Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol Rep ; 16(3): e13252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783543

RESUMEN

Freshwater habitats are frequently contaminated by diverse chemicals of anthropogenic origin, collectively referred to as micropollutants, that can have detrimental effects on aquatic life. The animals' tolerance to micropollutants may be mediated by their microbiome. If polluted aquatic environments select for contaminant-degrading microbes, the acquisition of such microbes by the host may increase its tolerance to pollution. Here we tested for the potential effects of the host microbiome on the growth and survival of juvenile Asellus aquaticus, a widespread freshwater crustacean. Using faecal microbiome transplants, we provided newly hatched juveniles with the microbiome isolated from donor adults reared in either clean or micropollutant-contaminated water and, after transplantation, recipient juveniles were reared in water with and without micropollutants. The experiment revealed a significant negative effect of the micropollutants on the survival of juvenile isopods regardless of the received faecal microbiome. The micropollutants had altered the composition of the bacterial component of the donors' microbiome, which in turn influenced the microbiome of juvenile recipients. Hence, we show that relatively high environmental concentrations of micropollutants reduce survival and alter the microbiome composition of juvenile A. aquaticus, but we have no evidence that tolerance to micropollutants is modulated by their microbiome.


Asunto(s)
Agua Dulce , Isópodos , Microbiota , Animales , Agua Dulce/microbiología , Agua Dulce/química , Microbiota/efectos de los fármacos , Isópodos/microbiología , Heces/microbiología , Contaminantes Químicos del Agua , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/efectos de los fármacos , Contaminación Ambiental
2.
Environ Microbiol Rep ; 15(3): 188-196, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36779263

RESUMEN

The freshwater isopod Asellus aquaticus is an important decomposer of leaf detritus, and its diverse gut microbiome has been depicted as key contributors in lignocellulose degradation as of terrestrial isopods. However, it is not clear whether the individual-level microbiome profiles in the isopod digestive system across different habitats match the implied robust digestion function of the microbiome. Here, we described the bacterial diversity and abundance in the digestive system (hindgut and caeca) of multiple A. aquaticus individuals from two contrasting freshwater habitats. Individuals from a lake and a stream harboured distinct microbiomes, indicating a strong link between the host-associated microbiome and microbes inhabiting the environments. While faeces likely reflected the variations in environmental microbial communities included in the diet, the microbial communities also substantially differed in the hindgut and caeca. Microbes closely related to lignocellulose degradation are found consistently more enriched in the hindgut in each individual. Caeca often associated with taxa implicated in endosymbiotic/parasitic roles (Mycoplasmatales and Rickettsiales), highlighting a complex host-parasite-microbiome interaction. The results highlight the lability of the A. aquaticus microbiome supporting the different functions of the two digestive organs, which may confer particular advantages in freshwater environments characterized by seasonally fluctuating and spatially disparate resource availability.


Asunto(s)
Isópodos , Microbiota , Animales , Isópodos/microbiología , Estudios Prospectivos , Agua Dulce , Sistema Digestivo
3.
Mar Drugs ; 20(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35200613

RESUMEN

Streptomyces sp. GET02.ST and Achromobacter sp. GET02.AC were isolated together from the gut of the wharf roach, Ligia exotica, inhabiting the intertidal zone of the west coast of Korea. The co-cultivation of these two strains significantly induced the production of two new metabolites, ligiamycins A (1) and B (2), which were barely detected in the single culture of Streptomyces sp. GET02.ST. The planar structures of ligiamycins A (1) and B (2) were elucidated as new decalins coupled with amino-maleimides by the analysis of various spectroscopic data, including nuclear magnetic resonance (NMR), ultraviolet (UV), and mass (MS) data. The assignment of two nitrogen atoms in amino-maleimide in 1 was accomplished based on 1H-15N heteroatom single quantum coherence spectroscopy (HSQC) NMR experiments. The relative configurations of the ligiamycins were determined using rotating frame Overhauser effect spectroscopy (ROESY) NMR data, and their absolute configurations were deduced by comparing their experimental and calculated optical rotations. Ligiamycin A (1) displayed antibacterial effects against Staphylococcus aureus and Salmonella enterica, while ligiamycin B (2) exhibited mild cell cytotoxicity against human colorectal cancer cells.


Asunto(s)
Antibacterianos , Antineoplásicos , Maleimidas , Naftalenos , Animales , Humanos , Achromobacter/metabolismo , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Técnicas de Cocultivo , Neoplasias Colorrectales/tratamiento farmacológico , Isópodos/microbiología , Naftalenos/química , Naftalenos/aislamiento & purificación , Naftalenos/farmacología , Streptomyces/metabolismo , Maleimidas/química , Maleimidas/aislamiento & purificación , Maleimidas/farmacología
5.
PLoS Biol ; 17(10): e3000438, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600190

RESUMEN

Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.


Asunto(s)
Isópodos/genética , Cromosomas Sexuales , Procesos de Determinación del Sexo , Simbiosis/genética , Wolbachia/fisiología , Alelos , Animales , Femenino , Genotipo , Homocigoto , Isópodos/microbiología , Masculino , Modelos Genéticos , Carácter Cuantitativo Heredable , Razón de Masculinidad
6.
J Therm Biol ; 82: 222-228, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31128651

RESUMEN

Only a few insect species are known to engage in symbiotic associations with antibiotic-producing Actinobacteria and profit from this kind of protection against pathogens. However, it still remains elusive how widespread the symbiotic interactions with Actinobacteria in other organisms are and how these partnerships benefit the hosts in terms of the growth and survival. We characterized a drastic temperature-induced change in the occurrence of Actinobacteria in the gut of the terrestrial isopod Porcellio scaber reared under two different temperature (15 °C and 22 °C) and oxygen conditions (10% and 22% O2) using 16S rRNA gene sequencing. We show that the relative abundance of actinobacterial gut symbionts correlates with increased host growth at lower temperature. Actinobacterial symbionts were almost completely absent at 22 °C under both high and low oxygen conditions. In addition, we identified members of nearly half of the known actinobacterial families in the isopod microbiome, and most of these include members that are known to produce antibiotics. Our study suggests that hosting diverse actinobacterial symbionts may provide conditions favorable for host growth. These findings show how a temperature-driven decline in microbiome diversity may cause a loss of beneficial functions with negative effects on ectotherms.


Asunto(s)
Actinobacteria/fisiología , Isópodos/microbiología , Simbiosis , Actinobacteria/genética , Animales , Calor , Isópodos/fisiología , Oxígeno/metabolismo , ARN Ribosómico 16S/genética , Temperatura
7.
BMC Evol Biol ; 19(1): 65, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30819117

RESUMEN

BACKGROUND: In species that reproduce with sexual reproduction, males and females often have opposite strategies to maximize their own fitness. For instance, males are typically expected to maximize their number of mating events, whereas an excessive number of mating events can be costly for females. Although the risk of sexual harassment by males and resulting costs for females are expected to increase with the proportion of males, it remains unknown whether and how parasitic distorters of a host population's sex-ratio can shape this effect on the fitness of females. Here, we addressed this question using Armadillidium vulgare and its parasite Wolbachia that alters the sex-ratio of a population. We set up Wolbachia-free and Wolbachia-infected females in experimental groups exhibiting 100, 80, 50% or 20% females for 1 year, during which we measured changes in survival, fertility and fecundity. RESULTS: Wolbachia infection shaped the effects of both population sex-ratio and reproductive season on female fecundity. Compared to Wolbachia-free females, Wolbachia-infected females were less likely to be gravid in populations exhibiting an excess of females and did not exhibit the otherwise negative effect of seasons on this likelihood. Group sex-ratio and Wolbachia infection have independent effects on other measured traits. Male-biased populations had females both exhibiting the lowest survival rate after 6 months and producing the smallest number of offspring, independent of Wolbachia infection. Conversely, Wolbachia-infected females had the lowest likelihood of producing at least one offspring, independent of group sex-ratio. Wolbachia infection had no effect on female survival rate. CONCLUSIONS: We demonstrated that male-biased sex-ratio and the presence of Wolbachia are costly for females due to sexual harassment by males and bacterial infection, respectively. Interestingly, Wolbachia infection triggers another negative effect. This effect does not come from an excess of males and its associated sexual harassment of females but instead from a lack of males and the associated risk for females of remaining unmated. Overall, these findings highlight the importance of social pressures and infection on female fitness and provide insights into our general understanding of the joint and opposite effects of these two parameters in the evolution of reproductive strategies.


Asunto(s)
Isópodos/fisiología , Razón de Masculinidad , Conducta Sexual Animal , Wolbachia/fisiología , Animales , Femenino , Fertilidad , Isópodos/microbiología , Masculino , Fenotipo , Reproducción
8.
Naturwissenschaften ; 106(3-4): 7, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30729319

RESUMEN

Most studies on animal personality evaluate individual mean behaviour to describe individual behavioural strategy, while often neglecting behavioural variability on the within-individual level. However, within-individual behavioural plasticity (variation induced by environment) and within-individual residual variation (regulatory behavioural precision) are recognized as biologically valid components of individual behaviour, but the evolutionary ecology of these components is still less understood. Here, we tested whether behaviour of common pill bugs (Armadillidium vulgare) differs on the among- and within-individual level and whether it is affected by various individual specific state-related traits (sex, size and Wolbachia infection). To this aim, we assayed risk-taking in familiar vs. unfamiliar environments 30 times along 38 days and applied double modelling statistical technique to handle the complex hierarchical structure for both individual-specific trait means and variances. We found that there are significant among-individual differences not only in mean risk-taking behaviour but also in environment- and time-induced behavioural plasticity and residual variation. Wolbachia-infected individuals took less risk than healthy conspecifics; in addition, individuals became more risk-averse with time. Residual variation decreased with time, and individuals expressed higher residual variation in the unfamiliar environment. Further, sensitization was stronger in females and in larger individuals in general. Our results suggest that among-individual variation, behavioural plasticity and residual variation are all (i) biologically relevant components of an individual's behavioural strategy and (ii) responsive to changes in environment or labile state variables. We propose pill bugs as promising models for personality research due to the relative ease of getting repeated behavioural measurements.


Asunto(s)
Conducta Animal/fisiología , Ambiente , Isópodos/fisiología , Animales , Isópodos/microbiología , Modelos Animales , Wolbachia/fisiología
9.
Nat Prod Res ; 33(3): 367-373, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29553823

RESUMEN

Four novel stemphol derivatives, pleosporols A-D (1, 2 and mixture of 3 and 4) together with known compounds stemfolones (mixture of 5 and 6), stemphol (7) were isolated from a marine fungus Pleospora sp. (PO4) derived from the gut of marine isopod Ligia oceanica. The planar structures of novel compounds were elucidated on the basis of mass and NMR spectral analysis. The stereo-chemistries of 1-2 were determined by CD spectra, NOESY data, coupling constants analysis and modified Mosher's method while the absolute configurations of 3-6 were not clear. Novel compounds contained α, ß-unsaturated cyclohexanone ring and possibly derived from the oxidation of stemphol. All novel ones showed strong antimicrobial activity against Staphylococcus epidermidis CMCC26069 with MIC values less than 10 µg/mL.


Asunto(s)
Ascomicetos/química , Isópodos/microbiología , Biología Marina , Resorcinoles/química , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Estructura Molecular , Resorcinoles/aislamiento & purificación , Análisis Espectral , Staphylococcus epidermidis/efectos de los fármacos
10.
Mar Drugs ; 16(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241299

RESUMEN

Two novel aspochalasins, tricochalasin A (1) and aspochalasin A2 (2), along with three known compounds (3⁻5) have been isolated from the different culture broth of Aspergillus sp., which was found in the gut of a marine isopod Ligia oceanica. Compound 1 contains a rare 5/6/6 tricyclic ring fused with the aspochalasin skeleton. The structures were determined on the basis of electrospray ionisation mass spectroscopy (ESIMS), nuclear magnetic resonance (NMR) spectral data, and the absolute configurations were further confirmed by modified Mosher's method. Cytotoxicity against the prostate cancer PC3 cell line were assayed by the MTT method. Compound 3 showed strong activity while the remaining compounds showed weak activity.


Asunto(s)
Antineoplásicos/farmacología , Organismos Acuáticos/microbiología , Aspergillus/química , Citocalasinas/farmacología , Isópodos/microbiología , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Citocalasinas/química , Citocalasinas/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Espectrometría de Masa por Ionización de Electrospray
11.
Microbiome ; 6(1): 162, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30223906

RESUMEN

BACKGROUND: Woodlice are recognized as keystone species in terrestrial ecosystems due to their role in the decomposition of organic matter. Thus, they contribute to lignocellulose degradation and nutrient cycling in the environment together with other macroarthropods. Lignocellulose is the main component of plants and is composed of cellulose, lignin and hemicellulose. Its digestion requires the action of multiple Carbohydrate-Active enZymes (called CAZymes), typically acting together as a cocktail with complementary, synergistic activities and modes of action. Some invertebrates express a few endogenous lignocellulose-degrading enzymes but in most species, an efficient degradation and digestion of lignocellulose can only be achieved through mutualistic associations with endosymbionts. Similar to termites, it has been suspected that several bacterial symbionts may be involved in lignocellulose degradation in terrestrial isopods, by completing the CAZyme repertoire of their hosts. RESULTS: To test this hypothesis, host transcriptomic and microbiome shotgun metagenomic datasets were obtained and investigated from the pill bug Armadillidium vulgare. Many genes of bacterial and archaeal origin coding for CAZymes were identified in the metagenomes of several host tissues and the gut content of specimens from both laboratory lineages and a natural population of A. vulgare. Some of them may be involved in the degradation of cellulose, hemicellulose, and lignin. Reconstructing a lignocellulose-degrading microbial community based on the prokaryotic taxa contributing relevant CAZymes revealed two taxonomically distinct but functionally redundant microbial communities depending on host origin. In parallel, endogenous CAZymes were identified from the transcriptome of the host and their expression in digestive tissues was demonstrated by RT-qPCR, demonstrating a complementary enzyme repertoire for lignocellulose degradation from both the host and the microbiome in A. vulgare. CONCLUSIONS: Our results provide new insights into the role of the microbiome in the evolution of terrestrial isopods and their adaptive radiation in terrestrial habitats.


Asunto(s)
Isópodos/metabolismo , Isópodos/microbiología , Lignina/metabolismo , Simbiosis , Animales , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microbioma Gastrointestinal , Isópodos/fisiología , Filogenia , Suelo/parasitología
12.
PLoS One ; 13(8): e0202212, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30157257

RESUMEN

The increasingly recognised effects of microbiomes on the eco-evolutionary dynamics of their hosts are promoting a view of the "hologenome" as an integral host-symbiont evolutionary entity. For example, sex-ratio distorting reproductive parasites such as Wolbachia are well-studied pivotal drivers of invertebrate reproductive processes, and more recent work is highlighting novel effects of microbiome assemblages on host mating behaviour and developmental incompatibilities that underpin or reinforce reproductive isolation processes. However, examining the hologenome and its eco-evolutionary effects in natural populations is challenging because microbiome composition is considerably influenced by environmental factors. Here we illustrate these challenges in a sympatric species complex of intertidal isopods (Jaera albifrons spp.) with pervasive sex-ratio distortion and ecological and behavioural reproductive isolation mechanisms. We deep-sequence the bacterial 16S rRNA gene among males and females collected in spring and summer from two coasts in north-east Scotland, and examine microbiome composition with a particular focus on reproductive parasites. Microbiomes of all species were diverse (overall 3,317 unique sequences among 3.8 million reads) and comprised mainly Proteobacteria and Bacteroidetes taxa typical of the marine intertidal zone, in particular Vibrio spp. However, we found little evidence of the reproductive parasites Wolbachia, Rickettsia, Spiroplasma and Cardinium, suggesting alternative causes of sex-ratio distortion. Notwithstanding, a significant proportion of the variance in microbiome composition among samples was explained by sex (14.1 %), nested within geographic (26.9 %) and seasonal (39.6 %) variance components. The functional relevance of this sex signal was difficult to ascertain given the absence of reproductive parasites, the ephemeral nature of the species assemblages and substantial environmental variability. These results establish the Jaera albifrons species complex as an intriguing system for examining the effects of microbiomes on reproductive processes and speciation, and highlight the difficulties associated with snapshot assays of microbiome composition in dynamic and complex environments.


Asunto(s)
Isópodos/microbiología , Microbiota/genética , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Ecosistema , Femenino , Especiación Genética , Variación Genética , Interacciones Microbiota-Huesped/genética , Masculino , Filogenia , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Escocia , Factores Sexuales , Simpatría
13.
Sci Rep ; 8(1): 6998, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725059

RESUMEN

Wolbachia are widespread heritable endosymbionts of arthropods notorious for their profound effects on host fitness as well as for providing protection against viruses and eukaryotic parasites, indicating that they can interact with other microorganisms sharing the same host environment. Using the terrestrial isopod crustacean Armadillidium vulgare, its highly diverse microbiota (>200 bacterial genera) and its three feminizing Wolbachia strains (wVulC, wVulM, wVulP) as a model system, the present study demonstrates that Wolbachia can even influence the composition of a diverse bacterial community under both laboratory and natural conditions. While host origin is the major determinant of the taxonomic composition of the microbiota in A. vulgare, Wolbachia infection affected both the presence and, more importantly, the abundance of many bacterial taxa within each host population, possibly due to competitive interactions. Moreover, different Wolbachia strains had different impacts on microbiota composition. As such, infection with wVulC affected a higher number of taxa than infection with wVulM, possibly due to intrinsic differences in virulence and titer between these two strains. In conclusion, this study shows that heritable endosymbionts such as Wolbachia can act as biotic factors shaping the microbiota of arthropods, with as yet unknown consequences on host fitness.


Asunto(s)
Estructuras Animales/microbiología , Isópodos/microbiología , Microbiota , Wolbachia/crecimiento & desarrollo , Animales , Bacterias/clasificación , Bacterias/genética , Metagenómica , Interacciones Microbianas
14.
Mar Drugs ; 16(3)2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29510563

RESUMEN

N-acetylneuraminic acid (Neu5Ac) based novel pharmaceutical agents and diagnostic reagents are highly required in medical fields. However, N-acetylneuraminate lyase(NAL)for Neu5Ac synthesis is not applicable for industry due to its low catalytic efficiency. In this study, we biochemically characterized a deep-sea NAL enzyme (abbreviated form: MyNal) from a symbiotic Mycoplasma inhabiting the stomach of a deep-sea isopod, Bathynomus jamesi. Enzyme kinetic studies of MyNal showed that it exhibited a very low Km for both cleavage and synthesis activities compared to previously described NALs. Though it favors the cleavage process, MyNal out-competes the known NALs with respect to the efficiency of Neu5Ac synthesis and exhibits the highest kcat/Km values. High expression levels of recombinant MyNal could be achieved (9.56 mol L-1 culture) with a stable activity in a wide pH (5.0-9.0) and temperature (40-60 °C) range. All these features indicated that the deep-sea NAL has potential in the industrial production of Neu5Ac. Furthermore, we found that the amino acid 189 of MyNal (equivalent to Phe190 in Escherichia coli NAL), located in the sugar-binding domain, GX189DE, was also involved in conferring its enzymatic features. Therefore, the results of this study improved our understanding of the NALs from different environments and provided a model for protein engineering of NAL for biosynthesis of Neu5Ac.


Asunto(s)
Proteínas Bacterianas/química , Isópodos/microbiología , Mycoplasma/química , Ácido N-Acetilneuramínico/biosíntesis , Oxo-Ácido-Liasas/química , Secuencia de Aminoácidos , Animales , Organismos Acuáticos/química , Organismos Acuáticos/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biotecnología/métodos , Clonación Molecular , Pruebas de Enzimas , Mutagénesis , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/aislamiento & purificación , Oxo-Ácido-Liasas/metabolismo , Dominios Proteicos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Simbiosis
15.
PLoS One ; 13(12): e0209893, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30596784

RESUMEN

Mate choice is an important process in sexual selection and usually prevents inbreeding depression in populations. In the terrestrial isopod Armadillidium vulgare, the close physical proximity between individuals may increase the risk of reproducing with siblings. Moreover, individuals of this species can be infected with the feminizing bacteria of Wolbachia, which influence male mate choice. However, little is known about the kinship or familiarity assessment of the selected partner that occurs when a male can choose between females with or without Wolbachia. To investigate the potential mechanisms leading to mate choice and the potential impact of the parasite, we performed behavioral choice tests on males where they could choose between sibling vs. nonsibling females, familiar vs. unfamiliar females, and sibling familiar vs. unfamiliar nonsibling females. To investigate the costs of inbreeding, we compared the reproductive success of both sibling and nonsibling mates. Our results revealed that male copulation attempts were higher for familiar females and for nonsibling females when both females were Wolbachia-infected, but the duration was longer when both females were Wolbachia-free. When males mated with a sibling female, their fecundity was severely decreased, consistent with inbreeding depression. Overall, we observed copulations with all types of females and demonstrated discrimination capacities and potential preferences. We highlight the complexity of the tradeoff between kinship, familiarity and parasite transmission assessment for mate choice.


Asunto(s)
Isópodos/fisiología , Preferencia en el Apareamiento Animal/fisiología , Animales , Femenino , Isópodos/microbiología , Masculino , Wolbachia
16.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28724736

RESUMEN

Vertical transmission mode is predicted to decrease the virulence of symbionts. However, Wolbachia, a widespread vertically transmitted endosymbiont, exhibits both negative and beneficial effects on arthropod fitness. This 'Jekyll and Hyde' behaviour, as well as its ability to live transiently outside host cells and to establish new infections via horizontal transmission, may reflect the capacity of Wolbachia to exhibit various phenotypes depending on the prevailing environmental constraints. To study the ability of Wolbachia to readily cope with new constraints, we forced this endosymbiont to spread only via horizontal transmission. To achieve this, we performed serial horizontal transfers of haemolymph from Wolbachia-infected to naive individuals of the isopod Armadillidium vulgare. Across passages, we observed phenotypic changes in the symbiotic relationship: (i) The Wolbachia titre increased in both haemolymph and nerve cord but remained stable in ovaries; (ii) Wolbachia infection was benign at the beginning of the experiment, but highly virulent, killing most hosts after only a few passages. Such a phenotypic shift after recurrent horizontal passages demonstrates that Wolbachia can rapidly change its virulence when facing new environmental constraints. We thoroughly discuss the potential mechanism(s) underlying this phenotypic change, which are likely to be crucial for the ongoing radiation of Wolbachia in arthropods.


Asunto(s)
Isópodos/microbiología , Simbiosis , Wolbachia/patogenicidad , Animales , Transmisión de Enfermedad Infecciosa , Fenotipo , Virulencia , Wolbachia/genética
17.
FEMS Microbiol Ecol ; 93(6)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28449118

RESUMEN

Terrestrial isopods from the group Trichoniscidae accumulate calcium in specialized organs, known as the calcium bodies. These consist of two pairs of epithelial sacs located alongside the digestive system. These organs contain various forms of calcium and constantly present bacteria. To elucidate their origin and role, we analyzed the bacteria of the calcium bodies in the cave-dwelling isopod Titanethes albus and the epigean species Hyloniscus riparius, by microscopy, histochemistry, energy dispersive X-ray spectrometry, 16S rRNA analysis and in situ hybridization. The calcium bodies of both species comprise numerous and diverse bacterial communities consisting of known soil bacteria. Despite their diversity, these bacteria share the polyphosphate-accumulation ability. We present the model of phosphorous dynamics in the calcium bodies during the molting cycle and potentially beneficial utilization of the symbiotic phosphate by the host in cyclic regeneration of the cuticle. Although not fully understood, this unique symbiosis represents the first evidence of polyphosphate-accumulating bacterial symbionts in the tissue of a terrestrial animal.


Asunto(s)
Bacterias/clasificación , Isópodos/microbiología , Microbiota/genética , Arañas/microbiología , Simbiosis/fisiología , Animales , Bacterias/genética , Bacterias/metabolismo , Carbonato de Calcio , Cuevas , Filogenia , Polifosfatos/metabolismo , ARN Ribosómico 16S/genética , Microbiología del Suelo
18.
Proc Natl Acad Sci U S A ; 113(52): 15036-15041, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27930295

RESUMEN

Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals.


Asunto(s)
Transferencia de Gen Horizontal , Genoma Bacteriano , Cromosomas Sexuales , Wolbachia/genética , Animales , Evolución Biológica , Cruzamientos Genéticos , Citoplasma/metabolismo , Femenino , Genotipo , Isópodos/microbiología , Masculino , Microscopía Electrónica de Transmisión , Filogenia , Procesos de Determinación del Sexo , Razón de Masculinidad , Simbiosis
19.
Environ Microbiol ; 18(8): 2646-59, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27312602

RESUMEN

Deep-sea isopod scavengers such as Bathynomus sp. are able to live in nutrient-poor environments, which is likely attributable to the presence of symbiotic microbes in their stomach. In this study we recovered two draft genomes of mycoplasmas, Bg1 and Bg2, from the metagenomes of the stomach contents and stomach sac of a Bathynomus sp. sample from the South China Sea (depth of 898 m). Phylogenetic trees revealed a considerable genetic distance to other mycoplasma species for Bg1 and Bg2. Compared with terrestrial symbiotic mycoplasmas, the Bg1 and Bg2 genomes were enriched with genes encoding phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) and sodium-driven symporters responsible for the uptake of sugars, amino acids and other carbohydrates. The genome of mycoplasma Bg1 contained sialic acid lyase and transporter genes, potentially enabling the bacteria to attach to the stomach sac and obtain organic carbons from various cell walls. Both of the mycoplasma genomes contained multiple copies of genes related to proteolysis and oligosaccharide degradation, which may help the host survive in low-nutrient conditions. The discovery of the different types of mycoplasma bacteria in the stomach of this deep-sea isopod affords insights into symbiotic model of deep-sea animals and genomic plasticity of mycoplasma bacteria.


Asunto(s)
Genoma Bacteriano/genética , Isópodos/microbiología , Mycoplasma/clasificación , Mycoplasma/aislamiento & purificación , Estómago/microbiología , Secuencia de Aminoácidos , Animales , Adhesión Bacteriana/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , China , Genómica , Mycoplasma/genética , Filogenia , Proteolisis , ARN Ribosómico 16S/genética , Alineación de Secuencia
20.
FEMS Microbiol Ecol ; 92(5): fiw063, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27004796

RESUMEN

We present the first in-depth investigation of the host-associated microbiota of the terrestrial isopod crustacean Armadillidium vulgare. This species is an important decomposer of organic matter in terrestrial ecosystems and a major model organism for arthropod-Wolbachia symbioses due to its well-characterized association with feminizing Wolbachia 16S rRNA gene pyrotags were used to characterize its bacterial microbiota at multiple levels: (i) in individuals from laboratory lineages and field populations and (ii) in various host tissues. This integrative approach allowed us to reveal an unexpectedly high bacterial diversity, placing this species in the same league as termites in terms of symbiotic diversity. Interestingly, both animal groups belong to the same ecological guild in terrestrial ecosystems. While Wolbachia represented the predominant taxon in infected individuals, it was not the only major player. Together, the most abundant taxa represented a large scope of symbiotic interactions, including bacterial pathogens, a reproductive parasite (Wolbachia) and potential nutritional symbionts. Furthermore, we demonstrate that individuals from different populations harboured distinct bacterial communities, indicating a strong link between the host-associated microbiota and environmental bacteria, possibly due to terrestrial isopod nutritional ecology. Overall, this work highlights the need for more studies of host-microbiota interactions and bacterial diversity in non-insect arthropods.


Asunto(s)
Bacterias/clasificación , Isópodos/microbiología , Microbiología del Suelo , Wolbachia/aislamiento & purificación , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Isópodos/fisiología , Microbiota , ARN Ribosómico 16S/genética , Simbiosis , Wolbachia/genética , Wolbachia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...