Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732009

RESUMEN

The interaction between light and phytohormones is crucial for plant growth and development. The practice of supplementing light at night during winter to promote pitaya flowering and thereby enhance yield has been shown to be crucial and widely used. However, it remains unclear how supplemental winter light regulates phytohormone levels to promote flowering in pitaya. In this study, through analyzing the transcriptome data of pitaya at four different stages (NL, L0, L1, L2), we observed that differentially expressed genes (DEGs) were mainly enriched in the phytohormone biosynthesis pathway. We further analyzed the data and found that cytokinin (CK) content first increased at the L0 stage and then decreased at the L1 and L2 stages after supplemental light treatment compared to the control (NL). Gibberellin (GA), auxin (IAA), salicylic acid (SA), and jasmonic acid (JA) content increased during the formation of flower buds (L1, L2 stages). In addition, the levels of GA, ethylene (ETH), IAA, and abscisic acid (ABA) increased in flower buds after one week of development (L2f). Our results suggest that winter nighttime supplemental light can interact with endogenous hormone signaling in pitaya, particularly CK, to regulate flower bud formation. These results contribute to a better understanding of the mechanism of phytohormone interactions during the induction of flowering in pitaya under supplemental light in winter.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Luz , Reguladores del Crecimiento de las Plantas , Estaciones del Año , Reguladores del Crecimiento de las Plantas/metabolismo , Flores/metabolismo , Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Ipomoea nil/metabolismo , Ipomoea nil/genética , Transcriptoma , Perfilación de la Expresión Génica , Ciclopentanos , Oxilipinas
2.
PLoS One ; 17(10): e0271012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36264987

RESUMEN

The R2R3-MYB transcription factor is one of the largest transcription factor families in plants. R2R3-MYBs play a variety of functions in plants, such as cell fate determination, organ and tissue differentiations, primary and secondary metabolisms, stress and defense responses and other physiological processes. The Japanese morning glory (Ipomoea nil) has been widely used as a model plant for flowering and morphological studies. In the present study, 127 R2R3-MYB genes were identified in the Japanese morning glory genome. Information, including gene structure, protein motif, chromosomal location and gene expression, were assigned to the InR2R3-MYBs. Phylogenetic tree analysis revealed that the 127 InR2R3-MYBs were classified into 29 subfamilies (C1-C29). Herein, physiological functions of the InR2R3-MYBs are discussed based on the functions of their Arabidopsis orthologues. InR2R3-MYBs in C9, C15, C16 or C28 may regulate cell division, flavonol biosynthesis, anthocyanin biosynthesis or response to abiotic stress, respectively. C16 harbors the known anthocyanin biosynthesis regulator, InMYB1 (INIL00g10723), and putative anthocyanin biosynthesis regulators, InMYB2 (INIL05g09650) and InMYB3 (INIL05g09651). In addition, INIL05g09649, INIL11g40874 and INIL11g40875 in C16 were suggested as novel anthocyanin biosynthesis regulators. We organized the R2R3-MYB transcription factors in the morning glory genome and assigned information to gene and protein structures and presuming their functions. Our study is expected to facilitate future research on R2R3-MYB transcription factors in Japanese morning glory.


Asunto(s)
Arabidopsis , Ipomoea nil , Ipomoea nil/genética , Ipomoea nil/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Genes myb , Filogenia , Arabidopsis/genética , Flavonoles/metabolismo
3.
Plant J ; 108(2): 314-329, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34318549

RESUMEN

Flavonoids are specialized metabolites widely distributed across the plant kingdom. They are involved in the growth and survival of plants, conferring the ability to filter ultra-violet rays, conduct symbiotic partnerships, and respond to stress. While many branches of flavonoid biosynthesis have been resolved, recent discoveries suggest missing auxiliary components. These overlooked elements can guide metabolic flux, enhance production, mediate stereoselectivity, transport intermediates, and exert regulatory functions. This review describes several families of auxiliary proteins from across the plant kingdom, including examples from specialized metabolism. In flavonoid biosynthesis, we discuss the example of chalcone isomerase-like (CHIL) proteins and their non-catalytic role. CHILs mediate the cyclization of tetraketides, forming the chalcone scaffold by interacting with chalcone synthase (CHS). Loss of CHIL activity leads to derailment of the CHS-catalyzed reaction and a loss of pigmentation in fruits and flowers. Similarly, members of the pathogenesis-related 10 (PR10) protein family have been found to differentially bind flavonoid intermediates, guiding the composition of anthocyanins. This role comes within a larger body of PR10 involvement in specialized metabolism, from outright catalysis (e.g., (S)-norcoclaurine synthesis) to controlling stereochemistry (e.g., enhancing cis-trans cyclization in catnip). Both CHILs and PR10s hail from larger families of ligand-binding proteins with a spectrum of activity, complicating the characterization of their enigmatic roles. Strategies for the discovery of auxiliary proteins are discussed, as well as mechanistic models for their function. Targeting such unanticipated components will be crucial in manipulating plants or engineering microbial systems for natural product synthesis.


Asunto(s)
Aciltransferasas/metabolismo , Flavonoides/biosíntesis , Liasas Intramoleculares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Aciltransferasas/química , Aciltransferasas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Cannabinoides/biosíntesis , Evolución Molecular , Flavonoides/metabolismo , Humulus/metabolismo , Liasas Intramoleculares/química , Liasas Intramoleculares/genética , Ipomoea nil/genética , Ipomoea nil/metabolismo , Mutación , Proteínas de Plantas/genética , Pliegue de Proteína
4.
Commun Biol ; 4(1): 285, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674689

RESUMEN

In complex structures such as flowers, organ-organ interactions are critical for morphogenesis. The corolla plays a central role in attracting pollinators: thus, its proper development is important in nature, agriculture, and horticulture. Although the intraorgan mechanism of corolla development has been studied, the importance of organ-organ interactions during development remains unknown. Here, using corolla mutants of morning glory described approximately 200 years ago, we show that glandular secretory trichomes (GSTs) regulate floral organ interactions needed for corolla morphogenesis. Defects in GST development in perianth organs result in folding of the corolla tube, and release of mechanical stress by sepal removal restores corolla elongation. Computational modeling shows that the folding occurs because of buckling caused by mechanical stress from friction at the distal side of the corolla. Our results suggest a novel function of GSTs in regulating the physical interaction of floral organs for macroscopic morphogenesis of the corolla.


Asunto(s)
Flores/crecimiento & desarrollo , Ipomoea nil/crecimiento & desarrollo , Desarrollo de la Planta , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Tricomas/crecimiento & desarrollo , Simulación por Computador , Flores/genética , Fricción , Ipomoea nil/genética , Modelos Biológicos , Mutación , Plantas Modificadas Genéticamente/genética , Estrés Mecánico , Tricomas/genética
5.
Plant Sci ; 284: 161-176, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31084869

RESUMEN

Although the stringent response has been known for more than half a century and has been well studied in bacteria, only the research of the past 19 years revealed that the homologous mechanism is conserved in plants. The plant RelA/SpoT Homolog (RSH) genes have been identified and characterized in a limited number of plant species, whereas products of their catalytic activities, (p)ppGpp (alarmones), have been shown to accumulate mainly in chloroplasts. Here, we identified full-length sequences of the Ipomoea nil RSH genes (InRSH1, InRSH2 and InCRSH), determined their copy number in the I. nil genome as well as the structural conservancy between InRSHs and their Arabidopsis and rice orthologs. We showed that InRSHs are differentially expressed in I. nil organ tissues and that only InRSH2 is upregulated in response to salt, osmotic and drought stress. Our results of the E. coli relA/spoT mutant complementation test suggest that InRSH1 is likely a (p)ppGpp hydrolase, InCRSH - synthetase and InRSH2 shows both activities. Finally, we referred our results to the recently published I. nil genomic and proteomic data and uncovered the complexity of the I. nil RSH family as well as potential ways of the InRSH transcriptional regulation.


Asunto(s)
Ipomoea nil/genética , Proteínas de Plantas/genética , Factor de Transcripción ReIA/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Estrés Fisiológico
6.
Transgenic Res ; 27(1): 25-38, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29247330

RESUMEN

Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of I. nil. Using bioinformatics analysis, seven InCCD genes were identified in the I. nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar I. nil cv. AK77 caused the white petals to turn pale yellow. The total amount of carotenoids in the petals of ccd4 plants was increased 20-fold relative to non-transgenic plants. This result indicates that in the petals of I. nil, not only low carotenogenic gene expression but also carotenoid degradation leads to extremely low levels of carotenoids.


Asunto(s)
Dioxigenasas/genética , Flores/fisiología , Ipomoea nil/genética , Pigmentación/genética , Proteínas de Plantas/genética , Sistemas CRISPR-Cas , Carotenoides/genética , Carotenoides/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genoma de Planta , Ipomoea nil/fisiología , Mutagénesis , Filogenia , Pigmentación/fisiología , Plantas Modificadas Genéticamente
7.
Nat Commun ; 7: 13295, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27824041

RESUMEN

Ipomoea is the largest genus in the family Convolvulaceae. Ipomoea nil (Japanese morning glory) has been utilized as a model plant to study the genetic basis of floricultural traits, with over 1,500 mutant lines. In the present study, we have utilized second- and third-generation-sequencing platforms, and have reported a draft genome of I. nil with a scaffold N50 of 2.88 Mb (contig N50 of 1.87 Mb), covering 98% of the 750 Mb genome. Scaffolds covering 91.42% of the assembly are anchored to 15 pseudo-chromosomes. The draft genome has enabled the identification and cataloguing of the Tpn1 family transposons, known as the major mutagen of I. nil, and analysing the dwarf gene, CONTRACTED, located on the genetic map published in 1956. Comparative genomics has suggested that a whole genome duplication in Convolvulaceae, distinct from the recent Solanaceae event, has occurred after the divergence of the two sister families.


Asunto(s)
Genoma de Planta , Ipomoea nil/genética , Análisis de Secuencia de ADN , Secuencia de Bases , Brasinoesteroides/biosíntesis , Elementos Transponibles de ADN/genética , Evolución Molecular , Genes de Plantas , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Transposasas/metabolismo
8.
Genes Genet Syst ; 91(1): 37-40, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27074980

RESUMEN

Floricultural cultivars of the Japanese morning glory (Ipomoea nil) carry transposons of the Tpn1 family as active spontaneous mutagens. Half of the characterized mutations related to floricultural traits were caused by insertion of Tpn1 family elements. In addition, mutations comprising insertions of several bp, presumed to be footprints generated by transposon excisions, were also found. Among these, ca-1 and ca-2 are 7-bp insertions at the same position in the InWDR1 gene, which encodes a multifunctional transcription regulator. InWDR1 enhances anthocyanin pigmentation in blue flowers and red stems, and promotes dark brown seed pigmentation as well as seed-trichome formation. The recessive ca mutants show white flowers and whitish seeds. We characterized here a white flower and whitish seed line that is used as a medicinal herb. The mutant line carries a novel ca allele named ca-3, which is the InWDR1 gene carrying an insertion of a Stowaway-like transposon, InSto1. The ca-3 allele is the first example of a mutation induced by transposons other than those in the Tpn1 family in I. nil. Because InSto1 and the 7-bp putative footprints are inserted at identical positions in InWDR1, ca-3 is likely to be the ancestor of ca-1 and ca-2. According to Japanese historical records on whitish seeds of I. nil, putative ca mutants appeared at the end of the 17th century, at the latest. This is around one hundred years before the appearance of many floricultural mutants. This suggests that ca-3 is one of the oldest mutations, and that its origin is different from that of most floricultural mutations in I. nil.


Asunto(s)
Flores/genética , Ipomoea nil/genética , Pigmentación/genética , Plantas Medicinales/genética , Antocianinas/genética , Antocianinas/metabolismo , Elementos Transponibles de ADN/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ipomoea nil/crecimiento & desarrollo , Mutación , Fenotipo , Plantas Medicinales/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
9.
Plant Cell Physiol ; 57(3): 580-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26858281

RESUMEN

The InMYB1 gene in Japanese morning glory (Ipomoea nil) is a member of the MYB transcription factor family. The promoter of InMYB1 has been reported to induce petal-specific gene expression in Arabidopsis and Eustoma, and has the same function in several other dicotyledonous plants. Most flowers consist of sepals, petals, stamens and a carpel, whose identity establishment is explained by the ABC model. The establishment of the identity of petals is determined by the expression of class A and B genes in whorl 2. The aim of this study was to clarify whether the InMYB1 promoter functions by recognizing whorl position or petal identity by examining its activity in various mutant and transgenic Arabidopsis thaliana plants in which genes related to the ABC model have been modified. In plants defective in class C gene function, the InMYB1 promoter functioned not only in petals generated in whorl 2 but also in petaloid organs generated in whorl 3; while in the plants defective in class B gene function, the InMYB1 promoter did not function in the sepaloid organs generated in whorl 2. Plants overexpressing class A, B and E genes set flowers with petaloid sepals in whorl 1, i.e. the lateral parts were white and looked like petals, while the central parts were green and looked like sepals. The InMYB1 promoter functioned in the lateral white parts but not in the central green parts. These results show that the InMYB1 promoter functions by recognizing petal identity at the cellular level rather than the whorl position. The petal-specific function of the InMYB1 promoter could be used as a marker to identify petaloid cells.


Asunto(s)
Flores/anatomía & histología , Flores/genética , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Arabidopsis/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Ipomoea nil/genética , Especificidad de Órganos/genética , Epidermis de la Planta/citología , Proteínas de Plantas/metabolismo
10.
Plant Biotechnol J ; 14(1): 354-63, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25923400

RESUMEN

Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal-specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal-specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal-specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical ß-glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal-specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA-like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal-specific promoter in molecular breeding of floricultural crops.


Asunto(s)
Productos Agrícolas/genética , Barajamiento de ADN/métodos , Flores/genética , Ipomoea nil/genética , Regiones Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/ultraestructura , Flores/anatomía & histología , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Glucuronidasa/metabolismo , Especificidad de Órganos/genética , Fenotipo , Filogenia , Plantas Modificadas Genéticamente
11.
J Plant Physiol ; 189: 87-96, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546919

RESUMEN

CDPK kinases are a unique class of calcium sensor/responders that regulate many growth and developmental processes as well as stress responses of plants. PnCDPK1 kinase from Pharbitis nil is regulated by light and contributes to seed germination, seedling growth and flower formation. Following an earlier work in which we identified the PnCDPK1 coding sequence and a 330bp long 3'UTR (untranslated region), we present for the first time the genomic organization of PnCDPK1, including intron analysis and the gene copy number designation. We completed the research by identifying the 5'-flanking region of PnCDPK1 and analyzed it in silico, which led to the discovery of several cis-regulatory elements involved in light regulation, embryogenesis and seed development. The functional analysis of P. nil CDPK showed characterization of the PnCDPK1 transcript and PnCDPK protein level during seed formation and fruit maturation. The greatest amount of PnCDPK1 mRNA was present in the last stages of seed maturation. Moreover, two PnCDPK proteins of different molecular masses were discovered during fruit development, showing various protein accumulation and activity profile. The 56kDa protein dominated in the early stages of fruit development, whereas the smaller protein (52kDa) was prominent in the latter stages.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genómica , Ipomoea nil/enzimología , Proteínas Quinasas/genética , Regiones no Traducidas 3'/genética , Flores/enzimología , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Frutas/enzimología , Frutas/genética , Frutas/fisiología , Frutas/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica , Germinación , Intrones/genética , Ipomoea nil/genética , Ipomoea nil/fisiología , Ipomoea nil/efectos de la radiación , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Semillas/efectos de la radiación
12.
Mol Genet Genomics ; 290(5): 1873-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25877516

RESUMEN

Ipomoea nil is widely used as an ornamental plant due to its abundance of flower color, but the limited transcriptome and genomic data hinder research on it. Using illumina platform, transcriptome profiling of I. nil was performed through high-throughput sequencing, which was proven to be a rapid and cost-effective means to characterize gene content. Our goal is to use the resulting information to facilitate the relevant research on flowering and flower color formation in I. nil. In total, 268 million unique illumina RNA-Seq reads were produced and used in the transcriptome assembly. These reads were assembled into 220,117 contigs, of which 137,307 contigs were annotated using the GO and KEGG database. Based on the result of functional annotations, a total of 89,781 contigs were assigned 455,335 GO term annotations. Meanwhile, 17,418 contigs were identified with pathway annotation and they were functionally assigned to 144 KEGG pathways. Our transcriptome revealed at least 55 contigs as probably flowering-related genes in I. nil, and we also identified 25 contigs that encode key enzymes in the phenylpropanoid biosynthesis pathway. Based on the analysis relating to gene expression profiles, in the phenylpropanoid biosynthesis pathway of I. nil, the repression of lignin biosynthesis might lead to the redirection of the metabolic flux into anthocyanin biosynthesis. This may be the most likely reason that I. nil has high anthocyanins content, especially in its flowers. Additionally, 15,537 simple sequence repeats (SSRs) were detected using the MISA software, and these SSRs will undoubtedly benefit future breeding work. Moreover, the information uncovered in this study will also serve as a valuable resource for understanding the flowering and flower color formation mechanisms in I. nil.


Asunto(s)
Genes de Plantas , Marcadores Genéticos , Ipomoea nil/genética , Análisis de Secuencia de ARN , Transcriptoma , Antocianinas/biosíntesis , Ipomoea nil/metabolismo
13.
Plant J ; 79(6): 1044-51, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24961791

RESUMEN

In flowering plants, floral longevity is species-specific and is closely linked to reproductive strategy; petal senescence, a type of programmed cell death (PCD), is a highly regulated developmental process. However, little is known about regulatory pathways for cell death in petal senescence, which is developmentally controlled in an age-dependent manner. Here, we show that a NAC transcription factor, designated EPHEMERAL1 (EPH1), positively regulates PCD during petal senescence in the ephemeral flowers of Japanese morning glory (Ipomoea nil). EPH1 expression is induced independently of ethylene signaling, and suppression of EPH1 resulted in Japanese morning glory flowers that are in bloom until the second day. The suppressed expression of EPH1 delays progression of PCD, possibly through suppression of the expression of PCD-related genes, including genes for plant caspase and autophagy in the petals. Our data further suggest that EPH1 is involved in the regulation of ethylene-accelerated petal senescence. In this study, we identified a key regulator of PCD in petal senescence, which will facilitate further elucidation of the regulatory network of petal senescence.


Asunto(s)
Apoptosis , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Ipomoea nil/genética , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/genética , Flores/efectos de los fármacos , Flores/genética , Flores/fisiología , Ipomoea nil/efectos de los fármacos , Ipomoea nil/fisiología , Especificidad de Órganos , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Tallos de la Planta/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
14.
Plant Cell Rep ; 33(7): 1121-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24682460

RESUMEN

KEY MESSAGE: We isolated differentially expressed and dark-responsive genes during flower development and opening in petals of morning glory. Flower opening usually depends on petal expansion and is regulated by both genetic and environmental factors. Flower opening in morning glory (Ipomoea nil) is controlled by the dark/light regime just prior to opening. Opening was normal after 8- or 12-h dark periods but progressed very slowly after a 4-h dark period or in continuous light. Four genes (InXTH1-InXTH4) encoding xyloglucan endotransglucosylase/hydrolases (XTHs) and three genes (InEXPA1-InEXPA3) encoding alpha-expansins (EXPAs) were isolated. The expression patterns of InXTH2, InXTH3, and InXTH4 in petals were closely correlated with the rate of flower opening controlled by the length of the dark period prior to opening, but those of the EXPA genes were not. The expression pattern of InXTH1 gene was closely correlated with petal elongation. Suppression subtractive hybridization was used to isolate dark-responsive genes accompanying flower opening. The expressions of ten isolated genes were associated with the length of the dark period prior to flower opening. One gene was highly homologous to Arabidopsis pseudo-response regulator7, which is associated with the circadian clock and phytochrome signaling; another to Arabidopsis REVEILLE1, which affects the output of the circadian clock. Other genes were related to light responses, plant hormone effects and signal transduction. The possible roles of these genes in regulation of flower opening are discussed.


Asunto(s)
Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Ipomoea nil/fisiología , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas de Arabidopsis/genética , Relojes Circadianos/genética , Oscuridad , Flores/genética , Glicosiltransferasas/metabolismo , Ipomoea nil/genética , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Proteínas Represoras/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Factores de Transcripción/genética
15.
J Plant Physiol ; 171(8): 633-8, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24709156

RESUMEN

AtNAP, a NAC family transcription factor, has been shown to promote leaf senescence in Arabidopsis. We isolated an AtNAP homolog in morning glory (Ipomoea nil), designated InNAP, and investigated its expression during petal senescence. We used two cultivars, one showing a normal short flower life span (cv. Peking Tendan) and another a longer life span (cv. Violet). InNAP was highly expressed in both cultivars. Expression was high before that of the senescence marker gene InSAG12. InNAP and InSAG12 expression was high in cv. Peking Tendan before cv. Violet. The expression of both genes was therefore temporally related to the onset of the visible senescence symptoms. An inhibitor of ethylene action (silver thiosulphate, STS) delayed petal senescence in cv. Peking Tendan but had no effect in cv. Violet. STS treatment had no clear effect on the InNAP expression in petals of both cultivars, suggesting that endogenous ethylene may not be necessary for its induction. These data suggest the hypothesis that InNAP plays a role in petal senescence, independent of the role of endogenous ethylene.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Ipomoea nil/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alineación de Secuencia
16.
J Plant Physiol ; 171(3-4): 225-34, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24094462

RESUMEN

The plant hormone auxin plays a critical role in regulating plant growth and development. Recent advances have been made that having improved our understanding of auxin response pathways, primarily by characterizing the genes encoding auxin response factors (ARFs) in Arabidopsis. In addition, the expression of some ARFs is regulated by microRNAs (miRNAs). In Arabidopsis thaliana, ARF6 and ARF8 are targeted by miR167, whereas ARF10, ARF16 and ARF17 are targeted by miR160. Nevertheless, little is known about any possible interactions between miRNAs and the auxin signaling pathway during plant development. In this study, we isolated the miR167 target gene InARF8 cDNA from the cotyledons of the short day plant (SDP) Ipomoea nil (named also Pharbitis nil). Additionally, the In-miR167 precursor was identified from the I. nil EST database and analyses of InARF8 mRNA, In-pre-miR167 and mature miR167 accumulation in the plant's vegetative and generative organs were performed. The identified cDNA of InARF8 contains a miR167 complementary sequence and shows significant similarity to ARF8 cDNAs of other plant species. The predicted amino acid sequence of InARF8 includes all of the characteristic domains for ARF family transcription factors (B3 DNA-binding domain, AUX/IAA-CTD and a glutamine-rich region). Quantitative RT-PCR reactions and in situ hybridization indicated that InARF8 was expressed primarily in the shoot apices, leaf primordia and hypocotyls of I. nil seedlings, as well as in flower pistils and petals. The InARF8 transcript level increased consistently during the entire period of pistil development, whereas in the stamens, the greatest transcriptional activity occurred only during the intensive elongation phase. Additionally, an expression analysis of both the precursor In-pre-miR167 molecules identified and mature miRNA was performed. We observed that, in most of the organs examined, the InARF8 expression pattern was opposite to that of MIR167, indicating that the gene's activity was regulated by mRNA cleavage. Our findings suggested that InARF8 and InMIR167 participated in the development of young tissues, especially the shoot apices and flower elements. The main function of MIR167 appears to be to regulate InARF8 organ localization.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea nil/genética , Ipomoea nil/metabolismo , MicroARNs/genética , Ácidos Indolacéticos/metabolismo , Ipomoea nil/crecimiento & desarrollo , Factores de Transcripción/genética
17.
J Plant Physiol ; 169(18): 1815-20, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22902207

RESUMEN

We examined the relationship between temperature (15-35°C) and flower induction as it is influenced by linolenic acid (LA) cascade products, lipoxygenase (LOX; EC 1.13.11.12), allene oxide synthase (AOS; EC 4.2.1.92), and allene oxide cyclase (AOC; EC 5.3.99.6) generated in morning glory (Pharbitis nil Choisy). The maximum amount of LOX protein was detected when plants were grown at 30°C, whereas endogenous AOS and AOC proteins were markedly accumulated at 15°C. Although both test levels of 9(S)- and 13(S)-hydroperoxy linolenic acid (HPOT) showed similar temperature dependencies, reflecting the profile of LOX, the relative amount of 13(S)-HPOT was much higher than that of 9(S)-HPOT, regardless of temperature regime. This implied a faster reaction pathway to 9,10-α-ketol octadecadienoic acid (KODA) in the LA cascade. In the 13(S)-HPOT pathway, the highest level of endogenous jasmonic acid (JA) was observed at 15°C. Our results suggest that at a high temperature (30°C), 9(S)-HPOT may be readily metabolized into KODA to promote flower bud formation. By contrast, at a low temperature, high levels of AOS and AOC result in an accumulation of JA that inhibits this developmental process. Accordingly, depending on the growing temperature, flower bud formation in P. nil is possibly regulated by the interactions among LOX metabolites, with KODA serving as a promoter and JA as an inhibitor.


Asunto(s)
Ciclopentanos/metabolismo , Ipomoea nil/enzimología , Lipooxigenasa/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Temperatura , Ácido alfa-Linolénico/metabolismo , Ciclohexanos/metabolismo , Ciclopentanos/farmacología , Compuestos Epoxi/metabolismo , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Ipomoea nil/genética , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/fisiología , Lipooxigenasa/genética , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Transducción de Señal , Ácido alfa-Linolénico/análogos & derivados , Ácido alfa-Linolénico/química
18.
J Plant Physiol ; 169(16): 1578-85, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22840323

RESUMEN

Signaling pathways, and specifically the signaling pathway of calcium, have been widely implicated in the regulation of a variety of signals in plants. Calcium-dependent protein kinases (CDPKs) are essential sensor-transducers of calcium signaling pathways, the functional characterization of which is of great interest because they play important roles during growth and in response to a wide range of environmental and developmental stimuli. Here, we report the first evidence of transient and specific elevation of PnCDPK1 transcript level and enzyme activity following conversion of a leaf bud to a flower bud, as well as participation of PnCDPK1 in evocation and flower morphogenesis in Pharbitis nil. Fluorescence microscopy immunolocalization and biochemical analysis confirmed the presence of CDPK in shoot apexes. The protein level was low in leaves, vegetative apexes and increased significantly in apexes after a flowering long-induction night. In the vegetative apex, a very weak PnCDPK1 protein signal was accumulated prominently in the zone of the ground meristem and in external layers of tissues of the cortex. After the dark treatment, the signal in cells of the ground meristem was still present, but a significantly stronger signal appeared in epidermal cells, cortex tissue, and leaf primordium. At the onset of flower meristem development, the PnCDPK1 level diverged significantly. PnCDPK1 mRNA, protein level and enzyme activity were very low at the beginning of flower bud development and gradually increased in later stages, reaching the highest level in a fully open flower. Analysis of flower organs revealed that PnCDPK1 was accumulated mainly in petals and sepals rather than in pistils and stamens. Our results clearly indicate that PnCDPK1 is developmentally regulated and may be an important component in the signal transduction pathways for flower morphogenesis. Findings from this research are important for further dissecting mechanisms of flowering and functions of CDPKs in flowering plants.


Asunto(s)
Flores/enzimología , Regulación del Desarrollo de la Expresión Génica , Ipomoea nil/enzimología , Proteínas Quinasas/metabolismo , Transducción de Señal , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ipomoea nil/genética , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/fisiología , Luz , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Fotoperiodo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Proteínas Quinasas/genética , ARN Mensajero/genética , ARN de Planta/genética
19.
J Plant Physiol ; 169(5): 523-8, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22209168

RESUMEN

The protein complex composed of the transcriptional regulators containing R2R3-MYB domains, bHLH domains, and WDR in plants controls various epidermal traits, including anthocyanin and proanthocyanidin pigmentation, trichome and root hair formation, and vacuolar pH. In the Japanese morning glory (Ipomoea nil), InMYB1 having R2R3-MYB domains and InWDR1 containing WDR were shown to regulate anthocyanin pigmentation in flowers, and InWDR1 was reported to control dark-brown pigmentation and trichome formation on seed coats. Here, we report that the seed pigments of I. nil mainly comprise proanthocyanidins and phytomelanins and that these pigments are drastically reduced in the ivory seed coats of an InWDR1 mutant. In addition, a transgenic plant of the InWDR1 mutant carrying the active InWDR1 gene produced dark-brown seeds, further confirming that InWDR1 regulates seed pigmentation. Early steps in anthocyanin and proanthocyanidin biosynthetic pathways are thought to be common. In the InWDR1 mutant, none of the structural genes for anthocyanin biosynthesis that showed reduced expression in the white flowers were down-regulated in the ivory seeds, which suggests that InWDR1 may activate different sets of the structural genes for anthocyanin biosynthesis in flowers and proanthocyanidin production in seeds. As in the flowers, however, we noticed that the expression of InbHLH2 encoding a bHLH regulator was down-regulated in the seeds of the InWDR1 mutant. We discuss the implications of these results with respect to the proanthocyanidin biosynthesis in the seed coats.


Asunto(s)
Ipomoea nil/metabolismo , Melaninas/biosíntesis , Proteínas de Microfilamentos/metabolismo , Pigmentos Biológicos/biosíntesis , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis , Semillas/metabolismo , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Ipomoea/genética , Ipomoea/metabolismo , Ipomoea nil/genética , Melaninas/genética , Proteínas de Microfilamentos/genética , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Proantocianidinas/genética , Semillas/genética
20.
Plant Cell Physiol ; 52(4): 638-50, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21382978

RESUMEN

GIGANTEA (GI) is a key regulator of flowering time, which is closely related to the circadian clock function in Arabidopsis. Mutations in the GI gene cause photoperiod-insensitive flowering and altered circadian rhythms. We isolated the GI ortholog PnGI from Pharbitis (Ipomoea) nil, an absolute short-day (SD) plant. PnGI mRNA expression showed diurnal rhythms that peaked at dusk under SD and long-day (LD) conditions, and also showed robust circadian rhythms under continuous dark (DD) and continuous light (LL) conditions. Short irradiation with red light during the flower-inductive dark period did not change PnGI expression levels, suggesting that such a night break does not abolish flowering by affecting the expression of PnGI. In Pharbitis, although a single dusk signal is sufficient to induce expression of the ortholog of FLOWERING LOCUS T (PnFT1), PnGI mRNA expression was not reset by single lights-off signals. Constitutive expression of PnGI (PnGI-OX) in transgenic plants altered period length in leaf-movement rhythms under LL and affected circadian rhythms of PnFT mRNA expression under DD. PnGI-OX plants formed fewer flower buds than the wild type when one-shot darkness was given. In PnGI-OX plants, expression of PnFT1 was down-regulated, suggesting that PnGI functions as a suppressor of flowering, possibly in part through down-regulation of PnFT1.


Asunto(s)
Ritmo Circadiano/genética , Flores/fisiología , Ipomoea nil/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Ritmo Circadiano/efectos de la radiación , ADN Complementario/genética , ADN de Plantas/química , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Oscuridad , Regulación hacia Abajo/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ipomoea nil/genética , Ipomoea nil/crecimiento & desarrollo , Ipomoea nil/efectos de la radiación , Luz , Datos de Secuencia Molecular , Fotoperiodo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN de Planta/genética , Análisis de Secuencia de ADN , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...