Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Immunol ; 12: 626895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34267744

RESUMEN

In mammals, Interleukin-17 cytokine family plays critical roles in both acute and chronic inflammatory responses. In fish species, three Interleukin-17A/F (IL-17A/F) genes have been identified to be homologous to mammalian IL-17A and IL-17F, but little is known about their functional activity. In this study, Pf_IL-17A/F1, 2 and 3 genes were cloned from yellow catfish (Pelteobagrus fulvidraco) and they differed in protein structure and exon length, implying that they may have divergent bioactivity. Real-time quantitative PCR analyses revealed that three Pf_IL-17A/F genes were highly expressed in blood and mucosal tissues (skin+mucus and gill) from healthy adult fish. The mRNA expressions of Pf_IL-17A/F1, 2 and 3 genes were significantly up-regulated in the gill, skin+mucus, head kidney and spleen after challenge with Edwardsiella ictaluri and in the isolated peripheral blood leucocytes (PBLs) of yellow catfish after stimulation with phytohaemagglutinin (PHA), lipopolysaccharides (LPS), peptidoglycan (PGN) and polyinosinic-polycytidylic acid (Poly I:C). These results indicate that Pf_IL-17A/F1, 2 and 3 genes may play a vital role in the regulation of immune against pathogens. Additionally, the recombinant (r) Pf_IL-17A/F1, 2 and 3 proteins significantly induced the mRNA expressions of proinflammatory cytokines, chemokines and antibacterial peptides genes, and the rPf_IL-17A/F 2 and 3 proteins promoted phagocytosis of PBLs more powerfully than the rPf_IL-17A/F1. Furthermore, the rPf_IL-17A/F1, 2 and 3 proteins might activate the NF-κB and MAPK signal pathways by IL-17RA, ACT1, TRAF6, TRAF2, TRAF5 and TAK1, indicating that the three Pf_IL-17A/F proteins may play different roles in promoting inflammatory response.


Asunto(s)
Bagres/genética , Bagres/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Animales , Riñón Cefálico/inmunología , Interleucina-17/química , Interleucina-17/clasificación , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Lipopolisacáridos/farmacología , Peptidoglicano/farmacología , Fitohemaglutininas/farmacología , Poli I-C/farmacología , Bazo/inmunología
2.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244562

RESUMEN

Interleukin-17 (IL-17) cytokine comprises a family of six ligands in mammals with proinflammatory functions, having an important role in autoimmune disorders and against bacterial, viral, and fungal pathogens. While IL-17A and IL-17F ligands are mainly produced by Th cells (Th17 cells), the rest of the ligands are expressed by other immune and non-immune cells and have different functions. The identification of IL-17 ligands in fish has revealed the presence of six members, counterparts to mammalian ones, and a teleost-specific form, the fish IL-17N. However, tissue distribution, the regulation of gene expression, and scarce bioactivity assays point to similar functions compared to mammalian ones, though this yet to be investigated and confirmed. Thus, we have identified seven IL-17 ligands in the teleost European sea bass (Dicentrarchus labrax), for the first time, corresponding to IL-17A/F1, IL-17A/F2, IL-17A/F3, IL-17C1, IL-17C2, IL-17D, and IL-17N, according to the predicted protein sequences and phylogenetic analysis. They are constitutively and widely transcribed in sea bass tissues, with some of them being mainly expressed in the thymus, brain or intestine. Upon in vitro stimulation of head-kidney leucocytes, the mRNA levels of all sea bass IL-17 ligands were up-regulated by phytohemagglutinin treatment, a well-known T cell mitogen, suggesting a major expression in T lymphocytes. By contrast, the infection of sea bass juveniles with nodavirus (NNV), a very pathogenic virus for this fish species, resulted in the up-regulation of the transcription of IL-17C1 in the head-kidney and of IL-17C1 and IL-17D in the brain, the target tissue for NNV replication. By contrast, NNV infection led to a down-regulated transcription of IL-17A/F1, IL-17A/F2, IL-17C1, IL-17C2, and IL-17D in the head-kidney and of IL-17A/F1 and IL-17A/F3 in the brain. The data are discussed accordingly with the IL-17 ligand expression and the immune response under the different situations tested.


Asunto(s)
Lubina/metabolismo , Interleucina-17/clasificación , Interleucina-17/genética , Interleucina-17/metabolismo , Filogenia , Secuencia de Aminoácidos , Animales , Lubina/genética , Lubina/inmunología , Citocinas/metabolismo , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica , Inmunidad Innata , Ligandos , Linfocitos T , Células Th17/metabolismo , Regulación hacia Arriba
3.
Fish Shellfish Immunol ; 97: 554-563, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31887409

RESUMEN

The activator protein-1 (AP-1) plays an important role in inducing the immune effector production in response to cellular stress and bacterial infection. In the present study, an AP-1 was identified from Pacific oyster Crassostrea gigas (designed as CgAP-1) and its function was investigated in response against lipopolysaccharide (LPS) stimulation. CgAP-1 was consisted of 290 amino acids including a Jun domain and a basic region leucine zipper (bZIP) domain. CgAP-1 shared 98.6% similarities with ChAP-1 from oyster C. hongkongensis, and assigned into the branch of invertebrates in the phylogenetic tree. The mRNA transcripts of CgAP-1 gene were detected in all tested tissues with highest expression level in hemocytes, especially in granulocytes. The mRNA expression level of CgAP-1 gene in hemocytes was significantly up-regulated (8.53-fold of that in PBS group, p < 0.01) at 6 h after LPS stimulation. CgAP-1 protein could be translocated into the nucleus of oyster hemocytes after LPS stimulation. The mRNA transcripts of interleukin17s (CgIL17-4 and CgIL17-5) in the hemocytes of CgAP-1-RNAi oysters decreased significantly at 24 h after LPS stimulation, which were 0.37-fold (p < 0.05) and 0.17-fold (p < 0.01) compared with that in EGFP-RNAi oysters, respectively. The results suggested that CgAP-1 played an important role in the immune response of oyster by regulating the expression of CgIL17s.


Asunto(s)
Crassostrea/genética , Crassostrea/inmunología , Regulación de la Expresión Génica , Inmunidad Innata/genética , Interleucina-17/genética , Factor de Transcripción AP-1/genética , Animales , Hemocitos/efectos de los fármacos , Hemocitos/inmunología , Interleucina-17/clasificación , Interleucina-17/inmunología , Lipopolisacáridos , Filogenia , Factor de Transcripción AP-1/metabolismo , Regulación hacia Arriba
5.
J Biol Regul Homeost Agents ; 32(5): 1105-1116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30334403

RESUMEN

Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. Interaction of nascent or established lung tumour cells with various cytokines and infiltrating immune cells has been implicated in lung cancer pathogenesis. In this study, we systematically analysed immunoreactivity for IL-17A, IL-17E and IL-17F and their relevant receptors in the lung sections from non-small cell lung cancer (NSCLC) and normal control. Immunoreactivity for IL-17A, IL-17F, IL-17RA and IL- 17RC, but not IL-17RB was significantly elevated in NSCLC compared with controls, while IL-17E was reduced. The median numbers of infiltrating lymphocytes and neutrophils and global macrophage (CD68) immunoreactivity of phagocytes were also elevated in NSCLC compared with control tissue sections. Furthermore, correlation between the expression of IL-17A and its receptors IL-17RA and IL- 17RC varied according to NSCLC histopathological type. These data suggest that IL-17A, E, F and their receptors IL-17RA, RB, RC may be involved in the pathogenesis of NSCLC. Further understanding of the relationship between the IL-17/IL-17R axis and the tumour inflammatory microenvironment may reveal new therapeutic targets.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Interleucina-17/clasificación , Interleucina-17/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores de Interleucina-17/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/patología , Microambiente Tumoral
6.
Microbiol Immunol ; 62(1): 1-13, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29205464

RESUMEN

Interleukin-17 family cytokines, consisting of six members, participate in immune response in infections and autoimmune and inflammatory diseases. The prototype cytokine of the family, IL-17A, was originally identified from CD4+ T cells which are now termed Th17 cells. Later, IL-17A-producing cells were expanded to include various hematopoietic cells, namely CD8+ T cells (Tc17), invariant NKT cells, γδ T cells, non-T non-B lymphocytes (termed type 3 innate lymphoid cells) and neutrophils. Some IL-17 family cytokines other than IL-17A are also expressed by CD4+ T cells: IL-17E by Th2 cells and IL-17F by Th17 cells. IL-17A and IL-17F induce expression of pro-inflammatory cytokines to induce inflammation and anti-microbial peptides to kill pathogens, whereas IL-17E induces allergic inflammation. However, the functions of other IL-17 family cytokines have been unclear. Recent studies have shown that IL-17B and IL-17C are expressed by epithelial rather than hematopoietic cells. Interestingly, expression of IL-17E and IL-17F by epithelial cells has also been reported and epithelial cell-derived IL-17 family cytokines shown to play important roles in immune responses to infections at epithelial sites. In this review, we summarize current information on hematopoietic cell-derived IL-17A and non-hematopoietic cell-derived IL-17B, IL-17C, IL-17D, IL-17E and IL-17F in infections and propose functional differences between these two categories of IL-17 family cytokines.


Asunto(s)
Citocinas/inmunología , Citocinas/metabolismo , Infecciones/inmunología , Interleucina-17/inmunología , Interleucina-17/metabolismo , Péptidos Catiónicos Antimicrobianos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Células Epiteliales/inmunología , Humanos , Infecciones/microbiología , Infecciones/virología , Inflamación/inmunología , Interleucina-17/clasificación , Células T Asesinas Naturales , Neutrófilos/metabolismo , Receptores de Interleucina-17/inmunología , Receptores de Interleucina-17/metabolismo , Células Th17/inmunología , Células Th2/metabolismo
7.
Acta Neuropathol ; 129(5): 625-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25716179

RESUMEN

Cytokines of the IL-17 family are uniquely placed on the border between immune cells and tissue. Although IL-17 was originally found to induce the activation and mobilization of neutrophils to sites of inflammation, its tissue-specific function is not yet fully understood. The best-studied IL-17 family members, IL-17A and IL-17F, are both typically produced by immune cells such as Th17, γδ T cells and innate lymphoid cells group 3. However, the cells that respond to these cytokines are mostly found in inflamed tissue. As seen in psoriatic skin lesions or in joints of rheumatoid arthritis patients, high levels of IL-17 have been detected in the central nervous system (CNS) during inflammatory responses. Here, we provide a general review of the molecular function of IL-17 and its role in the CNS in particular. Of the different inflammatory conditions of the CNS, we found multiple sclerosis (MS) to be the one most associated with the presence of Th17 cells and IL-17. In particular, many studies using the murine model for MS, experimental autoimmune encephalomyelitis, found a clear association of Th17 and IL-17 with disease severity and progression. We summarize the recent advances made in correlating the presence of IL-17 with impaired blood-brain barrier integrity as well as the activation of astrocytes and microglia and the consequences for disease progression. There is also evidence that IL-17 plays a pathogenic role in the post-ischemic phase of stroke as well as its experimental model. We review the limited but promising data on the sources of post-stroke IL-17 production and its effects on CNS-resident target cells. In addition to MS and stroke, there is also evidence linking high levels of IL-17 to depression, as a frequent comorbidity of several inflammatory diseases, as well as to different types of infections of the CNS. The evidence we supply here suggests that inhibiting the function of the IL-17 cytokine family could have a beneficial effect on pathogenic conditions in the CNS.


Asunto(s)
Enfermedades del Sistema Nervioso Central/inmunología , Enfermedades del Sistema Nervioso Central/patología , Inflamación/inmunología , Interleucina-17/inmunología , Células Th17/inmunología , Animales , Astrocitos/citología , Astrocitos/inmunología , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Depresión/inmunología , Depresión/patología , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Humanos , Inflamación/patología , Interleucina-17/clasificación , Microglía/citología , Microglía/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Factores de Riesgo , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/patología
8.
São Paulo; s.n; s.n; dez. 2013. 114 p. tab, graf, ilus.
Tesis en Portugués | LILACS | ID: biblio-836951

RESUMEN

O tráfego de leucócitos é um processo complexo, dependente da ação de inúmeras substâncias químicas, além da perfeita interação celular. Desta forma, este estudo teve como objetivo avaliar a ação dos GCe e da ANXA1 sobre o eixo SDF-1α/CXCR4 e IL-17/IL-23/G-CSF e sobre a expressão de moléculas de adesão CD18, CD49d e CD62L. Foram utilizados camundongos machos Balb/C selvagens (WT) ou ANXA1-/-. As avaliações foram realizadas em condições basais, na presença de altas concentrações de GCe e na vigência de processo inflamatório, induzidos pela administração de ACTH (5 µg/animal, i.p.) ou pela injeção de LPS (100 µg/kg, i.p.), respectivamente, ou na ausência da ação dos GCe, pela ação do RU 38486 (RU, 10 mg/kg, i.p.). A participação da ANXA1 e do receptor FPR2 foi avaliada pelo pré-tratamento com Ac2-26 (1 mg/Kg, i.p.) ou com BOC2 (10 µg/animal, i.p.) durante 4 dias, 1 vez ao dia. A quantificação total e diferencial das células foi realizada em câmara de Neubauer e em esfregaços corados por May-Grunwald ou citometria de fluxo. As quantificações de CXCR2, CXCR4, FPR2, CD18, CD49d, CD62L e maturação granulocítica (CD11b/Ly6G) em células da medula e da circulação foram realizadas por citometria de fluxo. A expressão de ANXA1 nos tecidos do estomago e do baço foi realizada por western blotting e nas células da medula óssea e sangue circulante foi realizada por imunofluorescência. As quantificações de IL-17, IL-23, G-CSF, SDF-1α e corticosterona foram realizadas por ELISA. A quimiotaxia de neutrófilos da medula óssea e sangue periférico foi ensaiada na placa de quimiotaxia com filtro de poro de 8 µm. A fagocitose de neutrófilos apoptóticos por macrófagos da medula óssea foi avaliada por ensaio in vitro. Para verificar os efeitos do ACTH na migração de neutrófilos no processo inflamatório, foi empregado o modelo de bolsa de ar (100 µg/mL; LPS); e o comportamento dos leucócitos circulantes de animais tratados com ACTH foi avaliado pela técnica de microscopia intravital. Os resultados obtidos, que estão apresentados em quatro temáticas, mostraram que: 1) neutrófilos da medula óssea e sangue periférico expressam ANXA1 no citoplasma e membrana, bem como o receptor FPR2, constitutivamente, e a expressão de ambos é regulada pelos GCe. A ANXA1, via receptor FPR2 expresso em células da medula óssea, controlam a maturação neutrofílica e o tráfego destas células da medula óssea para o sangue. A ANXA1, via interação ao FPR2, controla o clearance de neutrófilos do sangue para a medula óssea, modulando o eixo SDF-1α/CXCR4; 2) A administração do ACTH causa neutrofilia e os neutrófilos circulantes são ANXA1+, CD18+, CD49d+, CD62L+, mostrando que injeção do ACTH in vivo altera o fenótipo destas células na circulação. Estas modificações alteram o comportamento dos neutrófilos na circulação, bem como a migração para a bolsa de ar na vigência de inflamação e para os tecidos de clearance. Estes efeitos podem ser dependentes, pelo menos em parte, da inibição de migração orientada, já que quimiotaxia frente ao fMLP ou ao SDF-1α estavam reduzidas. Ainda, o clearance de neutrófilos é reduzido em animais tratados com o ACTH pela menor atividade fagocítica e secretora dos macrófagos medulares; 3) Animais tratados com RU 38486 e ANXA1-/- mobilizam granulócitos da medula óssea para o sangue circulante e, deste compartimento para o foco de inflamação com maior intensidade que o observado em animais controles. O eixo IL-17/IL-23/G-CSF parece estar envolvido na granulopoiese e na mobilização de neutrófilos para o sangue durante a inflamação, mas não é alvo de ação da ANXA1 e o GCe nesta etapa do processo inflamatório. Adicionalmente, foi observado que na vigência de peritonite, as moléculas de adesão, CD49d e CD62L estão envolvidas no processo de migração de neutrófilos da medula óssea para o sangue. Os resultados aqui obtidos permitem concluir que os GCe e a ANXA1 são relevantes para granulopoiese e tráfego dos neutrófilos da medula óssea em condições fisiológicas e na vigência de processo inflamatório. Ainda, em conjunto com os dados da literatura, os nossos resultados podem sugerir a participação da ANXA1 dos GCe na plasticidade fenotípica dos neutrófilos de acordo com os estímulos a que são submetidos, e podem auxiliar na compreensão dos novos conceitos sobre a produção, tempo de vida, localização e funções de neutrófilos


The traffic leukocytes is a complex process dependent on the action of severals chemical mediators, in addition to perfect cell interaction. Therefore, this study aimed to evaluate the effect of GCe and ANXA1 on SDF-1α/CXCR4 and IL-17/IL-23/G-CSF and on the expression of adhesion molecules CD18, CD49d and CD62L. Balb/C wild type and ANXA1-/- male mice were employed. The analysis were performed at physiological conditions, in the presence of high concentrations of GCe and during of inflammatory process induced by ACTH administration (5 µg/animal, i.p.) or LPS injection (100 µg/kg, i.p.), respectively or in the absence of GCe action, by the action of RU 38486 (RU, 10 mg/kg , i.p.). The involvement of the receptor FPR2 and ANXA1 was assessed by pre-treatment with Ac2-26 (1 mg/kg, i.p.) or BOC2 (10 µg/animal, i.p.) for 4 days, once a day. The quantification of total and differential cell was performed in a Neubauer chamber and stained smears by May-Grunwald and flow cytometry. Quantification of expression of CXCR2, CXCR4, FPR2, CD18, CD49d, CD62L and granulocytic maturation (CD11b/Ly6G) in the bone marrow and circulation were performed by flow cytometry. The expression of ANXA1 on tissues was performed by western blotting and on cells from bone marrow and blood by immunocytochemistry. Quantification of IL-17, IL-23, G-CSF, SDF-1α and corticosterone were performed by ELISA. The chemotaxis of neutrophils from the bone marrow and blood was tested in the chemotaxis chamber with filter pore of 8 microns. The phagocytosis of apoptotic neutrophils by bone marrow macrophages was assessed by in vitro assay. To investigate the effects of ACTH in the migration of neutrophils in the inflammatory process, the model employed was air pouch (100 µg/ ml, LPS), and the behavior of circulating leukocytes from animals treated with ACTH were evaluated by intravital microscopy. The results obtained, which are presented in three sections, showed that: 1) neutrophils from the bone marrow and blood expressed ANXA1 in the cytoplasm and membrane, as well as FPR2, constitutively and the expression of both is regulated by GCe. The ANXA1 via FPR2 receptor expressed in bone marrow cells, controls the neutrophilic maturation and traffic of these cells from the bone marrow into the blood. The ANXA1 via interaction to FPR2 controls the clearance of neutrophils from the blood to the bone marrow by modulating the SDF-1α/CXCR4 axis; 2) the administration of ACTH induces neutrophilia and the circulating neutrophils are ANXA1+, CD18+, CD49d+ and CD62L+, showing that the injection of ACTH in vivo alters the phenotype of these cells in the blood. These modifications alter the behavior of neutrophils in the blood, as well as the migration to the air pouch in the presence of inflammation and to the tissue clearance, and these effects may be dependent, at least in part, on inhibition of migration oriented events, as chemotaxis in response to fMLP or SDF-1α were reduced. Further, the clearance of neutrophils is reduced in animals treated with ACTH due to the lower phagocytic and secretory activity of medullary macrophages; 3) Animals treated with RU 38486 and ANXA1-/- mobilize granulocytes from bone marrow into the blood, and from this compartment to the focus of inflammation with higher intensity than that observed in the control group. The axis IL-17/IL-23/G-CSF seems to be involved in granulopoiesis and mobilization of neutrophils into the blood during inflammation, but it is not the target of action of ANXA1 and GCe at this step of inflammatory process. Additionally, it was observed that in the presence of peritonitis, the adhesion molecules, CD49d and CD62L are involved in the migration of neutrophils from the bone marrow into the blood. The results obtained allow concluding that the GCe and ANXA1 are relevant to the granulopoiesis and the traffic of neutrophils from bone marrow under physiological conditions and in the presence of inflammation. Furthermore, together with literature data, the data presented here may suggest the involvement of ANXA1 the GCe in phenotypic plasticity of neutrophils according to the stimuli that are submitted, and may support to understand the new concepts of production, half-life, location and function of neutrophils


Asunto(s)
Animales , Masculino , Ratones , Anexina A1/efectos adversos , Mecanismos Moleculares de Acción Farmacológica , Glucocorticoides/efectos adversos , Neutrófilos/metabolismo , Médula Ósea , Moléculas de Adhesión Celular/farmacología , Receptores CXCR4/clasificación , Interleucina-17/clasificación , Alergia e Inmunología , Interleucina-23/clasificación , Quimiocina CXCL12/clasificación , Inflamación
9.
Cell Signal ; 25(12): 2335-47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23917206

RESUMEN

Inflammation is the immediate protective response of the body to pathogen invasions, allergen challenges, chemical exposures or physical injuries. Acute inflammation usually accompanies with transient infiltration of leukocytes, removal of danger signals and eventually tissue repair, while persistent and uncontrolled inflammation becomes a major stimulator in the progression of many chronic diseases in human, including autoimmune diseases, metabolic disorders and cancer. Interleukin (IL)-17 family is a recent classified subset of cytokines, playing critical roles in both acute and chronic inflammatory responses. In this review, we will summarize recent progresses on the signalings of this family cytokines and their impacts on the inflammatory responses or disorders.


Asunto(s)
Inflamación/inmunología , Interleucina-17/inmunología , Transducción de Señal , Animales , Asma/inmunología , Asma/patología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Humanos , Infecciones/inmunología , Infecciones/patología , Inflamación/patología , Interleucina-17/análisis , Interleucina-17/clasificación , Neoplasias/inmunología , Neoplasias/patología
10.
Dev Comp Immunol ; 41(3): 418-28, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23583525

RESUMEN

The molecular and cellular mechanisms leading to immune protection against coccidiosis are complex and include multiple aspects of innate and adaptive immunities. Innate immunity is mediated by various subpopulations of immune cells that recognize pathogen associated molecular patterns (PAMPs) through their pattern recognition receptors (PRRs) leading to the secretion of soluble factors with diverse functions. Adaptive immunity, which is important in conferring protection against subsequent reinfections, involves subtypes of T and B lymphocytes that mediate antigen-specific immune responses. Recently, global gene expression microarray analysis has been used in an attempt to dissect this complex network of immune cells and molecules during avian coccidiosis. These new studies emphasized the uniqueness of the innate immune response to Eimeria infection, and directly led to the discovery of previously uncharacterized host genes and proteins whose expression levels were modulated following parasite infection. Among these is the IL-17 family of cytokines. This review highlights recent progress in IL-17 research in the context of host immunity to avian coccidiosis.


Asunto(s)
Inmunidad Adaptativa , Pollos/inmunología , Coccidiosis/veterinaria , Inmunidad Innata , Interleucina-17/inmunología , Mucosa Intestinal/inmunología , Animales , Pollos/parasitología , Coccidiosis/inmunología , Coccidiosis/parasitología , Eimeria/inmunología , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Parásitos , Interleucina-17/clasificación , Interleucina-17/genética , Mucosa Intestinal/parasitología , Linfocitos/inmunología , Linfocitos/microbiología , Mamíferos/inmunología , Mamíferos/parasitología , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología
11.
J Interferon Cytokine Res ; 29(7): 393-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19450150

RESUMEN

Sleep deprivation is a major health problem in modern society. Deprivation of rapid eye movement (REM) sleep is particularly damaging to cognition and to spatial memory; however, the mechanisms that mediate these deteriorations in function are not known. We explored the possibility that REM sleep deprivation may provoke major changes in the immune system by inducing inflammation. Rats were subjected to 72 h of REM sleep deprivation, and the plasma levels of proinflammatory cytokines (IL-1, IL-1beta, IL-6, IL-17A, and TNF-alpha), an anti-inflammatory cytokine (IL-10), the inflammatory markers homocysteine, corticosterone, and hyperthermia were measured immediately after the deprivation period, and 7 days later. The results indicate that REM sleep deprivation induced an inflammatory response. The levels of the proinflammatory cytokines and markers were significantly elevated in sleep-deprived rats as compared to control rats. After 7 days of recovery, the levels of some markers, including hyperthermia, remained higher in sleep-deprived rats versus the control animals. IL-17A appears to play a pivotal role in coordinating the inflammation. These data shed new light on the mechanism of sleep deprivation-induced inflammation.


Asunto(s)
Inflamación , Interleucina-17/sangre , Privación de Sueño/inmunología , Animales , Biomarcadores/sangre , Corticosterona/sangre , Fiebre , Homocisteína/sangre , Interleucina-17/clasificación , Masculino , Ratas , Ratas Long-Evans , Regulación hacia Arriba
12.
Immunity ; 30(1): 108-19, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19144317

RESUMEN

Interleukin-17A (IL-17A) is a cytokine produced by T helper 17 (Th17) cells and plays important roles in the development of inflammatory diseases. Although IL-17F is highly homologous to IL-17A and binds the same receptor, the functional roles of this molecule remain largely unknown. Here, we demonstrated with Il17a(-/-), Il17f(-/-), and Il17a(-/-)Il17f(-/-) mice that IL-17F played only marginal roles, if at all, in the development of delayed-type and contact hypersensitivities, autoimmune encephalomyelitis, collagen-induced arthritis, and arthritis in Il1rn(-/-) mice. In contrast, both IL-17F and IL-17A were involved in host defense against mucoepithelial infection by Staphylococcus aureus and Citrobacter rodentium. IL-17A was produced mainly in T cells, whereas IL-17F was produced in T cells, innate immune cells, and epithelial cells. Although only IL-17A efficiently induced cytokines in macrophages, both cytokines activated epithelial innate immune responses. These observations indicate that IL-17A and IL-17F have overlapping yet distinct roles in host immune and defense mechanisms.


Asunto(s)
Artritis/inmunología , Infecciones Bacterianas/inmunología , Citocinas/metabolismo , Hipersensibilidad/inmunología , Interleucina-17/clasificación , Interleucina-17/fisiología , Animales , Artritis/genética , Infecciones Bacterianas/prevención & control , Células Cultivadas , Citometría de Flujo , Interleucina-17/genética , Ratones , Ratones Noqueados
13.
Curr Opin Immunol ; 20(3): 353-7, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18439808

RESUMEN

IL-17 is a cytokine that plays an important role in orchestrating innate immune function. In addition, IL-17 has been shown to exacerbate autoimmune diseases. CD4(+) alphabeta T cells, gammadelta T cells, and NK cells all produce IL-17. Th17 cells are a newly defined alphabeta(+) T cell lineage characterized by IL-17 production. However, gammadelta T cells are often the major source of this cytokine. Their response can be very rapid during bacterial infections and has been shown to be protective, but IL-17-producing gammadelta T cells have also been found to exacerbate collagen-induced arthritis. Interestingly, some gammadelta T cells produce IL-17 in response to IL-23 alone, even in naïve animals, suggesting they are already differentiated and may develop differently than CD4(+) alphabeta Th17 cells.


Asunto(s)
Interleucina-17/biosíntesis , Receptores de Antígenos de Linfocitos T gamma-delta/análisis , Subgrupos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Interleucina-17/clasificación , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...