Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.170
Filtrar
1.
Vet Res ; 55(1): 56, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715098

RESUMEN

The chemokine CXCL8, also known as the neutrophil chemotactic factor, plays a crucial role in mediating inflammatory responses and managing cellular immune reactions during viral infections. Porcine reproductive and respiratory syndrome virus (PRRSV) primarily infects pulmonary alveolar macrophages (PAMs), leading to acute pulmonary infections. In this study, we explored a novel long non-coding RNA (lncRNA), termed lnc-CAST, situated within the Cxcl8 gene locus. This lncRNA was found to be highly expressed in porcine macrophages. We observed that both lnc-CAST and CXCL8 were significantly upregulated in PAMs following PRRSV infection, and after treatments with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Furthermore, we noticed a concurrent upregulation of lnc-CAST and CXCL8 expression in lungs of PRRSV-infected pigs. We then determined that lnc-CAST positively influenced CXCL8 expression in PAMs. Overexpression of lnc-CAST led to an increase in CXCL8 production, which in turn enhanced the migration of epithelial cells and the recruitment of neutrophils. Conversely, inhibiting lnc-CAST expression resulted in reduced CXCL8 production in PAMs, leading to decreased migration levels of epithelial cells and neutrophils. From a mechanistic perspective, we found that lnc-CAST, localized in the nucleus, facilitated the enrichment of histone H3K27ac in CXCL8 promoter region, thereby stimulating CXCL8 transcription in a cis-regulatory manner. In conclusion, our study underscores the pivotal critical role of lnc-CAST in regulating CXCL8 production, offering valuable insights into chemokine regulation and lung damage during PRRSV infection.


Asunto(s)
Histonas , Interleucina-8 , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , ARN Largo no Codificante , Animales , Porcinos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Interleucina-8/metabolismo , Interleucina-8/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Histonas/metabolismo , Histonas/genética , Macrófagos Alveolares/virología , Macrófagos Alveolares/metabolismo , Regulación de la Expresión Génica
2.
J Clin Invest ; 134(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747289

RESUMEN

CXCL8 and other chemokines have been implicated in tissue inflammation and are attractive candidates for therapeutic targeting to treat human disease.


Asunto(s)
Interleucina-8 , Humanos , Interleucina-8/metabolismo , Interleucina-8/genética , Animales , Inflamación/inmunología , Inflamación/metabolismo
3.
PLoS One ; 19(4): e0300687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593151

RESUMEN

Fabry disease (FD) is a lysosomal storage disorder of X-linked inheritance. Mutations in the α-galactosidase A gene lead to cellular globotriaosylceramide (Gb3) depositions and triggerable acral burning pain in both sexes as an early FD symptom of unknown pathophysiology. We aimed at elucidating the link between skin cells and nociceptor sensitization contributing to FD pain in a sex-associated manner. We used cultured keratinocytes and fibroblasts of 27 adult FD patients and 20 healthy controls. Epidermal keratinocytes and dermal fibroblasts were cultured and immunoreacted to evaluate Gb3 load. Gene expression analysis of pain-related ion channels and pro-inflammatory cytokines was performed in dermal fibroblasts. We further investigated electrophysiological properties of induced pluripotent stem cell (iPSC) derived sensory-like neurons of a man with FD and a healthy man and incubated the cells with interleukin 8 (IL-8) or fibroblast supernatant as an in vitro model system. Keratinocytes displayed no intracellular, but membrane-bound Gb3 deposits. In contrast, fibroblasts showed intracellular Gb3 and revealed higher gene expression of potassium intermediate/small conductance calcium-activated potassium channel 3.1 (KCa 3.1, KCNN4) in both, men and women with FD compared to controls. Additionally, cytokine expression analysis showed increased IL-8 RNA levels only in female FD fibroblasts. Patch-clamp studies revealed reduced rheobase currents for both iPSC neuron cell lines incubated with IL-8 or fibroblast supernatant of women with FD. We conclude that Gb3 deposition in female FD patient skin fibroblasts may lead to increased KCa3.1 activity and IL-8 secretion. This may result in cutaneous nociceptor sensitization as a potential mechanism contributing to a sex-associated FD pain phenotype.


Asunto(s)
Enfermedad de Fabry , Adulto , Femenino , Humanos , Masculino , alfa-Galactosidasa/genética , Citocinas , Enfermedad de Fabry/complicaciones , Enfermedad de Fabry/genética , Enfermedad de Fabry/diagnóstico , Fibroblastos/metabolismo , Interleucina-8/genética , Dolor , Piel/metabolismo
4.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613672

RESUMEN

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Asunto(s)
Eosina Amarillenta-(YS)/análogos & derivados , Interleucina-8 , Fosfatidiletanolaminas , Preeclampsia , Embarazo , Humanos , Femenino , Interleucina-8/genética , Fosfatidilinositol 3-Quinasas , Preeclampsia/genética , Placenta , Arterias , Medios de Cultivo Condicionados , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis
5.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668900

RESUMEN

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Asunto(s)
Quimiocina CCL2 , Quimiocina CXCL10 , Imidazoles , Interleucina-8 , Receptor Toll-Like 7 , Factor de Transcripción ReIA , Humanos , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/biosíntesis , Quimiocina CXCL10/genética , Quimiocina CXCL10/biosíntesis , Imidazoles/farmacología , Interleucina-8/genética , Interleucina-8/biosíntesis , Neuroblastoma , Neuronas/efectos de los fármacos , Neuronas/metabolismo , FN-kappa B/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673992

RESUMEN

Lipopolysaccharides (LPSs) have been reported to be important factors in promoting the progression of hepatocellular carcinoma (HCC), but the corresponding molecular mechanisms remain to be elucidated. We hypothesize that epiregulin (EREG), an epidermal growth factor (EGF) family member derived from hepatic stellate cells (HSCs) and activated by LPS stimulation, is a crucial mediator of HCC progression with epidermal growth factor receptor (EGFR) expression in the tumor microenvironment. We used a mouse xenograft model of Huh7 cells mixed with half the number of LX-2 cells, with/without intraperitoneal LPS injection, to elucidate the role of EREG in LPS-induced HCC. In the mouse model, LPS administration significantly enlarged the size of xenografted tumors and elevated the expression of EREG in tumor tissues compared with those in negative controls. Moreover, CD34 immunostaining and the gene expressions of angiogenic markers by a reverse transcription polymerase chain reaction revealed higher vascularization, with increased interleukin-8 (IL-8) expression in the tumors of the mice group treated with LPS compared to those without LPS. Our data collectively suggested that EREG plays an important role in the cancer microenvironment under the influence of LPS to increase not only the tumor cell growth and migration/invasion of EGFR-positive HCC cells but also tumor neovascularization via IL-8 signaling.


Asunto(s)
Carcinoma Hepatocelular , Epirregulina , Receptores ErbB , Lipopolisacáridos , Neoplasias Hepáticas , Transducción de Señal , Microambiente Tumoral , Epirregulina/metabolismo , Epirregulina/genética , Animales , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Ratones , Línea Celular Tumoral , Neovascularización Patológica/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Interleucina-8/metabolismo , Interleucina-8/genética , Proliferación Celular , Masculino , Células Estrelladas Hepáticas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
Front Immunol ; 15: 1367019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686389

RESUMEN

Background: Although hyperuricemia is not always associated with acute gouty arthritis, uric acid is a significant risk factor for gout. Therefore, we investigated the specific mechanism of uric acid activity. Methods: Using the gout-associated transcriptome dataset GSE160170, we conducted differential expression analysis to identify differentially expressed genes (DEGs). Moreover, we discovered highly linked gene modules using weighted gene coexpression network analysis (WGCNA) and evaluated their intersection. Subsequently, we screened for relevant biomarkers using the cytoHubba and Mcode algorithms in the STRING database, investigated their connection to immune cells and constructed a competitive endogenous RNA (ceRNA) network to identify upstream miRNAs and lncRNAs. We also collected PBMCs from acute gouty arthritis patients and healthy individuals and constructed a THP-1 cell gout inflammatory model, RT-qPCR and western blotting (WB) were used to detect the expression of C-X-C motif ligand 8 (CXCL8), C-X-C motif ligand 2 (CXCL2), and C-X-C motif ligand 1 (CXCL1). Finally, we predicted relevant drug targets through hub genes, hoping to find better treatments. Results: According to differential expression analysis, there were 76 upregulated and 28 downregulated mRNAs in GSE160170. Additionally, WGCNA showed that the turquoise module was most strongly correlated with primary gout; 86 hub genes were eventually obtained upon intersection. IL1ß, IL6, CXCL8, CXCL1, and CXCL2 are the principal hub genes of the protein-protein interaction (PPI) network. Using RT-qPCR and WB, we found that there were significant differences in the expression levels of CXCL8, CXCL1, and CXCL2 between the gouty group and the healthy group, and we also predicted 10 chemicals related to these proteins. Conclusion: In this study, we screened and validated essential genes using a variety of bioinformatics tools to generate novel ideas for the diagnosis and treatment of gout.


Asunto(s)
Biomarcadores , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Gota , Humanos , Gota/genética , Quimiocina CXCL1/genética , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Biología Computacional/métodos , Transcriptoma , Células THP-1 , Interleucina-8/genética , MicroARNs/genética , Ácido Úrico , Mapas de Interacción de Proteínas , Regulación de la Expresión Génica , Bases de Datos Genéticas , Artritis Gotosa/genética
8.
Protein Expr Purif ; 219: 106480, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588871

RESUMEN

Mpox is a zoonotic disease that was once endemic in Africa countries caused by mpox virus. However, cases recently have been confirmed in many non-endemic countries outside of Africa. The rapidly increasing number of confirmed mpox cases poses a threat to the international community. In-depth studies of key viral factors are urgently needed, which will inform the design of multiple antiviral agents. Mpox virus A41L gene encodes a secreted protein, A41, that is nonessential for viral replication, but could affect the host response to infection via interacting with chemokines. Here, mpox virus A41 protein was expressed in Sf9 cells, and purified by affinity chromatography followed by gel filtration. Surface plasmon resonance spectroscopy showed that purified A41 binds a certain human chemokine CXCL8 with the equilibrium dissociation constant (KD) being 1.22 × 10-6 M. The crystal structure of mpox virus A41 protein was solved at 1.92 Å. Structural analysis and comparison revealed that mpox virus A41 protein adopts a characteristic ß-sheet topology, showing minor differences with that of vaccinia virus. These preliminary structural and functional studies of A41 protein from mpox virus will help us better understand its role in chemokine subversion, and contributing to the knowledge to viral chemokine binding proteins.


Asunto(s)
Proteínas Virales , Humanos , Proteínas Virales/genética , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/biosíntesis , Proteínas Virales/aislamiento & purificación , Cristalografía por Rayos X , Animales , Interleucina-8/genética , Interleucina-8/química , Interleucina-8/metabolismo , Expresión Génica , Células Sf9 , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Yatapoxvirus/genética , Yatapoxvirus/química , Yatapoxvirus/metabolismo
9.
J Cancer Res Clin Oncol ; 150(4): 209, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656555

RESUMEN

PURPOSE: The receptor-interacting protein kinase (RIPK4) has an oncogenic function in melanoma, regulates NF-κB and Wnt/ß-catenin pathways, and is sensitive to the BRAF inhibitors: vemurafenib and dabrafenib which lead to its decreased level. As its role in melanoma remains not fully understood, we examined the effects of its downregulation on the transcriptomic profile of melanoma. METHODS: Applying RNA-seq, we revealed global alterations in the transcriptome of WM266.4 cells with RIPK4 silencing. Functional partners of RIPK4 were evaluated using STRING and GeneMANIA databases. Cells with transient knockdown (via siRNA) and stable knockout (via CRISPR/Cas9) of RIPK4 were stimulated with TNF-α. The expression levels of selected proteins were assessed using Western blot, ELISA, and qPCR. RESULTS: Global analysis of gene expression changes indicates a complex role for RIPK4 in regulating adhesion, migration, proliferation, and inflammatory processes in melanoma cells. Our study highlights potential functional partners of RIPK4 such as BIRC3, TNF-α receptors, and MAP2K6. Data from RIPK4 knockout cells suggest a putative role for RIPK4 in modulating TNF-α-induced production of IL-8 and IL-6 through two distinct signaling pathways-BIRC3/NF-κB and p38/MAPK. Furthermore, increased serum TNF-α levels and the correlation of RIPK4 with NF-κB were revealed in melanoma patients. CONCLUSION: These data reveal a complex role for RIPK4 in regulating the immune signaling network in melanoma cells and suggest that this kinase may represent an alternative target for melanoma-targeted adjuvant therapy.


Asunto(s)
Interleucina-6 , Interleucina-8 , Melanoma , Factor de Necrosis Tumoral alfa , Humanos , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Melanoma/tratamiento farmacológico , Interleucina-6/genética , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
10.
Cancer Lett ; 591: 216893, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636892

RESUMEN

The oncogenic properties of Nucleobindin2 (NUCB2) have been observed in various cancer types. Nevertheless, the precise understanding of the biological functions and regulatory mechanisms of NUCB2 in osteosarcoma remains limited. This investigation reported that NUCB2 was significantly increased upon glucose deprivation-induced metabolic stress. Elevated NUCB2 suppressed glucose deprivation-induced cell death and reactive oxygen species (ROS) increase. Depletion of NUCB2 resulted in a reduction in osteosarcoma cell proliferation as well as metastatic potential in vitro and in vivo. Mechanically, NUCB2 ablation suppressed C-X-C Motif Chemokine Ligand 8 (CXCL8) expression which then reduced programmed cell death 1 ligand 1 (PD-L1) expression and stimulated anti-tumor immunity mediated through cytotoxic T cells. Importantly, a combination of NUCB2 depletion with anti-PD-L1 treatment improved anti-tumor T-cell immunity in vivo. Moreover, we further demonstrated that NUCB2 interacted with NUCKS1 to inhibit its degradation, which is responsible for the transcriptional regulation of CXCL8 expression. Altogether, the outcome emphasizes the function of NUCB2 in osteosarcoma and indicates that NUCB2 elevates osteosarcoma progression and immunosuppressive microenvironment through the NUCKS1/CXCL8 pathway.


Asunto(s)
Neoplasias Óseas , Proteínas de Unión al Calcio , Progresión de la Enfermedad , Interleucina-8 , Osteosarcoma , Microambiente Tumoral , Osteosarcoma/inmunología , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/genética , Humanos , Animales , Línea Celular Tumoral , Interleucina-8/metabolismo , Interleucina-8/genética , Ratones , Neoplasias Óseas/inmunología , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Microambiente Tumoral/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proliferación Celular , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Regulación Neoplásica de la Expresión Génica , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Linfocitos T Citotóxicos/inmunología , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo
11.
Viruses ; 16(4)2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675986

RESUMEN

Porcine circovirus type 2 (PCV2) infection can cause immunosuppressive diseases in pigs. Vascular endothelial cells (VECs), as the target cells for PCV2, play an important role in the immune response and inflammatory regulation. Endothelial IL-8, which is produced by porcine hip artery endothelial cells (PIECs) infected with PCV2, can inhibit the maturation of monocyte-derived dendritic cells (MoDCs). Here, we established a co-culture system of MoDCs and different groups of PIECs to further investigate the PCV2-induced endothelial IL-8 signaling pathway that drives the inhibition of MoDC maturation. The differentially expressed genes related to MoDC maturation were mainly enriched in the NF-κB and JAK2-STAT3 signaling pathways. Both the NF-κB related factor RELA and JAK2-STAT3 signaling pathway related factors (IL2RA, JAK, STAT2, STAT5, IL23A, IL7, etc.) decreased significantly in the IL-8 up-regulated group, and increased significantly in the down-regulated group. The expression of NF-κB p65 in the IL-8 up-regulated group was reduced significantly, and the expression of IκBα was increased significantly. Nuclear translocation of NF-κB p65 was inhibited, while the nuclear translocation of p-STAT3 was increased in MoDCs in the PCV2-induced endothelial IL-8 group. The results of treatment with NF-κB signaling pathway inhibitors showed that the maturation of MoDCs was inhibited and the expression of IL-12 and GM-CSF at mRNA level were lower. Inhibition of the JAK2-STAT3 signaling pathway had no significant effect on maturation, and the expression of IL-12 and GM-CSF at mRNA level produced no significant change. In summary, the NF-κB signaling pathway is the main signaling pathway of MoDC maturation, and is inhibited by the PCV2-induced up-regulation of endothelial-derived IL-8.


Asunto(s)
Circovirus , Interleucina-8 , Transducción de Señal , Enfermedades de los Porcinos , Animales , Diferenciación Celular , Células Cultivadas , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/veterinaria , Circovirus/fisiología , Circovirus/inmunología , Técnicas de Cocultivo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Endoteliales/virología , Células Endoteliales/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , FN-kappa B/metabolismo , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/metabolismo
12.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608448

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Asunto(s)
Núcleo Celular , Citoplasma , Proteína 1 Similar a ELAV , Interleucina-1beta , Interleucina-8 , Factor de Transcripción STAT3 , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Línea Celular Tumoral , Óxidos S-Cíclicos/farmacología , Transporte de Proteínas , Transducción de Señal , Transporte Activo de Núcleo Celular , Sistemas CRISPR-Cas
13.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674080

RESUMEN

Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , FN-kappa B , Humanos , FN-kappa B/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Rayos X , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Transferencia Lineal de Energía , Hipoxia de la Célula/efectos de la radiación , Carbono , Supervivencia Celular/efectos de la radiación , Tolerancia a Radiación , Interleucina-8/metabolismo , Interleucina-8/genética
14.
Helicobacter ; 29(2): e13072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686467

RESUMEN

BACKGROUND: Helicobacter pylori infection is one of the main causes of gastric cancer. thioredoxin-1 (Trx1) and arginase (RocF) expressed by H. pylori were found to be closely related to its pathogenicity. However, whether Trx1 and RocF can be used in clinical screening of highly pathogenic H. pylori and the pathogenesis of trx1 high expressing H. pylori remain still unknown. MATERIALS AND METHODS: We investigated the expression level of H. pylori trx1 and H. pylori rocF in human gastric antrum tissues using reverse transcription and quantitative real-time PCR (RT-qPCR) and clarified the clinical application value of trx1 and rocF for screening highly pathogenic H. pylori. The pathogenic mechanism of Trx1 were further explored by RNA-seq of GES-1 cells co-cultured with trx1 high or low expressing H. pylori. Differentially expressed genes and signaling pathways were validated by RT-qPCR, Enzyme-linked immunosorbent assay (ELISA), western blot, immunohistochemistry and immunofluorescence. We also assessed the adherence of trx1 high and low expressing H. pylori to GES-1 cells. RESULTS: We found that H. pylori trx1 and H. pylori rocF were more significantly expressed in the gastric cancer and peptic ulcer group than that in the gastritis group and the parallel diagnosis of H. pylori trx1 and H. pylori rocF had high sensitivity. The trx1 high expressing H. pylori had stronger adhesion ability to GES-1 cells and upregulated the interleukin (IL) 23A/nuclear factor κappaB (NF-κB)/IL17A, IL6, IL8 pathway. CONCLUSIONS: H. pylori trx1 and H. pylori rocF can be used in clinical screening of highly pathogenic H. pylori and predicting the outcome of H. pylori infection. The trx1 high expressing H. pylori has stronger adhesion capacity and promotes the development of gastric diseases by upregulating the activation of NF-κB signaling pathway.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Interleucina-8 , FN-kappa B , Tiorredoxinas , Humanos , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Helicobacter pylori/patogenicidad , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , FN-kappa B/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Regulación hacia Arriba , Transducción de Señal , Arginasa/metabolismo , Arginasa/genética , Línea Celular , Gastropatías/microbiología , Gastropatías/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
15.
Cancer Lett ; 588: 216784, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38458594

RESUMEN

Glycolytic metabolism is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and tumor-associated stromal cells play important roles in tumor metabolism. We previously reported that tumor-associated macrophages (TAMs) facilitate PDAC progression. However, little is known about whether TAMs are involved in regulating glycolysis in PDAC. Here, we found a positive correlation between CD68+ TAM infiltration and FDG maximal standardized uptake (FDG SUVmax) on PET-CT images of PDAC. We discovered that the glycolytic gene set was prominently enriched in the high TAM infiltration group through Gene Set Enrichment Analysis using The Cancer Genome Atlas database. Mechanistically, TAMs secreted IL-8 to promote GLUT3 expression in PDAC cells, enhancing tumor glycolysis both in vitro and in vivo, whereas this effect could be blocked by the IL-8 receptor inhibitor reparixin. Furthermore, IL-8 promoted the translocation of phosphorylated STAT3 into the nucleus to activate the GLUT3 promoter. Overall, we demonstrated that TAMs boosted PDAC cell glycolysis through the IL-8/STAT3/GLUT3 signaling pathway. Our cumulative findings suggest that the abrogation of TAM-induced tumor glycolysis by reparixin might exhibit an antitumor impact and offer a potential therapeutic target for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sulfonamidas , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Fluorodesoxiglucosa F18/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Macrófagos/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Transducción de Señal , Glucólisis , Línea Celular Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
16.
J Immunol Res ; 2024: 8553447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550710

RESUMEN

Background: Serine proteinase inhibitors, clade B, member 3 (SerpinB3) and B4 are highly similar in amino acid sequences and associated with inflammation regulation. We investigated SerpinB3 and B4 expression and their roles in chronic rhinosinusitis with nasal polyps (CRSwNP). Methods: The expression of SerpinB3 and B4 in nasal mucosa tissues, brush cells, and secretions from CRSwNP patients was measured, and their regulation by inflammatory cytokines were investigated. Their functions were also analyzed using air-liquid interface (ALI)-cultured primary human nasal epithelial cells (HNECs) and transcriptomic analysis. Results: Both SerpinB3 and B4 expression was higher in nasal mucosa, brush cells, and secretions from eosinophilic (E) CRSwNP and nonECRSwNP patients than in healthy controls. Immunofluorescence staining indicated that SerpinB3 and B4 were primarily expressed in epithelial cells and their expression was higher in CRSwNP patients. SerpinB3 and B4 expression was upregulated by interleukin-4 (IL-4), IL-5, IL-6, and IL-17a. Transcriptomic analysis identified differentially expressed genes (DEGs) in response to recombinant SerpinB3 and B4 stimulation. Both the DEGs of SerpinB3 and B4 were associated with disease genes of nasal polyps and inflammation in DisGeNET database. Pathway enrichment indicated that downregulated DEGs of SerpinB3 and B4 were both enriched in cytokine-cytokine receptor interactions, with CXCL8 as the hub gene in the protein-protein interaction networks. Furthermore, CXCL8/IL-8 expression was downregulated by recombinant SerpinB3 and B4 protein in ALI-cultured HNECs, and upregulated when knockdown of SerpinB3/B4. Conclusion: SerpinB3/B4 expression is upregulated in nasal mucosa of CRSwNP patients. SerpinB3/B4 may play an anti-inflammatory role in CRSwNP by inhibiting the expression of epithelial cell-derived CXCL8/IL-8.


Asunto(s)
Pólipos Nasales , Rinitis , Rinosinusitis , Sinusitis , Humanos , Rinitis/complicaciones , Rinitis/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Pólipos Nasales/patología , Temefós/metabolismo , Mucosa Nasal/patología , Citocinas/metabolismo , Receptores de Citocinas/metabolismo , Sinusitis/complicaciones , Células Epiteliales , Inflamación/metabolismo , Enfermedad Crónica
17.
Hum Cell ; 37(3): 782-800, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509270

RESUMEN

Inflammation and immune responses play important roles in cancer development and prognosis. We identified 59 upregulated inflammation- and immune-related genes (IIRGs) in clear cell renal cell carcinoma (ccRCC) from The Cancer Genome Atlas database. Among the upregulated IIRGs, nucleotide binding oligomerization domain 2 (NOD2), PYD and CARD domain (PYCARD) were also confirmed to be upregulated in the Oncomine database and in three independent GEO data sets. Tumor immune infiltration resource database analysis revealed that NOD2 and PYCARD levels were significantly positively correlated with infiltration levels of B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages and dendritic cells. Multivariate Cox hazards regression analysis indicated that based on clinical variables (age, gender, tumor grade, pathological TNM stage), NOD2, but not PYCARD, was an independent, unfavorable ccRCC prognostic biomarker. Functional enrichment analyses (GSEA) showed that NOD2 was involved in innate immune responses, inflammatory responses, and regulation of cytokine secretion. Meanwhile, mRNA and protein levels of NOD2 were elevated in four ccRCC cell lines (786-O, ACHN, A498 and Caki-1), and its knockdown significantly inhibited IL-8 secretion, thereby inhibiting ccRCC cell proliferation and invasion. Furthermore, results showed that miR-20b-5p targeted NOD2 to alleviate NOD2-mediated IL-8 secretion. In conclusion, NOD2 is a potential prognostic biomarker for ccRCC and the miR-20b-5p/NOD2/IL-8 axis may regulate inflammation- and immune-mediated tumorigenesis in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/genética , Pronóstico , Interleucina-8/genética , Inflamación/genética , Neoplasias Renales/genética , Biomarcadores , MicroARNs/genética , Proteína Adaptadora de Señalización NOD2/genética
18.
J Cell Mol Med ; 28(4): e18185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38396325

RESUMEN

Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Interleucina-8 , Neoplasias Pulmonares , Animales , Ratones , Antígenos CD , Antígenos de Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Interleucina-8/genética , Interleucina-8/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , FN-kappa B , Humanos
19.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396634

RESUMEN

Neutrophilic inflammation is a prominent feature of chronic obstructive pulmonary disease (COPD). Developmental endothelial locus-1 (Del-1) has been reported to limit excessive neutrophilic inflammation by inhibiting neutrophil adhesion to the vascular endothelial cells. However, the effects of Del-1 in COPD are not known. We investigated the role of Del-1 in the pathogenesis of COPD. Del-1 protein expression was decreased in the lungs of COPD patients, especially in epithelial cells and alveolar macrophages. In contrast to human lung tissue, Del-1 expression was upregulated in lung tissue from mice treated with cigarette smoke extracts (CSE). Overexpression of Del-1 significantly suppressed IL-8 release and apoptosis in CSE-treated epithelial cells. In contrast, knockdown of Del-1 enhanced IL-8 release and apoptosis. In macrophages, overexpression of Del-1 significantly suppressed inflammatory cytokine release, and knockdown of Del-1 enhanced it. This anti-inflammatory effect was mediated by inhibiting the phosphorylation and acetylation of NF-κB p65. Nuclear factor erythroid 2-related factor 2 (Nrf2) activators, such as quercetin, resveratrol, and sulforaphane, increased Del-1 in both cell types. These results suggest that Del-1, mediated by Nrf2, plays a protective role against the pathogenesis of COPD, at least in part through anti-inflammatory and anti-apoptotic effects.


Asunto(s)
Interleucina-8 , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratones , Antiinflamatorios/farmacología , Apoptosis/genética , Células Endoteliales/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-8/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Fumar Tabaco/efectos adversos , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo
20.
Fish Shellfish Immunol ; 148: 109465, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408547

RESUMEN

IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.


Asunto(s)
Lubina , Nocardiosis , Nocardia , Animales , Lubina/genética , Interleucina-8/genética , Interleucina-10/genética , Nocardiosis/genética , Nocardiosis/veterinaria , Aminoácidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...