Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.267
Filtrar
1.
Wei Sheng Yan Jiu ; 53(2): 300-309, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604968

RESUMEN

OBJECTIVE: To investigate the effects and possible mechanisms of negative air ions(NAIs) on blood pressure, oxidative stress, and inflammatory status in spontaneous hypertension rats(SHR). METHODS: A total of 60 SHR(half male and half female) were randomly divided into one-month and three-month groups, 30 rats per groups, based on the duration of the intervention. Each group was further randomized into three groups based on the daily intervention time: SHR control group, 2 h NAIs-SHR group, and 6 h NAIs-SHR group, 10 rats per groups. In addition, 20 Wistar Kyoto(WKY)(half male and half female), were randomized into one-month WKY group and three-month WKY group, 10 rats per groups, based on the intervention time. The 2 h NAIs-SHR group and 6 h NAIs-SHR group were exposed to an environment with NAIs concentrations of 4.5×10~4-5×10~4 cm~3 per day for 2 h and 6 h. The WKY group and SHR group were exposed to normal air on a daily basis. Blood pressure of rats in each group was measured every three days, while weight was measured once a week. After sacrificing the rats in the first month and the third month of rearing, wet weight of the organs was weighed. The enzyme linked immunosorbent assay(ELISA) was used to detect 8-hydroxylated deoxyguanosine(8-OHdG), interleukin-6(IL-6), interleukin-8(IL-8), tumor necrosis factor-α(TNF-α), nitric oxide(NO) and endothelin-1(ET-1) levels. Reactive oxygen species(ROS) detection kit was used to detect ROS level. Malondialdehyde(MDA) and superoxide dismutase(SOD), glutathione(GSH) and glutathione disulfide(GSSG) were measured by colorimetric analysis. HE staining was conducted to observe the histopathological morphological changes of the thoracic aorta in each group, and Western blot was conducted to detect the thoracic aortap38 mitogen-activated protein kinase(p38 MAPK), extracellular signal-regulated kinases(ERK), c-Jun n-terminal kinase(JNK), c-fos proteins, c-jun proteins and their phosphorylated proteins level. RESULTS: The weight of WKY male mice in the same week age group was higher than that of SHR control group, and there was no significant difference in the weight between the other groups. The coefficient of heart in SHR control group(4.66±0.48) was higher than that in WKY group(3.73±0.15)(P<0.05), while there were no significant differences in the coefficients of brain, kidney, liver and spleen among the groups. Blood pressure in WKY group at the same age was lower than that in SHR group, and blood pressure in SHR control group at 2-5 and 8-11 weeks was higher than that in 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). HE staining showed that the internal, middle and external membranes of thoracic aorta in 2 h NAIs-SHR group and 6 h NAIs-SHR group were improved to varying degrees compared with those in SHR control group, including disordered internal membrane structure, thickened middle membrane and broken external membrane. In terms of oxidative stress levels, compared with the SHR control group, the ROS(0.66%±0.17%, 0.49%±0.32%) and 8-OHdG((48.29±8.00) ng/mL, (33.13±14.67)ng/mL) levels were lower in the 6 h NAIs-SHR group(P<0.05), while the GSH/GSSG ratio was higher in the one-month 6 h NAIs-SHR group(10.08±4.93). Compared with the 2 h NAIs-SHR group, the ROS level(0.99%±0.19%) was lower in the 6 h NAIs-SHR group(P<0.05). In terms of inflammatory factor levels, compared with the SHR control group, the IL-8 levels((160.44±56.54) ng/L, (145.77±38.39) ng/L) were lower in the 6 h NAIs-SHR group(P<0.05), while the ET-1 level((249.55±16.98) ng/L) was higher in the one-month WKY group. There was no significant difference in NO levels among the groups. The relative expression of p-p38 protein in the thoracic aorta of rats in the one-month SHR control group was lower than that in the WKY group(P<0.05). The relative expression of p-p38 and p-c-fos proteins in the thoracic aorta of rats at three-months was higher in the SHR control group than in the 2 h NAIs-SHR and 6 h NAIs-SHR groups(P<0.05). CONCLUSION: The intervention of NAIs at a concentration of 4.5×10~4-5×10~4/cm~3 may regulate the partial oxidation and inflammatory state of SHR rats through the ROS/MAPK/AP1 signaling pathway, thereby reducing their blood pressure level.


Asunto(s)
Hipertensión , Interleucina-8 , Femenino , Ratas , Masculino , Ratones , Animales , Ratas Endogámicas SHR , Presión Sanguínea , Ratas Endogámicas WKY , Interleucina-8/metabolismo , Interleucina-8/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/farmacología , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Especies Reactivas de Oxígeno , Estrés Oxidativo , Inflamación
2.
Breast Dis ; 43(1): 37-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38552109

RESUMEN

BACKGROUND: Breast cancer tumor microenvironment (TME) is a promising target for immunotherapy. Autophagy, and cancer stem cells (CSCs) maintenance are essential processes involved in tumorigenesis, tumor survival, invasion, and treatment resistance. Overexpression of angiogenic chemokine interleukin-8 (IL-8) in breast cancer TME is associated with oncogenic signaling pathways, increased tumor growth, metastasis, and poor prognosis. OBJECTIVE: Thus, we aimed to investigate the possible anti-tumor effect of neutralizing antibodies against IL-8 by evaluating its efficacy on autophagic activity and breast CSC maintenance. METHODS: IL-8 monoclonal antibody supplemented tumor tissue culture systems from 15 females undergoing mastectomy were used to evaluate the expression of LC3B as a specific biomarker of autophagy and CD44, CD24 as cell surface markers of breast CSCs using immunofluorescence technique. RESULTS: Our results revealed that anti-IL-8 mAb significantly decreased the level of LC3B in the cultured tumor tissues compared to its non-significant decrease in the normal breast tissues.Anti-IL-8 mAb also significantly decreased the CD44 expression in either breast tumors or normal cultured tissues. While it caused a non-significant decrease in CD24 expression in cultured breast tumor tissue and a significant decrease in its expression in the corresponding normal ones. CONCLUSIONS: Anti-IL-8 monoclonal antibody exhibits promising immunotherapeutic properties through targeting both autophagy and CSCs maintenance within breast cancer TME.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Interleucina-8/metabolismo , Interleucina-8/farmacología , Línea Celular Tumoral , Microambiente Tumoral , Mastectomía , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/metabolismo , Células Madre Neoplásicas/metabolismo , Autofagia
3.
Cell Biochem Funct ; 42(2): e3979, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481004

RESUMEN

Obesity is an established risk factor for the development and progression of prostate cancer (PC). This study used adipose conditioned media (ACM) from differentiated adipocytes to assess its effect on PC development and aggressiveness. Due to limited research on ACM's impact on isolated PC stem cells (PCSCs), we also examined CD44+ PCSCs. ACM notably boosted interleukin-1ß (IL-1ß), IL-6, and IL-8 production in normal prostate epithelial cells and LNCaP cells. It also increased IL-6 and IL-8 production in PC3 and CD44+ LNCaP cells, and IL-1ß and IL-6 production in CD44+ PC3 cells. This indicates that ACM induces the production of inflammatory cytokines in both cancer and prostate epithelial cells. Furthermore, ACM promoted proliferation in androgen receptor (AR)-negative PC3 cells, CD44+ PC3 PCSCs, and nonmalignant RWPE cells, without affecting AR-positive LNCaP cells. In addition, ACM-enhanced invasion and migration potential in both PC3 and CD44+ PC3 cells. Western blot analysis indicated the involvement of NF-κB and AKT pathways in ACM-induced proliferation in PC3 cells and NF-κB in PCSCs. In ACM-treated PC3 cells, E-cadherin was downregulated, while N-cadherin, Snail, vimentin, fibronectin, and Twist were upregulated, suggesting ACM-induced invasion via classical epithelial-to-mesenchymal transition (EMT) pathways. In response to ACM, PCSCs exhibited increased expression of E-cadherin, Snail, and vimentin, which are partial EMT markers promoting stemness and resistance to apoptosis. In addition, increased expressions of Nanog, Oct3/4, survivin, and Bcl-2 were observed. Although the molecules we studied have diverse effects on cellular regulation, our data emphasize obesity's multifaceted role in promoting and aggressing PC, notably affecting PCSC populations.


Asunto(s)
FN-kappa B , Neoplasias de la Próstata , Masculino , Humanos , FN-kappa B/metabolismo , Medios de Cultivo Condicionados/farmacología , Vimentina , Línea Celular Tumoral , Interleucina-6 , Interleucina-8/farmacología , Neoplasias de la Próstata/metabolismo , Cadherinas/metabolismo , Obesidad , Células Madre Neoplásicas/metabolismo , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal
4.
J Cell Mol Med ; 28(4): e18185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38396325

RESUMEN

Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Interleucina-8 , Neoplasias Pulmonares , Animales , Ratones , Antígenos CD , Antígenos de Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Interleucina-8/genética , Interleucina-8/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , FN-kappa B , Humanos
5.
Curr Mol Pharmacol ; 17: e18761429254358, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38389423

RESUMEN

AIM: To investigate the effects and mechanism of Ginsenoside Compound K (GCK) on psoriasis, focusing on the glucocorticoid receptor (GR) in keratinocytes. METHODS: An imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was generated to evaluate the anti-inflammatory effect of GCK. Hematoxylin and eosin (H&E) staining was used to assess skin pathological changes. Protein expression of K17 and p-p65 in mice skin was assayed by immunohistochemical. Protein expression and phosphorylation of p65 IκB were assayed by Western blot. Protein expression of K1, K6, K10, K16, K17, and GR were assayed by Western blot and immunofluorescence. Enzyme-linked immunosorbent assay (ELISA) was used to determine cytokine levels of TNF-α, IL-6, CXCL-8, and ICAM-1. Real-time polymerase chain reaction (RT-PCR) was used to quantify TNF-α, IL-6, IL-8, and ICAM-1 mRNA expression. Cell viability was determined by Cell Counting Kit-8(CCK-8) assay. A high-content cell-imaging system was used to assay cell proliferation. Nuclear translocation of p65 and GR was assayed by imaging flow cytometry and immunofluorescence microscopy. Small interfering RNA was used to confirm the role of GR in the anti-inflammatory and immunoregulatory effect of GCK in normal human epidermal keratinecytes (NHEKs). RESULTS: GCK reduced the psoriasis area, severity index, and epidermal thickening in IMQ-induced mice. GCK significantly attenuated the mRNA levels of IL-6, IL-8, TNF-α, and ICAM-1 and reduced epidermal hyperproliferation in the skin of IMQ-induced mice. GCK inhibited in vitro activation of NF-κB, leading to attenuated release of inflammatory mediators (IL-6, IL-8, TNF-α, and ICAM-1) and suppression of NHEK hyperproliferation and abnormal differentiation. These inhibitory effects of GCK were diminished by GR silencing in NHEKs. CONCLUSION: GCK suppressed psoriasis-related inflammation by suppressing keratinocyte activation, which may be related to promoting GR nuclear translocation and inhibiting NF-κB activation. In summary, GCK appears to be a GR activator and a promising therapeutic candidate for antipsoriatic agents.


Asunto(s)
Ginsenósidos , Molécula 1 de Adhesión Intercelular , Psoriasis , Humanos , Animales , Ratones , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/farmacología , Molécula 1 de Adhesión Intercelular/uso terapéutico , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapéutico , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacología , Interleucina-8/uso terapéutico , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Psoriasis/patología , Queratinocitos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Imiquimod/efectos adversos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , ARN Mensajero/metabolismo
6.
Stem Cell Rev Rep ; 20(3): 816-826, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340274

RESUMEN

Mesenchymal stromal cells (MSCs) grown in high-density monolayers (sheets) are promising vehicles for numerous bioengineering applications. When MSC sheets are maintained in prolonged cultures, they undergo rapid senescence, limiting their downstream efficacy. Although rapamycin is a potential agent that can inhibit senescence in cell cultures, no study has investigated rapamycin's effect on MSCs grown in high-density culture and its effect on downstream target gene expression. In this study, placental-derived MSCs (PMSCs) were seeded at high density to generate PMSC sheets in 24 hours and were then treated with rapamycin or vehicle for up to 7 days. Autophagy activity, cell senescence and apoptosis, cell size and granularity, and senescence-associated cytokines (IL-6 and IL-8) were analyzed. Differential response in gene expression were assessed via microarray analysis. Rapamycin significantly increased PMSC sheet autophagy activity, inhibited cellular senescence, decreased cell size and granularity at all timepoints. Rapamycin also significantly decreased the number of cells in late apoptosis at day 7 of sheet culture, as well as caspase 3/7 activity at all timepoints. Notably, while rapamycin decreased IL-6 secretion, increased IL-8 levels were observed at all timepoints. Microarray analysis further confirmed the upregulation of IL-8 transcription, as well as provided a list of 396 genes with 2-fold differential expression, where transforming growth factor-ß (TGF-ß) signaling were identified as important upregulated pathways. Rapamycin both decreased senescence and has an immunomodulatory action of PMSCs grown in sheet culture, which will likely improve the chemotaxis of pro-healing cells to sites of tissue repair in future bioengineering applications.


Asunto(s)
Células Madre Mesenquimatosas , Sirolimus , Femenino , Humanos , Embarazo , Sirolimus/farmacología , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-8/farmacología , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Interleucina-6/metabolismo , Placenta/metabolismo
7.
Hum Vaccin Immunother ; 20(1): 2304372, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38314761

RESUMEN

The mechanisms of Pythium insidiosum-antigen (PIA) immunotherapy activating a patient's immune system are unknown. We evaluated the interleukin-8 (IL-8) serum levels during P. insidiosum infection and after vaccination with PIA in vascular pythiosis cases. Furthermore, we studied the anti-P. insidiosum activity of neutrophils stimulated with various concentrations of PIA ex vivo in 3 strains of P. insidiosum isolated from vascular pythiosis patients. IL-8 serum levels were evaluated using the ELISA technique. We assessed the effect of PIA-stimulated neutrophils on the viability of zoospores using MTT assay, visualized neutrophil extracellular trap (NET) formation via microscopy, and measured the levels of double-stranded DNA (dsDNA) using PicoGreen dsDNA quantitation assay in 3 strains of P. insidiosum isolated from vascular pythiosis patients. Serum levels of IL-8 gradually lowered from the early to the end phases of vaccination with PIA among the surviving group of vascular pythiosis cases. Neutrophils stimulated with 0.01 µg/ml PIA reduced zoospore viability significantly compared to PIA-unstimulated neutrophils for strain 1 and strain 3 (p < .05). Neutrophils stimulated with 0.01, 0.1, 1, and 10 µg/ml PIA exhibited significantly lower zoospore viability than PIA-unstimulated neutrophils for strain 2 (p < .05). IL-8 can be used as a biomarker for monitoring vascular pythiosis cases treated with the PIA vaccine. Also, anti-P. insidiosum activity of PIA-stimulated neutrophils was probably due to the disruption of cellular activity in zoospores rather than the mechanisms based on the formation of NETs.


Asunto(s)
Pitiosis , Pythium , Animales , Humanos , Interleucina-8/farmacología , Pythium/genética , Pitiosis/terapia , Neutrófilos , Ensayo de Inmunoadsorción Enzimática
8.
BMC Biol ; 22(1): 27, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317219

RESUMEN

BACKGROUND: Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39 °C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37 °C, by using RNAseq and physiological assays including in vivo experiments. RESULTS: In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes in both species. Altered metabolic features at 39 °C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39 °C, they upregulated ethanol oxidation-related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα, and pmsß genes at 39 °C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphyloxantin production, and a decrease in biofilm formation at 39 °C. On the side of PA monocultures, we observed an increase in extracellular lipase and protease and biofilm formation at 39 °C along with a decrease in the motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in vitro and in vivo. S. aureus monocultured at 39οC showed a decrease in cellular invasion and an increase in IL-8-but not in IL-6-production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39 °C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37 and 39 °C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39 °C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39 °C comparing with 37 °C. CONCLUSIONS: Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.


Asunto(s)
Infecciones por Pseudomonas , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulencia/fisiología , Pseudomonas aeruginosa , Temperatura , Interleucina-6/metabolismo , Interleucina-6/farmacología , Interleucina-8/metabolismo , Interleucina-8/farmacología , Infecciones por Pseudomonas/microbiología , ARN Mensajero/metabolismo , Biopelículas , Infecciones Estafilocócicas/microbiología
9.
J Cell Physiol ; 239(4): e31184, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197464

RESUMEN

Interleukin-38 (IL-38), recently recognized as a cytokine with anti-inflammatory properties that mitigate type 2 diabetes, has been associated with indicators of insulin resistance and nonalcoholic fatty liver disease (NAFLD). This study investigated the impact of IL-38 on hepatic lipid metabolism and endoplasmic reticulum (ER) stress. We assessed protein expression levels using Western blot analysis, while monodansylcadaverine staining was employed to detect autophagosomes in hepatocytes. Oil red O staining was utilized to examine lipid deposition. The study revealed elevated serum IL-38 levels in high-fat diet (HFD)-fed mice and IL-38 secretion from mouse keratinocytes. IL-38 treatment attenuated lipogenic lipid accumulation and ER stress markers in hepatocytes exposed to palmitate. Furthermore, IL-38 treatment increased AMP-activated protein kinase (AMPK) phosphorylation and autophagy. The effects of IL-38 on lipogenic lipid deposition and ER stress were nullified in cultured hepatocytes by suppressing AMPK through small interfering (si) RNA or 3-methyladenine (3MA). In animal studies, IL-38 administration mitigated hepatic steatosis by suppressing the expression of lipogenic proteins and ER stress markers while reversing AMPK phosphorylation and autophagy markers in the livers of HFD-fed mice. Additionally, AMPK siRNA, but not 3MA, mitigated IL-38-enhanced fatty acid oxidation in hepatocytes. In summary, IL-38 alleviates hepatic steatosis through AMPK/autophagy signaling-dependent attenuation of ER stress and enhancement of fatty acid oxidation via the AMPK pathway, suggesting a therapeutic strategy for treating NAFLD.


Asunto(s)
Estrés del Retículo Endoplásmico , Interleucina-8 , Enfermedad del Hígado Graso no Alcohólico , Obesidad , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Palmitatos/farmacología , ARN Interferente Pequeño/metabolismo , Interleucina-8/farmacología , Interleucina-8/uso terapéutico
10.
Anticancer Agents Med Chem ; 24(5): 358-371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37957911

RESUMEN

BACKGROUND: Thiazine, a 6-membered distinctive heterocyclic motif with sulfur and nitrogen atoms, is one of the heterocyclic compounds that functions as a core scaffold in a number of medicinally significant molecules. Small thiazine-based compounds may operate simultaneously on numerous therapeutic targets and by employing a variety of methods to halt the development, proliferation, and vasculature of cancer cells. We have, herein, reported a series of substituted 1,4 benzothiazines as potential anticancer agents for the treatment of lung cancer. METHODS: In order to synthesize 2,3-disubstituted-1,4 benzothiazines in good yield, a facile green approach for the oxidative cycloaddition of 2-amino benzenethiol and 1,3-dicarbonyls employing a catalytic amount of ceric ammonium nitrate has been devised. All the molecules have been characterized by spectral analysis and tested for anticancer activity against the A-549 lung cancer cell line using various functional assays. Further in silico screening of compound 3c against six crucial inflammatory molecular targets, such as Il1-α (PDB ID: 5UC6), Il1- ß (PDB ID: 6Y8I), Il6 (PDB ID: 1P9M), vimentin (PDB ID: 3TRT), COX-2 (PDB ID: 5KIR), Il8 (PDB ID: 5D14), and TNF-α (PDB ID: 2AZ5), was done using AutoDock tool. RESULTS: Among the synthesized compounds, propyl 3-methyl-3,4-dihydro-2H-benzo[b][1,4]thiazine-2- carboxylate (3c) was found to be most active based on cell viability assays using A-549 lung cancer cell line and was found to effectively downregulate various pro-inflammatory genes, like Il1-α, Il1-ß, Il6, vimentin, COX-2, Il8, and TNF-α in vitro. The ability of the molecule to effectively suppress the proliferation and migration of lung cancer cells in vitro has been further demonstrated by the colony formation unit assay and wound healing assay. Molecular docking analysis showed the maximal binding affinity (- 7.54 kcal/mol) to be exhibited by compound 3c against IL8. CONCLUSION: A green unconventional route for the synthesis of 2,3-disubstituted-1,4 benzothiazines has been developed. All the molecules were screened for their activity against lung cancer and the data suggested that the presence of an additional unbranched alkyl group attached to the thiazine ring increased their activity. Also, in vitro and in silico modeling confirmed the anti-cancer efficiency of compound 3c, encouraging the exploration of such small molecules against cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Tiazinas , Humanos , Simulación del Acoplamiento Molecular , Vimentina , Relación Estructura-Actividad , Línea Celular Tumoral , Ciclooxigenasa 2 , Interleucina-6 , Interleucina-8/farmacología , Factor de Necrosis Tumoral alfa , Antineoplásicos/química , Tiazinas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales
11.
Eur J Appl Physiol ; 124(1): 257-267, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37453973

RESUMEN

PURPOSE: Cytokines are released as part of an inflammatory reaction in response to strength exercise to initiate muscle repair and morphological adaptations. Whether hormonal fluctuations induced by the menstrual cycle or oral contraceptives affect inflammatory responses to strength exercise remains unknown. Therefore, we aimed to compare the response of cytokines after acute strength exercise in naturally menstruating women and oral contraceptive users. METHODS: Naturally menstruating women (MC, n = 13, 24 ± 4 years, weekly strength training: 4.3 ± 1.7 h) and women using a monophasic combined pill (> 9 months) (OC, n = 8, 22 ± 3 years, weekly strength training: 4.5 ± 1.9 h) were recruited. A one-repetition-maximum (1RM) test and strength exercise in the squat (4 × 10 repetitions, 70%1RM) was performed in the early follicular phase or pill free interval. Concentrations of oestradiol, IL-1ß, IL-1ra, IL-6, IL-8, and IL-10 were assessed before (pre), directly after (post) and 24 h after (post24) strength exercise. RESULTS: IL-1ra increased from pre to post (+ 51.1 ± 59.4%, p = 0.189) and statistically decreased from post to post24 (- 20.5 ± 13.5%, p = 0.011) only in OC. Additionally, IL-1ß statistically decreased from post to post24 (- 39.6 ± 23.0%, p = 0.044) only in OC. There was an interaction effect for IL-1ß (p = 0.038) and concentrations were statistically decreased at post24 in OC compared to MC (p = 0.05). IL-8 increased across both groups from post to post24 (+ 66.6 ± 96.3%, p = 0.004). CONCLUSION: We showed a differential regulation of IL-1ß and IL-1ra between OC users in the pill-free interval and naturally cycling women 24 h after strength exercise, while there was no effect on other cytokines. Whether this is associated with previously shown compromised morphological adaptations remains to be investigated.


Asunto(s)
Citocinas , Proteína Antagonista del Receptor de Interleucina 1 , Femenino , Humanos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-8/farmacología , Ciclo Menstrual , Anticonceptivos Orales/farmacología
12.
Chem Biol Drug Des ; 103(1): e14367, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37880153

RESUMEN

Uric acid nephropathy (UAN) is caused by purine metabolism disorders. UAN rat models were established in SD rats. The modeling rats received different doses of hispidulin (10, 20, 50 mg/mL). Febuxostat was applied as the positive drug. Serum creatinine, uric acid (UA), and cystatin-C (cys-C), neutrophil gelatinase-associated lipocalin (NGAL), IL-1ß, IL-8, TNF-α, and IL-6 in rats were detected. HE staining was done to assess kidney injury. UAN rats possessed prominent levels of serum creatinine, UA, cys-C, and NGAL, which all reduced after hispidulin treatment in a dose-dependent manner. HE staining determined the improvement of kidney injury after treatment, which was comparable to the efficacy of febuxostat. Hispidulin inhibited the release of IL-1ß, IL-8, TNF-α, and IL-6 in UAN rats. Hispidulin enhanced autophagy in UAN rats, presenting as ascending LC3II/I ratio and downregulated P62. The increasing trend of inflammasome-related proteins of NLRP3 and Caspase-1 was changeovered by hispidulin. The activation of NF-kB signaling was intercepted by hispidulin in UAN rats. Hispidulin can effectively improve renal function injury caused by UAN in rats. The mechanism may be related to the inhibition of inflammatory response induced by autophagy and activation of NF-κB pathway.


Asunto(s)
Flavonas , Enfermedades Renales , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacología , Lipocalina 2/efectos adversos , Lipocalina 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacología , Interleucina-8/uso terapéutico , Creatinina/farmacología , Creatinina/uso terapéutico , Febuxostat/efectos adversos , Interleucina-6/metabolismo , Ratas Sprague-Dawley , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Transducción de Señal
13.
J Biol Inorg Chem ; 29(1): 101-112, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38148422

RESUMEN

The aim of this study was to investigate the effect and possible underlying mechanism of La2(CO3)3 deposition on GI mucosal inflammation. Our results showed that La2(CO3)3 can dissolve in artificial gastric fluids and form lanthanum phosphate (LaPO4) precipitates with an average size of about 1 µm. To mimic the intestinal mucosa and epithelial barrier, we established a Caco-2/THP-1 macrophage coculture model and a Caco-2 monoculture model, respectively. Our findings demonstrated that the medium of THP-1 macrophages stimulated by LaPO4 particles can damage the Caco-2 monolayer integrity in the coculture model, while the particles themselves had no direct impact on the Caco-2 monolayer integrity in the monoculture model. We measured values of trans-epithelial electrical resistance and detected images using a laser scanning confocal microscope. These results indicate that continuous stimulation of LaPO4 particles on macrophages can lead to a disruption of intestinal epithelium integrity. In addition, LaPO4 particles could stimulate THP-1 macrophages to secrete both IL-1ß and IL-8. Although LaPO4 particles can also promote Caco-2 cells to secrete IL-8, the secretion was much lower than that produced by THP-1 macrophages. In summary, the deposition of La2(CO3)3 has been shown to activate macrophages and induce damage to intestinal epithelial cells, which may exacerbate inflammation in patients with chronic kidney disease. Therefore, patients taking lanthanum carbonate, especially those with gastrointestinal mucosal inflammation, should be mindful of the potential for drug deposition in the GI system.


Asunto(s)
Lantano , Insuficiencia Renal Crónica , Humanos , Lantano/farmacología , Células CACO-2 , Técnicas de Cocultivo , Interleucina-8/farmacología , Macrófagos , Inflamación/inducido químicamente
14.
Biomed Pharmacother ; 168: 115655, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806090

RESUMEN

Secretion of translationally controlled tumor protein (TCTP) was found in body fluids during the late phase of allergic reactions, implicating TCTP in allergic diseases. Furthermore, blocking TCTP has been shown to be helpful in treating asthma and allergies in animal models. The objectives of this study were to produce anti-TCTP monoclonal antibodies (mAbs), test their ability to inhibit the cytokine-like function of dimeric TCTP (dTCTP) in vitro and to assess their therapeutic effects in a murine model of ovalbumin (OVA)-induced airway inflammation. We first verified the inhibitory effects of 4 anti-TCTP mAbs on dTCTP-induced secretion of IL-8 in BEAS-2B cells. To investigate the anti-inflammatory effect of anti-TCTP mAbs on allergic airway inflammation, we treated OVA-sensitized mice with anti-TCTP mAbs before OVA challenge. The changes in bronchoalveolar lavage fluid (BALF) cells, IL-4, IL-5, and IL-13 levels in both BALF and lung homogenates, plasma levels of OVA-specific IgE, and lung tissues were analyzed. We found that JEW-M449 anti-TCTP mAb bound to the flexible loop of TCTP and significantly inhibited dTCTP-induced IL-8 release, making it the most effective inhibitor in our study. We also found that treatment with JEW-M449 significantly reduced the infiltration of inflammatory cells and suppressed the OVA-induced upregulation of type 2 cytokines in both BALF and lung homogenates in a dose-dependent manner. In addition, JEW-M449 significantly attenuated the degree of goblet cell hyperplasia and mucus secretion. Our results demonstrate that specific targeting of the flexible loop of TCTP is a potent strategy for treating airway inflammatory diseases.


Asunto(s)
Asma , Hipersensibilidad , Animales , Ratones , Interleucina-8/farmacología , Proteína Tumoral Controlada Traslacionalmente 1 , Asma/metabolismo , Hipersensibilidad/tratamiento farmacológico , Pulmón , Inflamación/metabolismo , Citocinas/metabolismo , Líquido del Lavado Bronquioalveolar , Ovalbúmina/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
15.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762330

RESUMEN

Interleukin (IL)-8 plays a vital role in regulating inflammation and breast cancer formation by activating CXCR1/2. We previously designed an antagonist peptide, (RF16), to inhibits the activation of downstream signaling pathways by competing with IL-8 in binding to CXCR1/2, thereby inhibiting IL-8-induced chemoattractant monocyte binding. To evaluate the effect of the RF16 peptide on breast cancer progression, triple-negative MDA-MB-231 and ER-positive MCF-7 breast cancer cells were used to investigate whether RF16 can inhibit the IL-8-induced breast cancer metastasis. Using growth, proliferation, and invasiveness assays, the results revealed that RF16 reduced cell proliferation, migration, and invasiveness in MDA-MB-231 cells. The RF16 peptide also regulated the protein and mRNA expressions of epithelial-mesenchymal transition (EMT) markers in IL-8-stimulated MDA-MB-231 cells. It also inhibited downstream IL-8 signaling and the IL-8-induced inflammatory response via the mitogen-activated protein kinase (MAPK) and Phosphoinositide 3-kinase (PI3K) pathways. In the xenograft tumor mouse model, RF16 synergistically reinforces the antitumor efficacy of docetaxel by improving mouse survival and retarding tumor growth. Our results indicate that RF16 significantly inhibited IL-8-stimulated cell growth, migration, and invasion in MDA-MB-231 breast cancer cells by blocking the activation of p38 and AKT cascades. It indicated that the RF16 peptide may serve as a new supplementary drug for breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Femenino , Células MDA-MB-231 , Fosfatidilinositol 3-Quinasas/metabolismo , Interleucina-8/genética , Interleucina-8/farmacología , Transducción de Señal , Neoplasias de la Mama/patología , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias de la Mama Triple Negativas/patología
16.
Biomed Pharmacother ; 166: 115294, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567071

RESUMEN

BACKGROUND AND OBJECTIVE: Cytokine storm (CS) is a major contributor to the fatal outcome of severe infectious diseases, including Covid-19. Treatment with the complement (C) C5 inhibitor eculizumab was beneficial in end-stage Covid-19, however, the mechanism of this effect is unknown. To clarify this, we analyzed the relationship between C activation and production of pro-inflammatory cytokines in a PBMC model. METHODS: Human PBMC with or without 20 % autologous serum was incubated with C3a, C5a, zymosan or zymosan-pre-activated serum (ZAS) for 24 h with or without eculizumab or the C5a receptor antagonist, DF2593A. C activation (sC5b-9) and 9 inflammatory cytokines were measured by ELISA. RESULTS: In serum-free unstimulated PBMC only IL-8 release could be measured during incubation. Addition of C5a increased IL-8 secretion only, ZAS induced both IL-2 and IL-8, while zymosan led to significant production of all cytokines, most abundantly IL-8. In the presence of serum the above effects were greatly enhanced, and the zymosan-induced rises of IL-1α, IL-1ß IFN-γ and IL-2 were significantly attenuated by eculizumab but not by DF2593a. CONCLUSIONS: These data highlight the complexity of interrelationships between C activation and cytokine secretion under different experimental conditions. The clinically relevant findings include the abundant formation of the chemokine IL-8, which was stimulated by C5a, and the suppression of numerous inflammatory cytokines by eculizumab, which explains its therapeutic efficacy in severe Covid-19. These data strengthen the clinical relevance of the applied PBMC model for drug screening against CS, enabling the separation of complex innate immune cross-talks.


Asunto(s)
COVID-19 , Citocinas , Humanos , Citocinas/farmacología , Interleucina-2/farmacología , Zimosan/farmacología , Leucocitos Mononucleares , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Interleucina-8/farmacología , Interferón gamma/farmacología
17.
Discov Med ; 35(176): 264-274, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272093

RESUMEN

BACKGROUND: Amonafide (Amo), due to hematotoxicity and digestive tract symptoms, the clinical application of which is limited. Several studies have reported that chemotherapy side effects are closely related to cellular senescence accumulation. Our study aims to examine whether amonafide causes senescence in human umbilical vein endothelial cell (HUVEC) lines and investigate its mechanisms associated with senescence. METHODS: The experiments of expression of genes and proteins associated with aging were carried out with HUVEC cell lines. The experiments were divided into a control group and an amonafide group with different days. The HUVEC senescence cells were detected by SA-ß-Gal staining, Western blotting detected the protein levels of p16, p53, AMPK (Adenosine 5'-Monophosphate (AMP)-Activated Protein Kinase), mTOR (mechanistic Target of Rapamycin), p62, and LC3 (microtubule-associated protein1 light chain 3, MAP1LC3). Fluorescence detected the expression of mRFP (monomeric Red Fluorescent Protein)-GFP (Green Fluorescent Protein)-LC3 and LC3 puncta of HUVEC cells. RT-qPCR (Real-Time Quantitative Polymerase Chain Reaction) tested the expressions of p53, p21, IL (Interleukin)-1ß, IL-6 (Interleukin-6), IL-8 (Interleukin-8), and MCP-1 (Monocyte Chemoattractant Protein-1). CCK-8 (Cell Counting Kit-8) assessed the HUVEC cell viability. RESULTS: Here, we reported that amonafide resulted in an increased proportion of SA-ß-Gal positive cells, high expression of aging-related proteins (p53 p < 0.05; p16 p < 0.05), and aging-related genes (p53 p < 0.05; p21 p < 0.05; IL-1ß p < 0.05; IL-6 p < 0.05; IL-8 p < 0.05; MCP-1 p < 0.05) on the 3rd day. Mechanistically, amonafide could cause an increase in the levels of the mTOR (p < 0.05) on days 1 and 3, and p62 protein (p < 0.05) on day 1, and a decline in LC3II (microtubule-associated protein1 light chain 3Ⅱ)/LC3I levels (p < 0.05) on day 3, which is associated with the regulation of senescence. Additionally, the viability of HUVECs (human umbilical vein endothelial cells) was significantly inhibited by amonafide starting with a concentration of 0.8 µm (p < 0.05). CONCLUSIONS: We first discovered that amonafide caused normal cellular senescence in our experiments. Amonafide-induced cellular aging by inhibiting autophagy and activating the mTOR pathway. The findings may offer new strategies for managing adverse reactions to amonafide.


Asunto(s)
Interleucina-8 , Proteína p53 Supresora de Tumor , Humanos , Células Endoteliales de la Vena Umbilical Humana/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacología , Proteína p53 Supresora de Tumor/análisis , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Interleucina-6/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Senescencia Celular/fisiología
18.
Sci Rep ; 13(1): 10057, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344543

RESUMEN

In this report, we evaluated the effect of the pasteurization (P) process of mother's own milk (MOM) on the miRNA content of extracellular vesicles (EVs) and its impact on innate immune responses. Differences in size or particle number were not observed upon pasteurization of MOM (PMOM). However, significant differences were observed in the EV membrane marker CD63 and miRNA profiles. miRNA sequencing identified 33 differentially enriched miRNAs between MOMEV and PMOMEV. These changes correlated with significant decreases in the ability of PMOMEV to modulate IL-8 secretion in intestinal Caco2 cells where only MOMEV were able to decrease IL-8 secretion in presence of TNFα. While EVs from MOMEV and PMOMEV were both able to induce a tolerogenic M2-like phenotype in THP-1 macrophages, a significant decrease in the transcript levels of IL-10 and RNA sensing genes was observed with PMOMEV. Together, our data indicates that pasteurization of MOM impacts the integrity and functionality of MOMEV, decreasing its EVs-mediated immunomodulatory activity. This data provides biomarkers that may be utilized during the optimization of milk processing to preserve its bioactivity.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/farmacología , Leche Humana , Pasteurización , Células CACO-2 , Interleucina-8/genética , Interleucina-8/farmacología , Vesículas Extracelulares/genética
19.
Eur Spine J ; 32(6): 2048-2058, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37071156

RESUMEN

PURPOSE: This study aims to analyze the effect of pro-inflammatory cytokine-stimulated human annulus fibrosus cells (hAFCs) on the sensitization of dorsal root ganglion (DRG) cells. We further hypothesized that celecoxib (cxb) could inhibit hAFCs-induced DRG sensitization. METHODS: hAFCs from spinal trauma patients were stimulated with TNF-α or IL-1ß. Cxb was added on day 2. On day 4, the expression of pro-inflammatory and neurotrophic genes was evaluated using RT-qPCR. Levels of prostaglandin E2 (PGE-2), IL-8, and IL-6 were measured in the conditioned medium (CM) using ELISA. hAFCs CM was then applied to stimulate the DRG cell line (ND7/23) for 6 days. Then, calcium imaging (Fluo4) was performed to evaluate DRG cell sensitization. Both spontaneous and bradykinin-stimulated (0.5 µM) calcium responses were analyzed. The effects on primary bovine DRG cell culture were performed in parallel to the DRG cell line model. RESULTS: IL-1ß stimulation significantly enhanced the release of PGE-2 in hAFCs CM, while this increase was completely suppressed by 10 µM cxb. hAFCs revealed elevated IL-6 and IL-8 release following TNF-α and IL-1ß treatment, though cxb did not alter this. The effect of hAFCs CM on DRG cell sensitization was influenced by adding cxb to hAFCs; both the DRG cell line and primary bovine DRG nociceptors showed a lower sensitivity to bradykinin stimulation. CONCLUSION: Cxb can inhibit PGE-2 production in hAFCs in an IL-1ß-induced pro-inflammatory in vitro environment. The cxb applied to the hAFCs also reduces the sensitization of DRG nociceptors that are stimulated by the hAFCs CM.


Asunto(s)
Anillo Fibroso , Humanos , Animales , Bovinos , Interleucina-1beta/farmacología , Celecoxib/farmacología , Nociceptores , Factor de Necrosis Tumoral alfa , Interleucina-6 , Bradiquinina/farmacología , Calcio/farmacología , Interleucina-8/farmacología , Células Cultivadas , Ganglios Espinales
20.
Int Immunopharmacol ; 119: 110161, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37060811

RESUMEN

Dental caries or trauma can expose human dental pulp cells (DPCs) to various oral microorganisms, which play an important role in the development of an innate immune response. In the present study, we examined the expression of Toll-like receptors (TLRs) for sensing microbe-associated molecular patterns in human DPCs. Interestingly, real-time PCR analysis demonstrated that TLR3 is the most highly expressed among 10 different TLRs in human DPCs. Poly(I:C), a representative TLR3 ligand mimicking viral double-stranded RNA, potently induced IL-8 expression in a time- and dose-dependent manner. Concordantly, poly(I:C) treatment substantially increased the expression of pro-inflammatory cytokines and chemokines such as IL-6, CCL2, and CXCL10. Human DPCs transfected with TLR3 siRNA exhibited decreased IL-8 production compared with non-targeting siRNA-transfected cells, suggesting that the expression of poly(I:C)-induced inflammatory cytokines is dependent on TLR3. IL-8 secretion induced by poly(I:C) was down-regulated by MAP kinase inhibitors, indicating that the MAP kinase pathway contributes to IL-8 production. Furthermore, C/EBPß and NF-κB were essential transcriptional factors for poly(I:C)-induced IL-8 expression, as demonstrated by the transient transfection and reporter gene assay. Since lipoproteins are known as major immunostimulatory components of bacteria, human DPCs were treated with poly(I:C) together with Pam2CSK4, a synthetic lipopeptide mimicking bacterial lipoproteins. Pam2CSK4 and poly(I:C) co-treatment synergistically increased IL-8 production in comparison to Pam2CSK4 or poly(I:C) alone, implying that co-infection of viruses and bacteria can synergistically induce inflammatory responses in the dental pulp. Taken together, these results suggest that human DPCs potentially sense and respond to viral double-stranded RNAs, leading to effective induction of innate immune responses.


Asunto(s)
Caries Dental , Receptor Toll-Like 3 , Humanos , Receptor Toll-Like 3/metabolismo , ARN Bicatenario , Interleucina-8/genética , Interleucina-8/farmacología , Pulpa Dental/metabolismo , Citocinas/metabolismo , Inmunidad Innata , Poli I-C/farmacología , Receptores Toll-Like/genética , ARN Interferente Pequeño/farmacología , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...