Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.086
Filtrar
1.
J Mol Biol ; 436(10): 168557, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582148

RESUMEN

Retroviral DNA integration is mediated by nucleoprotein complexes (intasomes) in which a pair of viral DNA ends are bridged by a multimer of integrase (IN). Most of the high-resolution structures of HIV-1 intasomes are based on an HIV-1 IN with an Sso7d protein domain fused to the N-terminus. Sso7d-IN aggregates much less than wild-type IN and has been critical for structural studies of HIV-1 intasomes. Unexpectedly, these structures revealed that the common core architecture that mediates catalysis could be assembled in various ways, giving rise to both tetrameric and dodecameric intasomes, together with other less well-characterized species. This differs from related retroviruses that assemble unique multimeric intasomes, although the number of protomers in the intasome varies between viruses. The question of whether the additional Sso7d domain contributes to the heterogeneity of HIV-1 intasomes is therefore raised. We have addressed this by biochemical and structural studies of intasomes assembled with wild-type HIV-1 IN. Negative stain and cryo-EM reveal a similar range of multimeric intasome species as with Sso7d-IN with the same common core architecture. Stacks of intasomes resulting from domain swapping are also seen with both wild-type and Sso7d-IN intasomes. The propensity to assemble multimeric intasome species is, therefore, an intrinsic property of HIV-1 IN and is not conferred by the presence of the Sso7d domain. The recently solved intasome structures of different retroviral species, which have been reported to be tetrameric, octameric, dodecameric, and hexadecameric, highlight how a common intasome core architecture can be assembled in different ways for catalysis.


Asunto(s)
Integrasa de VIH , VIH-1 , Integración Viral , Integrasa de VIH/metabolismo , Integrasa de VIH/química , Integrasa de VIH/genética , VIH-1/genética , VIH-1/enzimología , Humanos , ADN Viral/metabolismo , ADN Viral/genética , Modelos Moleculares , Multimerización de Proteína , Nucleoproteínas/metabolismo , Nucleoproteínas/química , Nucleoproteínas/genética
2.
Biochemistry (Mosc) ; 89(3): 462-473, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648766

RESUMEN

Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer. However, during the HIV-1 replicative cycle, integrase is responsible not only for the integration stage, it is also involved in reverse transcription and is necessary at the stage of capsid formation of the newly formed virions. It has been suggested that HIV-1 integrase is a structurally dynamic protein and its biological functions depend on its structure. Accordingly, studying interactions between the domains of integrase that provide its tetrameric structure is important for understanding its multiple functions. In this work, we investigated the role of three amino acids of the catalytic domain, I182, R187, and K188, located in the contact region of two integrase dimers in the tetramer structure, in reverse transcription and integration. It has been shown that the R187 residue is extremely important for formation of the correct integrase structure, which is necessary at all stages of its functional activity. The I182 residue is necessary for successful integration and is not important for reverse transcription, while the K188 residue, on the contrary, is involved in formation of the integrase structure, which is important for the effective reverse transcription.


Asunto(s)
Dominio Catalítico , Integrasa de VIH , VIH-1 , Transcripción Reversa , Integración Viral , Integrasa de VIH/metabolismo , Integrasa de VIH/química , Integrasa de VIH/genética , VIH-1/enzimología , Humanos
3.
Sci Adv ; 10(9): eadn0042, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427738

RESUMEN

People living with human immunodeficiency virus (HIV) receiving integrase strand transfer inhibitors (INSTIs) have been reported to experience virological failure in the absence of resistance mutations in integrase. To elucidate INSTI resistance mechanisms, we propagated HIV-1 in the presence of escalating concentrations of the INSTI dolutegravir. HIV-1 became resistant to dolutegravir by sequentially acquiring mutations in the envelope glycoprotein (Env) and the nucleocapsid protein. The selected Env mutations enhance the ability of the virus to spread via cell-cell transfer, thereby increasing the multiplicity of infection (MOI). While the selected Env mutations confer broad resistance to multiple classes of antiretrovirals, the fold resistance is ~2 logs higher for INSTIs than for other classes of drugs. We demonstrate that INSTIs are more readily overwhelmed by high MOI than other classes of antiretrovirals. Our findings advance the understanding of how HIV-1 can evolve resistance to antiretrovirals, including the potent INSTIs, in the absence of drug-target gene mutations.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Humanos , Raltegravir Potásico/farmacología , Inhibidores de Integrasa VIH/farmacología , VIH-1/genética , VIH-1/metabolismo , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , Mutación
4.
Viruses ; 16(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38399977

RESUMEN

Allosteric HIV-1 Integrase (IN) Inhibitors or ALLINIs bind at the dimer interface of the IN, away from the enzymatic catalytic site, and disable viral replication by inducing over-multimerization of IN. Interestingly, these inhibitors are capable of impacting both the early and late stages of viral replication. To better understand the important binding features of multi-substituted quinoline-based ALLINIs, we have surveyed published studies on IN multimerization and antiviral properties of various substituted quinolines at the 4, 6, 7, and 8 positions. Here we show how the efficacy of these inhibitors can be modulated by the nature of the substitutions at those positions. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the selectivity toward the viral maturation stage. Thus, to fully maximize the potency of ALLINIs, the interactions between the inhibitor and multiple IN subunits need to be simultaneously optimized.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Quinolinas , VIH-1/metabolismo , Regulación Alostérica , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/química , Integrasa de VIH/metabolismo , Quinolinas/farmacología , Multimerización de Proteína
6.
Molecules ; 28(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38138510

RESUMEN

As an important antiviral target, HIV-1 integrase plays a key role in the viral life cycle, and five integrase strand transfer inhibitors (INSTIs) have been approved for the treatment of HIV-1 infections so far. However, similar to other clinically used antiviral drugs, resistance-causing mutations have appeared, which have impaired the efficacy of INSTIs. In the current study, to identify novel integrase inhibitors, a set of molecular docking-based virtual screenings were performed, and indole-2-carboxylic acid was developed as a potent INSTI scaffold. Indole-2-carboxylic acid derivative 3 was proved to effectively inhibit the strand transfer of HIV-1 integrase, and binding conformation analysis showed that the indole core and C2 carboxyl group obviously chelated the two Mg2+ ions within the active site of integrase. Further structural optimizations on compound 3 provided the derivative 20a, which markedly increased the integrase inhibitory effect, with an IC50 value of 0.13 µM. Binding mode analysis revealed that the introduction of a long branch on C3 of the indole core improved the interaction with the hydrophobic cavity near the active site of integrase, indicating that indole-2-carboxylic acid is a promising scaffold for the development of integrase inhibitors.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Humanos , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/química , Simulación del Acoplamiento Molecular , Integrasa de VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , Indoles/farmacología , Indoles/uso terapéutico , Dominio Catalítico , Farmacorresistencia Viral , Mutación
7.
Sci Adv ; 9(29): eadg5953, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478179

RESUMEN

HIV-1 infection depends on the integration of viral DNA into host chromatin. Integration is mediated by the viral enzyme integrase and is blocked by integrase strand transfer inhibitors (INSTIs), first-line antiretroviral therapeutics widely used in the clinic. Resistance to even the best INSTIs is a problem, and the mechanisms of resistance are poorly understood. Here, we analyze combinations of the mutations E138K, G140A/S, and Q148H/K/R, which confer resistance to INSTIs. The investigational drug 4d more effectively inhibited the mutants compared with the approved drug Dolutegravir (DTG). We present 11 new cryo-EM structures of drug-resistant HIV-1 intasomes bound to DTG or 4d, with better than 3-Å resolution. These structures, complemented with free energy simulations, virology, and enzymology, explain the mechanisms of DTG resistance involving E138K + G140A/S + Q148H/K/R and show why 4d maintains potency better than DTG. These data establish a foundation for further development of INSTIs that potently inhibit resistant forms in integrase.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/química , Oxazinas/farmacología , Mutación , Integrasa de VIH/genética , Integrasa de VIH/química , Integrasa de VIH/metabolismo
8.
Antimicrob Agents Chemother ; 67(7): e0046223, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37310224

RESUMEN

HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , Humanos , Replicación Viral , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , Antivirales/farmacología , Integrasa de VIH/metabolismo , Infecciones por VIH/tratamiento farmacológico , Regulación Alostérica
9.
Bioorg Med Chem Lett ; 89: 129303, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146837

RESUMEN

Lens epithelial-derived growth factor (LEDGF) increases the efficiency of proviral DNA integration into the host genome by interacting with HIV integrase (IN) and directing it to a chromatin environment that favors viral transcription. Allosteric integrase inhibitors (ALLINIs), such as known 2-(tert-butoxy)acetic acid (1), bind to the LEDGF pocket on the catalytic core domain (CCD) of IN, but exert more potent antiviral activities by inhibition of late-stage HIV-1 replication events than through disruption of proviral integration at an earlier phase. A high-throughput screen (HTS) for compounds that disrupt IN-LEDGF interaction led to the identification of a novel arylsulfonamide series, as exemplified by 2, possessing ALLINI-like properties. Further SAR studies led to more potent compound 21 and provided key chemical biology probes revealing that arylsulfonamides are a novel class of ALLINIs with a distinct binding mode than that of 2-(tert-butoxy)acetic acids.


Asunto(s)
Fármacos Anti-VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/química , Regulación Alostérica , Dominio Catalítico , Integrasa de VIH/metabolismo
10.
Antimicrob Agents Chemother ; 67(5): e0138622, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37071019

RESUMEN

Human immunodeficiency virus (HIV) treatment with antiretroviral regimens containing integrase strand transfer inhibitors such as dolutegravir (DTG) and bictegravir (BIC) offers high levels of protection against the development of drug resistance mutations. Despite this, resistance to DTG and BIC can occur through the development of the R263K integrase substitution. Failure with DTG has also been associated with the emergence of the G118R substitution. G118R and R263K are usually found separately but have been reported together in highly treatment-experienced persons who experienced treatment failure with DTG. We used cell-free strand transfer and DNA binding assays and cell-based infectivity, replicative capacity, and resistance assays to characterize the G118R plus R263K combination of integrase mutations. R263K reduced DTG and BIC susceptibility ~2-fold, in agreement with our previous work. Single-cycle infectivity assays showed that G118R and G118R plus R263K conferred ~10-fold resistance to DTG. G118R alone conferred low levels of resistance to BIC (3.9-fold). However, the G118R plus R263K combination conferred high levels of resistance to BIC (33.7-fold), likely precluding the use of BIC after DTG failure with the G118R plus R263K combination. DNA binding, viral infectivity, and replicative capacity of the double mutant were further impaired, compared to single mutants. We propose that impaired fitness helps to explain the scarcity of the G118R plus R263K combination of integrase substitutions in clinical settings and that immunodeficiency likely contributes to its development.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Humanos , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/genética , VIH-1/metabolismo , Sustitución de Aminoácidos , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , Mutación , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Piridonas/farmacología , ADN/farmacología , ADN/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico
11.
Viruses ; 14(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36560595

RESUMEN

Integrase Strand Transfer Inhibitors (INSTIs) are currently used as the most effective therapy in the treatment of human immunodeficiency virus (HIV) infections. Raltegravir (RAL) and Elvitegravir (EVG), the first generation of INSTIs used successfully in clinical treatment, are susceptible to the emergence of viral resistance and have a high rate of cross-resistance. To counteract these resistant mutants, second-generation INSTI drugs have been developed: Dolutegravir (DTG), Cabotegravir (CAB), and Bictegravir (BIC). However, HIV is also able to develop resistance mechanisms against the second-generation of INSTIs. This review describes the mode of action of INSTIs and then summarizes and evaluates some typical resistance mutations, such as substitution and insertion mutations. The role of unintegrated viral DNA is also discussed as a new pathway involved in conferring resistance to INSTIs. This allows us to have a more detailed understanding of HIV resistance to these inhibitors, which may contribute to the development of new INSTIs in the future.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , Humanos , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , Raltegravir Potásico/farmacología , Infecciones por VIH/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Mutación , Integrasas/genética , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , Farmacorresistencia Viral/genética
12.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293197

RESUMEN

RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.


Asunto(s)
Integrasa de VIH , VIH-1 , Ácidos Nucleicos , Replicación Viral , Integrasa de VIH/metabolismo , VIH-1/fisiología , Proteínas Virales
13.
J Virol ; 96(18): e0101122, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36094316

RESUMEN

HIV-1 DNA is preferentially integrated into chromosomal hot spots by the preintegration complex (PIC). To understand the mechanism, we measured the DNA integration activity of PICs-extracted from infected cells-and intasomes, biochemically assembled PIC substructures using a number of relevant target substrates. We observed that PIC-mediated integration into human chromatin is preferred compared to genomic DNA. Surprisingly, nucleosomes lacking histone modifications were not preferred integration compared to the analogous naked DNA. Nucleosomes containing the trimethylated histone 3 lysine 36 (H3K36me3), an epigenetic mark linked to active transcription, significantly stimulated integration, but the levels remained lower than the naked DNA. Notably, H3K36me3-modified nucleosomes with linker DNA optimally supported integration mediated by the PIC but not by the intasome. Interestingly, optimal intasome-mediated integration required the cellular cofactor LEDGF. Unexpectedly, LEDGF minimally affected PIC-mediated integration into naked DNA but blocked integration into nucleosomes. The block for the PIC-mediated integration was significantly relieved by H3K36me3 modification. Mapping the integration sites in the preferred substrates revealed that specific features of the nucleosome-bound DNA are preferred for integration, whereas integration into naked DNA was random. Finally, biochemical and genetic studies demonstrate that DNA condensation by the H1 protein dramatically reduces integration, providing further evidence that features inherent to the open chromatin are preferred for HIV-1 integration. Collectively, these results identify the optimal target substrate for HIV-1 integration, report a mechanistic link between H3K36me3 and integration preference, and importantly, reveal distinct mechanisms utilized by the PIC for integration compared to the intasomes. IMPORTANCE HIV-1 infection is dependent on integration of the viral DNA into the host chromosomes. The preintegration complex (PIC) containing the viral DNA, the virally encoded integrase (IN) enzyme, and other viral/host factors carries out HIV-1 integration. HIV-1 integration is not dependent on the target DNA sequence, and yet the viral DNA is selectively inserted into specific "hot spots" of human chromosomes. A growing body of literature indicates that structural features of the human chromatin are important for integration targeting. However, the mechanisms that guide the PIC and enable insertion of the PIC-associated viral DNA into specific hot spots of the human chromosomes are not fully understood. In this study, we describe a biochemical mechanism for the preference of the HIV-1 DNA integration into open chromatin. Furthermore, our study defines a direct role for the histone epigenetic mark H3K36me3 in HIV-1 integration preference and identify an optimal substrate for HIV-1 PIC-mediated viral DNA integration.


Asunto(s)
Cromosomas Humanos , VIH-1 , Código de Histonas , Histonas , Nucleosomas , Integración Viral , Cromatina/metabolismo , Cromosomas Humanos/virología , ADN Viral/genética , ADN Viral/metabolismo , Infecciones por VIH/virología , Integrasa de VIH/genética , Integrasa de VIH/metabolismo , VIH-1/genética , Histonas/química , Histonas/metabolismo , Humanos , Lisina/genética , Metilación , Nucleosomas/genética , Nucleosomas/metabolismo , Nucleosomas/virología , Integración Viral/genética
14.
Viruses ; 14(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36146690

RESUMEN

Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action.


Asunto(s)
Fármacos Anti-VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/genética , VIH-1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , ARN , Integración Viral , Replicación Viral
15.
Viruses ; 14(7)2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35891378

RESUMEN

Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.


Asunto(s)
Integrasa de VIH , VIH-1 , ADN Viral , Integrasa de VIH/metabolismo , VIH-1/química , Humanos , Provirus/genética , Transcripción Reversa , Integración Viral
16.
Viruses ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35891446

RESUMEN

Allosteric HIV-1 integrase (IN) inhibitors, or ALLINIs, are a new class of antiviral agents that bind at the dimer interface of the IN, away from the enzymatic catalytic site and block viral replication by triggering an aberrant multimerization of the viral enzyme. To further our understanding of the important binding features of multi-substituted quinoline-based ALLINIs, we have examined the IN multimerization and antiviral properties of substitution patterns at the 6 or 8 position. We found that the binding properties of these ALLINIs are negatively impacted by the presence of bulky substitutions at these positions. In addition, we have observed that the addition of bromine at either the 6 (6-bromo) or 8 (8-bromo) position conferred better antiviral properties. Finally, we found a significant loss of potency with the 6-bromo when tested with the ALLINI-resistant IN A128T mutant virus, while the 8-bromo analog retained full effectiveness.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Quinolinas , Regulación Alostérica , Antivirales/farmacología , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/metabolismo , Quinolinas/farmacología , Replicación Viral
17.
J Antimicrob Chemother ; 77(10): 2793-2802, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35897124

RESUMEN

BACKGROUND: In prior studies, HIV-1 BF recombinants with subtype F integrases failed to develop resistance to raltegravir through the Q148H mutational pathway. We aimed to determine the role of subtype-specific polymorphisms in integrase on drug susceptibility, viral replication and integration. METHODS: Integrase sequences were retrieved from the Los Alamos Database or obtained from the Garrahan HIV cohort. HIV-1 infectious molecular clones with or without Q148H (+ G140S) resistance mutations were constructed using integrases of subtype B (NL4-3) or F1(BF) ARMA159 and URTR23. Integrase chimeras were generated by reciprocal exchanges of a 200 bp fragment spanning amino acids 85-150 of the catalytic core domain (CCD) of NL4-3-Q148H and either ARMA159-Q148H or URTR23-Q148H. Viral infections were quantified by p24 ELISA and Alu-gag integration PCR assay. RESULTS: At least 18 different polymorphisms distinguish subtype B from F1(BF) recombinant integrases. In phenotypic experiments, p24 at Day 15 post-infection was high (105-106 pg/mL) for WT and NL4-3-Q148H; by contrast, it was low (102-104 pg/mL) for both F1(BF)-Q148H + G140S viruses, and undetectable for the Q148H mutants. Compared with WT viruses, integrated DNA was reduced by 5-fold for NL4-3-Q148H (P = 0.05), 9-fold for URTR23-Q148H (P = 0.01) and 16000-fold for ARMA159-Q148H (P = 0.01). Reciprocal exchange between B and F1(BF) of an integrase CCD region failed to rescue the replicative defect of F1(BF) integrase mutants. CONCLUSIONS: The functional impairment of Q148H in the context of subtype F integrases from BF recombinants explains the lack of selection of this pathway in vivo. Non-B polymorphisms external to the integrase CCD may influence the pathway to integrase strand transfer inhibitor resistance.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Aminoácidos/uso terapéutico , Dominio Catalítico , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/genética , Humanos , Mutación , Pirrolidinonas/farmacología , Raltegravir Potásico/farmacología , Raltegravir Potásico/uso terapéutico
18.
Ann Med ; 54(1): 1590-1600, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35658757

RESUMEN

Background: Proteinsprotein interaction (PPI) between lens epithelium-derived growth factor (LEDGF/p75) and human immunodeficiency virus (HIV) integrase (IN) becomes an attractive target for anti-HIV drug development.Methods: The blockade of this interaction by small molecules could potentially inhibit HIV-1 replication. In this study, a panel of 99 structurally related flavonoids were was tested, concerning their ability to inhibit IN-LEDGF/p75 interaction, using a homogeneous time time-resolved fluorescence (HTRF) assay. Results: From the obtained results, it was possible to observe that the flavonoid with hydroxyl group in C3-, C4-, C5- and C7-position on the A-ring, C4'- and C5'-position of the B-ring, a carbonyl group of the C-ring, was more active against IN-LEDGF/p75 interaction, through competitive inhibition. Moreover, the binding modes of representative compounds, including myricetin, luteolin, dihydrorobinetin, naringenin, epicatechin, genistein and helichrysetin, were analyzedanalysed by molecular docking. Biolayer interferometry assay confirmed that these representative compounds disrupted the PPI by binding to IN with KD values ranging from 1.0 to 3.6 µM.Conclusion: This study presents the first to quantitative comparation of the effect of flavonoids with different structural subclasses on IN-LEDGF/p75 interaction. Our findings provide new insights into the development of inhibitors targeting IN-LEDGF/p75 interaction using flavonoids. Key MessagesHIV-1 integrase (IN)-LEDGF/p75 interaction is an attractive target for antiviral drug development.For the first time, the structure-activity relationship of flavonoids belonging to seven flavonoidic subclasses on IN-LEDGF/p75 interaction was determined.This study comprehends an HTRF-based screening system, biolayer interferometry and an in silico molecular docking analysis.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , Flavonoides/farmacología , Integrasa de VIH/química , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
19.
Biochem Biophys Res Commun ; 613: 153-158, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35561583

RESUMEN

93del is a 16-nucleotide G-quadruplex-forming aptamer which can inhibit the activity of the HIV-1 integrase enzyme at nanomolar concentration. Previous structural analyses of 93del using NMR spectroscopy have shown that the aptamer forms an interlocked G-quadruplex structure in K+ solution. Due to its exceptional stability and unique topology, 93del has been used in many different studies involving DNA G-quadruplexes, such as DNA aptamer and multimer design, as well as DNA fluorescence research. To gain further insights on the structure of this unique aptamer, we have determined several high-resolution crystal structures of 93del and its variants. While confirming the overall dimeric interlocked G-quadruplex folding topology previously determined by NMR, our results reveal important detailed structural information, particularly the formation of a water-mediated A•G•G•G•G pentad. These insights allow us to better understand the formation of various structural elements in G-quadruplexes and should be useful for designing and manipulating G-quadruplex scaffolds with desired properties.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Integrasa de VIH , Aptámeros de Nucleótidos/química , Integrasa de VIH/metabolismo , Agua
20.
Viruses ; 14(5)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35632668

RESUMEN

Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/farmacología , VIH-1/genética , VIH-1/metabolismo , Humanos , ARN Viral/genética , ARN Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...