatory action and inhibitory action on vagal tone (vagus nerve and its principal neurotransmitter acetylcholine has potent anti-inflammatory actions). High fat diet fed animals have hypothalamic inflammation due to chronic elevation of PGE2. Patients with type 2 DM show low plasma concentrations of AA and LXA4 and elevated levels of PGE2. Administration of AA enhances LXA4 formation without altering or reducing PGE2 levels and thus, tilts the balance more towards anti-inflammatory events. These results suggest that administration of AA is useful in the prevention and management of DM by enhancing the action of syntaxin, increasing cell membrane fluidity, and reducing VMH inflammation. Docosahexaenoic acid (DHA) has actions like AA: it increases cell membrane fluidity; has anti-inflammatory actions by enhancing the formation of its anti-inflammatory metabolites resolvins, protectins and maresins; interacts with syntaxin and enhance exocytosis in general and of insulin. But the DHA content of cell membrane is lower compared to AA and its content in brain is significant. Hence, it is likely DHA is important in neurotransmitters secretion and regulating hypothalamic inflammation. It is likely that a combination of AA and DHA can prevent DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Aloxano , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ácido Araquidónico/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dinoprostona , Ácidos Docosahexaenoicos/farmacología , Humanos , Inflamación , Insulinas/efectos adversos , Proteínas Qa-SNARE , Estreptozocina
15.
Front Public Health ; 10: 917679, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784237

RESUMEN

Immune checkpoint inhibitors, widely used in the treatment of malignancies, can improve the prognosis of patients, while it also can induce various immune-related adverse events, and type 1 diabetes induced by anti-programmed cell death protein-1 is a rare but severe complication. Here we reported a case of type 1 diabetes induced by anti-PD-1 which was to treat intrahepatic cholangiocarcinoma. The case was a 61-year-old female who developed diabetes and ketoacidosis symptoms at the 16th week after anti-PD-1 therapy. Her blood glucose was 30.32 mmol/L, HBA1c was 8.10%, and C-peptide was <0.10 ng/ml. The patient was diagnosed as fulminant type 1 diabetes mellitus complicated with ketoacidosis induced by anti-PD-1, and was treated with massive fluid rehydration, intravenous infusion of insulin and correction of acid-base electrolyte disorder. Hepatectomy was performed after stabilization, and the patient was treated with long-term insulin. Through the case report and literature review, this study aims to improve oncologists' understanding of anti-PD-1 induced type 1 diabetes, so as to make early diagnosis and treatment of the complications and ensure medical safety.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Diabetes Mellitus Tipo 1 , Insulinas , Cetosis , Neoplasias de los Conductos Biliares/complicaciones , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Conductos Biliares Intrahepáticos , Muerte Celular , Colangiocarcinoma/complicaciones , Colangiocarcinoma/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico , Femenino , Humanos , Insulinas/efectos adversos , Cetosis/complicaciones , Persona de Mediana Edad
16.
Int Immunopharmacol ; 110: 108970, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35792271

RESUMEN

Tannic acid (TA) is a natural compound present abundantly in fruit such as grapes and green tea. In this study, we have evaluated the therapeutic efficacy of TA against Lipopolysaccharide (LPS)-induced oxidative stress-mediated memory impairment, neuroinflammation, insulin signaling impairment, and Amyloid Beta (Aß) deposition in adult male mice. The LPS was administered once per week and TA twice a week to adult male mice for three months consecutively. Behavioral studies were performed using different behavioral models such as balance beam, novel object recognition (NOR), Morris water maze (MWM), and Y-maze tests. The protein expression of different mediators such as TNF-α, p-JNK, pIRS636, BACE1, APP, and Aß was evaluated through western blot and immunofluorescence staining techniques. Biochemical assays were carried out to assess the antioxidant activities of TA. The computational study was conducted to predict the binding mode of TA with target sites of TNF-α. Behavioral studies showed that the TA-treated mice exhibited gradual memory improvement. TA significantly inhibited BACE1 activity and reduced production and accumulation of Aß in the hippocampus of mice brains. Moreover, the TA significantly inhibited LPS-induced ROS production and enhanced the glutathione levels. Furthermore, we have shown via the computational method for the first time that TA inhibits LPS-triggered TNF-á½° and its downstream signaling to reduce AD pathology including memory impairment, neuroinflammation, insulin signaling impairment, and Aß deposition in adult mice. Taken together our current study demonstrates that TA is a potential candidate for the abrogation of LPS-induced neurotoxicity and AD pathology in rodent's models.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Insulinas , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/efectos adversos , Ácido Aspártico Endopeptidasas/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Insulinas/efectos adversos , Lipopolisacáridos/farmacología , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Ratones , Taninos/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo
17.
Neurochem Int ; 159: 105385, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35843421

RESUMEN

Resveratrol (RES) is a polyphenol with diverse beneficial pharmacological activities, and our previous results have demonstrated its neuroprotective potential. The purpose of this study was to investigate the therapeutic effect of RES in Alzheimer's disease (AD)-like behavioral dysfunction induced by streptozotocin (STZ) and explore it's potential mechanism of action. STZ was microinjected bilaterally into the dorsal hippocampus of C57BL/6J mice at a dose of 3 mg/kg, and RES was administered intragastrically at a dose of 25 mg/kg for 5 weeks. Neurobehavioral performance was observed, and serum concentrations of insulin and Nesfatin-1 were measured. Moreover, the protein expression of amyloid beta 1-42 (Aß1-42), Tau, phosphorylated Tau (p-Tau) (Ser396), synaptic ras GTPase activation protein (SynGAP), postsynaptic density protein 95 (PSD95), synapsin-1, synaptogomin-1, and key molecules of the Wnt/ß-catenin signaling pathway in the hippocampus and prefrontal cortex (PFC) were assessed. Finally, pathological damage to hippocampal tissue was examined by Nissl and immunofluorescence staining. The results showed that compared with the controls, bilateral hippocampal microinjections of STZ induced task-specific learning and memory impairments, as indicated by the disadvantaged performances in the novel object recognition test (NOR) and Morris water maze (MWM), but not the contextual fear conditioning test (CFC). Treatment with RES could improve these behavioral disadvantages. The serum concentrations of insulin and Nesfatin-1 in the model group were remarkably higher than those of the control group. In addition, protein expression of Aß1-42, Tau, and p-Tau (Ser396) was increased but expression of SynGAP, PSD95, brain-derived neurotrophic factor (BDNF), and p-GSK-3ß/GSK-3ß were decreased in the hippocampus. Although the protein expression of BDNF and SynGAP was also markedly decreased in the PFC of the model mice, there was no significant difference among groups in the protein expression of PSD95, BDNF, synapsin-1, synaptogomin-1, and p-GSK-3ß/GSK-3ß. RES (25 mg/kg) reversed the enhanced insulin level, the abnormal protein expression of Aß1-42, Tau, and p-Tau (Ser396) in the hippocampus and PFC, and the hippocampal protein expression of SynGAP, PSD95 and BDNF. In addition, RES reversed the STZ-induced decrease in the number of Nissl bodies and the increase in fluorescence intensity of IBA1 in the hippocampal CA1 region. These findings indicate that RES could ameliorate STZ-induced AD-like neuropathological injuries, the mechanism of which could be partly related to its regulation of BDNF expression and synaptic plasticity-associated proteins in the hippocampus.


Asunto(s)
Enfermedad de Alzheimer , Insulinas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Insulinas/efectos adversos , Insulinas/metabolismo , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Resveratrol/farmacología , Resveratrol/uso terapéutico , Estreptozocina/toxicidad , Sinapsinas/metabolismo , Sinapsinas/farmacología , Sinapsinas/uso terapéutico
18.
Pak J Pharm Sci ; 35(2): 425-433, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35642396

RESUMEN

Epilobium angustifolium (EA) is well known as a traditional medicinal plant in many countries with multiple health effects. However, the chemical composition and anti-diabetic effect of EA has not been reported. In our study, the composition and anti-diabetic effects of ethanol extracts from EA in vivo and in streptozotocin (STZ)-induced type II diabetic rats were investigated. EA ethanol extracts exhibited protection effect on H2O2 induced oxidative stress damage INS-1 cells, reduce the body weight loss, blood glucose level and increase insulin level when compared with those of diabetic rats. Following 21 days of EA treatment at 9.2 and 18.4mg/kg, BW increased by 15.85% and 15.53%, respectively, which were extremely higher than diabetic group (9.50%). The fasting blood glucose level of EA 9.2mg/kg group rats significantly decreased by 60.43% and insulin level increased by 2.78 times, respectively. Corresponding to that, the fasting blood glucose level of EA 18.4mg/kg group rats decreased by 52.61% and insulin level increased by 2 times, respectively. Collectively our data suggest that ethanol extract of EA has remarkably hypoglycemic effect in type 2 diabetes and EA might be a promising functional food or medicine for T2DM treatment.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Epilobium , Insulinas , Animales , Glucemia , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Etanol/química , Peróxido de Hidrógeno , Insulinas/efectos adversos , Extractos Vegetales/química , Ratas
19.
Peptides ; 152: 170768, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35189258

RESUMEN

Pancreatic peptide hormone secretion is inextricably linked to maintenance of normal levels of blood glucose. In animals and man, pancreatic peptide hormone secretion is controlled, at least in part, by input from parasympathetic (vagal) premotor neurons that are found principally in the dorsal motor nucleus of the vagus (DMV). Iatrogenic (insulin-induced) hypoglycaemia evokes a homeostatic response commonly referred to as the glucose counter-regulatory response. This homeostatic response is of particular importance in Type 1 diabetes in which episodes of hypoglycaemia are common, debilitating and lead to suboptimal control of blood glucose. Glucagon is the principal counterregulatory hormone but for reasons unknown, its secretion during insulin-induced hypoglycaemia is impaired. Pancreatic parasympathetic neurons are distinguishable electrophysiologically from those that control other (e.g. gastric) functions and are controlled by supramedullary inputs from hypothalamic structures such as the perifornical region. During hypoglycaemia, glucose-sensitive, GABAergic neurons in the ventromedial hypothalamus are inhibited leading to disinhibition of perifornical orexin neurons with projections to the DMV which, in turn, leads to increased secretion of glucagon.


Asunto(s)
Hipoglucemia , Insulinas , Animales , Glucemia , Glucagón , Glucosa/efectos adversos , Humanos , Insulina/farmacología , Insulinas/efectos adversos
20.
Arch Physiol Biochem ; 128(6): 1524-1532, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32584611

RESUMEN

The inhibition of renin angiotensin system pathway has been largely documented to be effective in the control of cardiovascular events. The present study investigated the effect of angiotensin converting enzyme (ACE) inhibitor on fasting blood glucose level in hypertension induced by the inhibition of nitric oxide synthase (NOS) in male Wistar rats. Hypertension was induced by the inhibition of NOS using a non-selective NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). The blockade of NOS resulted in an increase in blood pressure, ACE, angiotensin II and endothelin-1 levels, and a decrease in fasting blood glucose and nitric oxide (NO) levels. The hypertensive rats treated with ACE inhibitor (ramipril) recorded a decrease in blood pressure, ACE, angiotensin II, endothelin-1, NO and fasting blood glucose levels, and an increase in prostacyclin level. In conclusion, ACE inhibitor potentiated the hypoglycaemic effect of NOS inhibitor and this effect is independent of NO and pancreatic insulin release.


Asunto(s)
Hipertensión , Insulinas , Masculino , Ratas , Animales , NG-Nitroarginina Metil Éster/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Peptidil-Dipeptidasa A/metabolismo , Óxido Nítrico/metabolismo , Angiotensina II/farmacología , Hipoglucemiantes/farmacología , Ramipril/efectos adversos , Endotelina-1 , Glucemia , Ratas Wistar , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Presión Sanguínea , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/farmacología , Inhibidores Enzimáticos/farmacología , Prostaglandinas I/efectos adversos , Insulinas/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...