Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Physiol Rep ; 12(9): e16040, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725080

RESUMEN

The endocrine pancreas is composed of clusters of cell groups called pancreatic islets. These cells are responsible for the synthesis and secretion of hormones crucial for glycemic homeostasis, such as insulin and glucagon. Therefore, these cells were the targets of many studies. One method to study and/or understand endocrine pancreatic physiology is the isolation of these islets and stimulation of hormone production using different concentrations of glucose, agonists, and/or antagonists of specific secretagogues and mimicking the stimulation of hormonal synthesis and secretion. Many researchers studied pancreatic physiology in murine models due to their ease of maintenance and rapid development. However, the isolation of pancreatic islets involves meticulous processes that may vary between rodent species. The present study describes a simple and effective technical protocol for isolating intact islets from mice and rats for use as a practical guide for researchers. The method involves digestion of the acinar parenchyma by intraductal collagenase. Isolated islets are suitable for in vitro endocrine secretion analyses, microscopy techniques, and biochemical analyses.


Asunto(s)
Islotes Pancreáticos , Animales , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/citología , Ratones , Ratas , Masculino , Ratones Endogámicos C57BL , Separación Celular/métodos
2.
PLoS One ; 16(6): e0243340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34115756

RESUMEN

AIM: The objective of this work was to analyze the structural changes of the pancreatic islets in rats, after 6 month consuming regular and light cola for 6 months. Also, we have analyzed the possible role of PDX-1 in that process. Finally, with the available knowledge, we propose a general working hypothesis that explains the succession of phenomena observed. Previously, we reported evidence showing that chronic cola consumption in rats impairs pancreatic metabolism of insulin and glucagon and produces some alterations typically observed in the metabolic syndrome, with an increase in oxidative stress. Of note It is worth mentioning that no apoptosis nor proliferation of islet cells could be demonstrated. In the present study, 36 male Wistar rats were divided into three groups to and given free access to freely drink regular cola (C), light cola (L), or water (W, control). We assessed the impact of the three different beverages in on glucose tolerance, lipid levels, creatinine levels and immunohistochemical changes addressed for the expression of insulin, glucagon, PDX-1 and NGN3 in islet cells, to evaluate the possible participation of PDX-1 in the changes observed in α and ß cells after 6 months of treatment. Moreover, we assessed by stereological methods, the mean volume of islets (Vi) and three important variables: the fractional ß -cell area, the cross-sectional area of alpha (A α-cell) and beta cells (A ß-cell), and the number of ß and α cell per body weight. Data were analyzed by two-way ANOVA followed by Bonferroni's multiple t-test or by Kruskal-Wallis test, then followed by Dunn's test (depending on distribution). Statistical significance was set at p<0.05. Cola drinking caused impaired glucose tolerance as well as fasting hyperglycemia (mean:148; CI:137-153; p<0.05 vs W) and an increase of in insulin immunolabeling (27.3±19.7; p<0.05 vs W and L). Immunohistochemical expression for PDX-1 was significantly high in C group compared to W (0.79±0.71; p<0.05). In this case, we observed cytoplasmatic and nuclear localization. Likewise, a mild but significant decrease of in Vi was detected after 6 months in C compared to W group (8.2±2.5; p<0.05). Also, we observed a significant decrease of in the fractional ß cell area (78.2±30.9; p<0.05) compared to W. Accordingly, a reduced mean value of islet α and ß cell number per body weight (0.05±0.02 and 0.08±0.04 respectively; both p<0.05) compared to W was detected. Interestingly, consumption of light cola increased the Vi (10.7±3.6; p<0.05) compared to W. In line with this, a decreased cross-sectional area of ß-cells was observed after chronic consumption of both, regular (78.2±30.9; p<0.05) and light cola (110.5±24.3; p<0.05), compared to W. As for, NGN3, it was negative in all three groups. Our results support the idea that PDX-1 plays a key role in the dynamics of the pancreatic islets after chronic consumption of sweetened beverages. In this experimental model, the loss of islets cells might be attributed to autophagy, favored by the local metabolic conditions and oxidative stress.


Asunto(s)
Bebidas Gaseosas/efectos adversos , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Animales , Masculino , Ratas , Ratas Wistar
3.
J Endocrinol ; 248(1): 1-15, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112801

RESUMEN

Pancreatic islets adapt to metabolic requirements and the hormonal milieu by modifying their size and hormone secretions. Maternal glucose demands and hormonal changes occur after weaning, to rapidly re-establish bone mineralization. Minimal information exists about glucose metabolism and pancreatic islets after lactation. This study investigated islet morphology and glucose homeostasis for 14 days after lactation in C57BL/6NHHsd mice. Compared to the day of weaning, rapid increases in the islets' area and number of beta cells were found from the first day post-lactation, attaining maximum values on the third day post-weaning. These changes were accompanied by modifications in glucose-induced insulin secretion, glucose tolerance and insulin sensitivity. Islet-cell proliferation was already augmented before lactation ceased. Serum undercarboxylated osteocalcin concentrations increased significantly post-lactation; however, it is unlikely that this enhancement participates in earlier cell proliferation augmentation or in decreasing insulin sensitivity. Islet serotonin content was barely expressed, and serum calcium concentrations decreased. By the 14th day post-weaning, islets' area and glucose homeostasis returned to age-matched virgin mice levels. These findings recognize for the first time that increases in islet area and insulin secretion occur during physiological post-weaning conditions. These results open up new opportunities to identify molecules and mechanisms participating in these processes, which will help in developing strategies to combat diabetes.


Asunto(s)
Adaptación Fisiológica , Islotes Pancreáticos/fisiología , Lactancia , Animales , Peso Corporal , Calcio/metabolismo , Femenino , Glucosa/metabolismo , Homeostasis , Islotes Pancreáticos/citología , Ratones Endogámicos C57BL , Tamaño de los Órganos , Osteocalcina/metabolismo , Serotonina/metabolismo , Destete
4.
Int. j. morphol ; 37(4): 1331-1334, Dec. 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1040133

RESUMEN

Obesity and its comorbidities are becoming epidemic in the Western world. Beta cell mass estimation is an important indicator to track the progression of insulin resistance/type 2 diabetes, particularly in experimental studies, where it can be performed with stereological tools in an unbiased way. In this work, we present a simple protocol that can contribute to doing the practice of estimating the mass of beta cells more frequent and reproducible. As with any quantitative study, the necessary precautions regarding sampling and randomness must be respected.


La obesidad y sus comorbilidades se están convirtiendo en una epidemia en el mundo occidental. La estimación de la masa de células beta es un indicador importante para rastrear la progresión de la resistencia a la insulina/diabetes tipo 2, particularmente en estudios experimentales, donde se puede realizar con herramientas estereológicas de manera imparcial. En este trabajo presentamos un protocolo simple que puede contribuir a que la práctica de estimar la masa de células beta sea más frecuente y reproducible. Como en cualquier estudio cuantitativo, deben respetarse las precauciones necesarias con respecto al muestreo y la aleatoriedad.


Asunto(s)
Humanos , Técnicas Citológicas/métodos , Islotes Pancreáticos/citología , Células Secretoras de Insulina
5.
Life Sci ; 226: 57-67, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30930115

RESUMEN

AIM: At performing a temporal analysis of the distribution pattern of islet endocrine cells and antioxidant enzymes in diabetic rats during the post-natal critical development window. MAIN METHODS: The newborns received streptozotocin (STZ) at birth for diabetes induction, and control females received the vehicle. The animals were euthanized at different lifetimes: D5, D10, D15, and D30. Morphological analysis of pancreas and biochemical assays was performed. KEY FINDINGS: The STZ-induced rats presented irregular shape of islet on D5 and there was an attempt to restore of this shape in other life moment studied. There was an increase progressive in islet area, however they maintained smaller than those of control rats, with lower labeling intensity for insulin, higher for glucagon and somatostatin, lower for SOD-1 was lower in the islets of the STZ-induced animals at all times studied and for GSH-Px in D10 and D30. SIGNIFICANCE: Although STZ-induced diabetic rats presented compensatory mechanisms to restore the mass of endocrine cells, this was not sufficient since these rats developed the diabetic state. This was confirmed by the oral glucose tolerance test from D30. In addition, the delta (δ)-cells presented ectopic location in islets, indicating a possible relationship for beta (ß)-cell mass restoration. There was a response of the pancreas to reduce the hyperglycemia in the first month of life. Furthermore, the cells from the endocrine pancreas of diabetic animals show a decline of antioxidant enzymatic, contributing to the increased susceptibility of cells to hyperglycemia-induced ROS in this postnatal critical development window.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Animales , Antioxidantes/análisis , Antioxidantes/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Femenino , Glucagón , Glucosa/metabolismo , Hiperglucemia , Insulina , Células Secretoras de Insulina , Masculino , Páncreas/citología , Embarazo , Ratas , Ratas Wistar , Análisis Espacio-Temporal , Estreptozocina/farmacología
6.
Mol Cell Endocrinol ; 477: 39-47, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29792912

RESUMEN

The success of islet transplantation has improved lately. Unfortunately, it is still compromised by cell loss. We have shown that prolactin (PRL) inhibits beta-cell apoptosis and up-regulates the antiapoptotic Heat Shock Protein B1 (HSPB1) in human islets. Since its function in pancreatic islets has not been studied, we explored the role of HSPB1 in PRL-induced beta-cell survival. The significant PRL-induced cytoprotection in control cells was abrogated in HSPB1 silenced cells, overexpression of HSPB1 recovered survival. PRL-mediated inhibition of cytokine-induced caspase activities and cytokine-induced decrease of BCL-2/BAX ratio was significantly reverted in knocked-down cells. Kinetics of HSPB1 and HSF1 expression were studied in primary cultures of murine and human pancreatic islets. These findings are highly relevant for the improvement of clinical islet transplantation success rate since our results demonstrated a key role for HSPB1 pointing it as a promising target for beta-cell cytoprotection through the up-regulation of an endogenous protective pathway.


Asunto(s)
Citoprotección , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Prolactina/farmacología , Sustancias Protectoras/farmacología , Adulto , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Citoprotección/efectos de los fármacos , Células HEK293 , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Chaperonas Moleculares
7.
J Med Food ; 21(3): 274-281, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29068758

RESUMEN

During maturation, pancreatic islets achieve their full capacity to secrete insulin in response to glucose, undergo morphological changes in which alpha-cells decrease and beta-cell mass increases, and they acquire the normal alpha- and beta-cell proportion changes that are important for islet functions later in life. In rodents, the first week of postweaning is critical for islet maturation. Multiple studies have documented the detrimental effects of several conditions on pancreatic maturation; however, few studies have addressed the use of pharmacological agents to enhance islet maturation. Biotin might have a potential action on islet maturation. Pharmacological concentrations of biotin have been found to modify islet morphology and function. In a previous study, we found that mice fed a biotin-supplemented diet for 8 weeks after weaning showed an increase in basal and glucose stimulated insulin secretion, enlarged islet size, and modified islet structure. In the present study, we investigated the effect of biotin on maturation features during the first week postweaning. Female BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 1 week after weaning. Compared with the control, biotin-supplemented mice showed an increase in pancreatic islet number and area in addition to an augmented proportion of beta-cells in the islet. These effects were related to an increase in beta-cell proliferation. No differences were found in insulin secretion, blood glucose concentrations, or serum insulin levels. These results indicate that biotin supplementation is capable of affecting beta-cell proliferation and might be a therapeutic agent for establishing strategies for regenerative medicine.


Asunto(s)
Biotina/administración & dosificación , Diferenciación Celular , Proliferación Celular , Suplementos Dietéticos , Células Secretoras de Insulina/citología , Islotes Pancreáticos/crecimiento & desarrollo , Complejo Vitamínico B/administración & dosificación , Animales , Apoptosis , Biotina/efectos adversos , Biotina/metabolismo , Biotina/uso terapéutico , Glucemia/análisis , Recuento de Células , Suplementos Dietéticos/efectos adversos , Femenino , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones Endogámicos BALB C , Tamaño de los Órganos , Concentración Osmolar , Estado Prediabético/prevención & control , Distribución Aleatoria , Técnicas de Cultivo de Tejidos , Complejo Vitamínico B/efectos adversos , Complejo Vitamínico B/metabolismo , Complejo Vitamínico B/uso terapéutico , Destete
8.
Islets ; 9(5): 73-86, 2017 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-28678625

RESUMEN

Pancreatic islet transplantation is an established treatment to restore insulin independence in type 1 diabetic patients. Its success rates have increased lately based on improvements in immunosuppressive therapies and on islet isolation and culture. It is known that the quality and quantity of viable transplanted islets are crucial for the achievement of insulin independence and some studies have shown that a significant number of islets are lost during culture time. Thus, in an effort to improve islet yield during culture period, researchers have tested a variety of additives in culture media as well as alternative culture devices, such as scaffolds. However, due to the use of different categories of additives or devices, it is difficult to draw a conclusion on the benefits of these strategies. Therefore, the aim of this systematic review was to summarize the results of studies that described the use of medium additives, scaffolds or extracellular matrix (ECM) components during human pancreatic islets culture. PubMed and Embase repositories were searched. Of 5083 articles retrieved, a total of 37 articles fulfilled the eligibility criteria and were included in the review. After data extraction, articles were grouped as follows: 1) "antiapoptotic/anti-inflammatory/antioxidant," 2) "hormone," 3) "sulphonylureas," 4) "serum supplements," and 5) "scaffolds or ECM components." The effects of the reviewed additives, ECM or scaffolds on islet viability, apoptosis and function (glucose-stimulated insulin secretion - GSIS) were heterogeneous, making any major conclusion hard to sustain. Overall, some "antiapoptotic/anti-inflammatory/antioxidant" additives decreased apoptosis and improved GSIS. Moreover, islet culture with ECM components or scaffolds increased GSIS. More studies are needed to define the real impact of these strategies in improving islet transplantation outcomes.


Asunto(s)
Matriz Extracelular/metabolismo , Islotes Pancreáticos/citología , Técnicas de Cultivo de Tejidos , Andamios del Tejido , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/inmunología , Humanos , Hipoglucemiantes/farmacología , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/inmunología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/efectos adversos , Trasplante de Islotes Pancreáticos/inmunología , Trasplante de Islotes Pancreáticos/tendencias , Compuestos de Sulfonilurea/farmacología , Técnicas de Cultivo de Tejidos/tendencias
9.
Xenotransplantation ; 24(4)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28623861

RESUMEN

BACKGROUND: Recently, significant progress in both safety and efficacy has been achieved in the field of xenotransplantation, as exemplified by results from the first clinical trials of porcine islet transplantation. It would be of interest to learn whether the attitude of the clinical staff involved in such trials changes as the trials are carried out in their own hospital. METHODS: One hundred and four clinical staff members from the Eva Peron Hospital of San Martin (Buenos Aires, Argentina) where clinical trials of islet xenotransplantation have been performed and 92 similar staff members from the Diego Thompson Hospital (Buenos Aires, Argentina) where no such xenotransplantation has been carried out participated in the study. Data were collected anonymously using questionnaires. RESULTS: Statistically significant differences between the acceptance of xenotransplantation by clinical personnel in a hospital that had carried out clinical xenotransplantation trials were observed when compared with the acceptance of a similar staff from the hospital that had not carried out such trials. CONCLUSION: This study shows that involvement in clinical xenotransplantation trials significantly changes the attitude of the clinical staff towards this technology and suggests that better information given to the society may increase acceptance of the xenotransplantation.


Asunto(s)
Xenoinjertos/citología , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/citología , Trasplante de Riñón , Trasplante Heterólogo , Animales , Diabetes Mellitus Tipo 1 , Xenoinjertos/inmunología , Humanos , Trasplante de Islotes Pancreáticos/métodos , Riñón/citología , Trasplante de Riñón/métodos , Selección de Paciente , Encuestas y Cuestionarios , Porcinos , Trasplante Heterólogo/métodos
10.
Braz J Med Biol Res ; 50(5): e5858, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28380195

RESUMEN

Modifications in life-style and/or pharmacotherapies contribute to weight loss and ameliorate the metabolic profile of diet-induced obese humans and rodents. Since these strategies fail to treat hypothalamic obesity, we have assessed the possible mechanisms by which duodenal-jejunal bypass (DJB) surgery regulates hepatic lipid metabolism and the morphophysiology of pancreatic islets, in hypothalamic obese (HyO) rats. During the first 5 days of life, male Wistar rats received subcutaneous injections of monosodium glutamate (4 g/kg body weight, HyO group), or saline (CTL). At 90 days of age, HyO rats were randomly subjected to DJB (HyO DJB group) or sham surgery (HyO Sham group). HyO Sham rats were morbidly obese, insulin resistant, hypertriglyceridemic and displayed higher serum concentrations of non-esterified fatty acids (NEFA) and hepatic triglyceride (TG). These effects were associated with higher expressions of the lipogenic genes and fatty acid synthase (FASN) protein content in the liver. Furthermore, hepatic genes involved in ß-oxidation and TG export were down-regulated in HyO rats. In addition, these rats exhibited hyperinsulinemia, ß-cell hypersecretion, a higher percentage of islets and ß-cell area/pancreas section, and enhanced nuclear content of Ki67 protein in islet-cells. At 2 months after DJB surgery, serum concentrations of TG and NEFA, but not hepatic TG accumulation and gene and protein expressions, were normalized in HyO rats. Insulin release and Ki67 positive cells were also normalized in HyO DJB islets. In conclusion, DJB decreased islet-cell proliferation, normalized insulinemia, and ameliorated insulin sensitivity and plasma lipid profile, independently of changes in hepatic metabolism.


Asunto(s)
Duodeno/cirugía , Hígado Graso/metabolismo , Derivación Gástrica/métodos , Enfermedades Hipotalámicas/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Yeyuno/cirugía , Obesidad/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Proliferación Celular , Colesterol/sangre , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/sangre , Hígado Graso/fisiopatología , Enfermedades Hipotalámicas/fisiopatología , Enfermedades Hipotalámicas/cirugía , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Islotes Pancreáticos/fisiopatología , Lipogénesis/genética , Hígado/metabolismo , Hígado/patología , Masculino , Obesidad/fisiopatología , Obesidad/cirugía , Páncreas/metabolismo , Páncreas/patología , Distribución Aleatoria , Ratas Wistar , Reproducibilidad de los Resultados , Factores de Tiempo , Triglicéridos/sangre
11.
Islets ; 9(2): 30-42, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28151049

RESUMEN

The maintenance of viable and functional pancreatic islets is crucial for successful islet transplantation from brain-dead donors. To overcome islet quality loss during culture, some studies have co-cultured islets with mesenchymal stem/stromal cells (MSC). However, it is still uncertain if MSC-secreted factors are enough to improve islet quality or if a physical contact between MSCs and islets is needed. Therefore, we performed a systematic review and meta-analysis to clarify the effect of different culture contact systems of islets with MSCs on viability and insulin secretion outcomes. Pubmed and Embase were searched. Twenty studies fulfilled the eligibility criteria and were included in the qualitative synthesis and/or meta-analysis. For both outcomes, pooled weighted mean differences (WMD) between islet cultured alone (control group) and the co-culture condition were calculated. Viability mean was higher in islets co-cultured with MSCs compared with islet cultured alone [WMD = 18.08 (95% CI 12.59-23.57)]. The improvement in viability was higher in islets co-cultured in indirect or mixed contact with MSCs than in direct physical contact (P <0.001). Moreover, the mean of insulin stimulation index (ISI) was higher in islets from co-culture condition compared with islet cultured alone [WMD = 0.83 (95% CI 0.54-1.13)], independently of contact system. Results from the studies that were analyzed only qualitatively are in accordance with meta-analysis data. Co-culture of islets with MSCs has the potential for protecting islets from injury during culture period. Moreover, culture time appears to influence the beneficial effect of different methods of co-culture on viability and function of islets.


Asunto(s)
Técnicas de Cocultivo , Insulina/metabolismo , Islotes Pancreáticos/citología , Células Madre Mesenquimatosas/citología , Animales , Humanos , Secreción de Insulina , Islotes Pancreáticos/metabolismo
12.
Diabetes ; 66(3): 722-734, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27920090

RESUMEN

Type 1 diabetes results from chronic autoimmune destruction of insulin-producing ß-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19-35, and two clones from separate donors responded to insulin B-chain amino acids 9-23 (B:9-23), which are known to be a critical self-antigen-driving disease progress in animal models of autoimmune diabetes. These B:9-23-specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9-23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment.


Asunto(s)
Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Insulina/inmunología , Islotes Pancreáticos/inmunología , Fragmentos de Péptidos/inmunología , Proinsulina/inmunología , Precursores de Proteínas/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Adolescente , Péptido C/inmunología , Niño , Femenino , Antígenos HLA-DQ/inmunología , Antígenos HLA-DR/inmunología , Humanos , Células Secretoras de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/patología , Receptores de Antígenos de Linfocitos T/genética , Adulto Joven
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;50(5): e5858, 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-839295

RESUMEN

Modifications in life-style and/or pharmacotherapies contribute to weight loss and ameliorate the metabolic profile of diet-induced obese humans and rodents. Since these strategies fail to treat hypothalamic obesity, we have assessed the possible mechanisms by which duodenal-jejunal bypass (DJB) surgery regulates hepatic lipid metabolism and the morphophysiology of pancreatic islets, in hypothalamic obese (HyO) rats. During the first 5 days of life, male Wistar rats received subcutaneous injections of monosodium glutamate (4 g/kg body weight, HyO group), or saline (CTL). At 90 days of age, HyO rats were randomly subjected to DJB (HyO DJB group) or sham surgery (HyO Sham group). HyO Sham rats were morbidly obese, insulin resistant, hypertriglyceridemic and displayed higher serum concentrations of non-esterified fatty acids (NEFA) and hepatic triglyceride (TG). These effects were associated with higher expressions of the lipogenic genes and fatty acid synthase (FASN) protein content in the liver. Furthermore, hepatic genes involved in β-oxidation and TG export were down-regulated in HyO rats. In addition, these rats exhibited hyperinsulinemia, β-cell hypersecretion, a higher percentage of islets and β-cell area/pancreas section, and enhanced nuclear content of Ki67 protein in islet-cells. At 2 months after DJB surgery, serum concentrations of TG and NEFA, but not hepatic TG accumulation and gene and protein expressions, were normalized in HyO rats. Insulin release and Ki67 positive cells were also normalized in HyO DJB islets. In conclusion, DJB decreased islet-cell proliferation, normalized insulinemia, and ameliorated insulin sensitivity and plasma lipid profile, independently of changes in hepatic metabolism.


Asunto(s)
Animales , Masculino , Duodeno/cirugía , Hígado Graso/metabolismo , Derivación Gástrica/métodos , Enfermedades Hipotalámicas/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Yeyuno/cirugía , Obesidad/metabolismo , Animales Recién Nacidos , Glucemia/metabolismo , Proliferación Celular , Colesterol/sangre , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/sangre , Hígado Graso/fisiopatología , Enfermedades Hipotalámicas/fisiopatología , Enfermedades Hipotalámicas/cirugía , Resistencia a la Insulina , Insulina/metabolismo , Islotes Pancreáticos/fisiopatología , Lipogénesis/genética , Hígado/metabolismo , Hígado/patología , Obesidad/fisiopatología , Obesidad/cirugía , Páncreas/metabolismo , Páncreas/patología , Distribución Aleatoria , Ratas Wistar , Reproducibilidad de los Resultados , Factores de Tiempo , Triglicéridos/sangre
14.
Nutr Res ; 36(8): 855-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27440540

RESUMEN

A maternal low-protein (LP) diet programs fetal pancreatic islet ß-cell development and function and predisposes offspring to metabolic dysfunction later in life. We hypothesized that maternal protein restriction during pregnancy differentially alters ß- and α-cell populations in offspring by modifying islet ontogeny and function throughout life. We aimed to investigate the effect of an LP maternal diet on pancreatic islet morphology and cellular composition in female offspring on postnatal days (PNDs) 7, 14, 21, 36, and 110. Mothers were divided into 2 groups: during pregnancy, the control group (C) was fed a diet containing 20% casein, and the LP group was fed an isocaloric diet with 10% casein. Offspring pancreases were obtained at each PND and then processed. ß and α cells were detected by immunohistochemistry, and cellular area and islet size were quantified. Islet cytoarchitecture and total area were similar in C and LP offspring at all ages studied. At the early ages (PNDs 7-21), the proportion of ß cells was lower in LP than C offspring. The proportion of α cells was lower in LP than C offspring on PND 14 and higher on PND 21. The ß/α-cell ratio was lower in LP compared with C offspring on PNDs 7 and 21 and higher on PND 36 (being similar on PNDs 14 and 110). We concluded that maternal protein restriction during pregnancy modifies offspring islet cell ontogeny by altering the proportions of islet sizes and by reducing the number of ß cells postnatally, which may impact pancreatic function in adult life.


Asunto(s)
Dieta con Restricción de Proteínas/efectos adversos , Páncreas/crecimiento & desarrollo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/citología , Islotes Pancreáticos/crecimiento & desarrollo , Lactancia , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Wistar , Maduración Sexual , Destete
15.
Diabetes ; 65(10): 3028-38, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27364731

RESUMEN

Human pancreatic islets consist of multiple endocrine cell types. To facilitate the detection of rare cellular states and uncover population heterogeneity, we performed single-cell RNA sequencing (RNA-seq) on islets from multiple deceased organ donors, including children, healthy adults, and individuals with type 1 or type 2 diabetes. We developed a robust computational biology framework for cell type annotation. Using this framework, we show that α- and ß-cells from children exhibit less well-defined gene signatures than those in adults. Remarkably, α- and ß-cells from donors with type 2 diabetes have expression profiles with features seen in children, indicating a partial dedifferentiation process. We also examined a naturally proliferating α-cell from a healthy adult, for which pathway analysis indicated activation of the cell cycle and repression of checkpoint control pathways. Importantly, this replicating α-cell exhibited activated Sonic hedgehog signaling, a pathway not previously known to contribute to human α-cell proliferation. Our study highlights the power of single-cell RNA-seq and provides a stepping stone for future explorations of cellular heterogeneity in pancreatic endocrine cells.


Asunto(s)
Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Transcriptoma/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Biología Computacional/métodos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Microfluídica/métodos , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Sci Rep ; 6: 27882, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27292372

RESUMEN

It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 µg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early ß-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.


Asunto(s)
Islotes Pancreáticos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Proteoma/efectos de los fármacos , Tejido Adiposo/metabolismo , Administración Intranasal , Animales , Peso Corporal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colesterol/sangre , Glucosa/metabolismo , Insulina/sangre , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Wistar , Triglicéridos/sangre , Regulación hacia Arriba/efectos de los fármacos
17.
Transplant Proc ; 48(2): 669-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27110026

RESUMEN

BACKGROUND: Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the ß-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. METHODS: We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. RESULTS: Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. CONCLUSIONS: We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements.


Asunto(s)
Células Endoteliales/citología , Trasplante de Islotes Pancreáticos/métodos , Animales , Técnicas de Cocultivo/métodos , Diabetes Mellitus Experimental/terapia , Células Endoteliales/trasplante , Femenino , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/trasplante , Islotes Pancreáticos/citología , Ratones Endogámicos BALB C , Distribución Aleatoria
18.
Genet Mol Res ; 14(4): 12505-19, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26505401

RESUMEN

Cells isolated from human first trimester umbilical cord perivascular layer (hFTM-PV) tissues display the pluripotent characteristics of stem cells. In this study, we examined whether hFTM-PV cells can differentiate into islet-like clusters (ILCs) in vitro, and whether transplantation of the hFTM-PV cells with and without differentiation in vitro can alleviate diabetes in nude mice. The hFTM-PV cells were differentiated into ILCs in vitro through a simple stepwise culture protocol. To examine the in vivo effects of the cells, the hFTM-PV cells with and without differentiation in vitro were transplanted into the abdominal cavity of nude mice with streptozotocin (STZ)-induced diabetes. Blood glucose levels, body weight, and the survival probability of the diabetic nude mice were then statistically analyzed. The hFTM-PV cells were successfully induced into ILCs that could release insulin in response to elevated concentrations of glucose in vitro. In transplantation experiments, we observed that mice transplanted with the undifferentiated hFTM-PV cells, embryonic body-like cell aggregations, or ILCs all demonstrated normalized hyperglycemia and showed improved survival rate compared with those without cell transplantation. The hFTM-PV cells have the ability to differentiate into ILCs in vitro and transplantations of undifferentiated and differentiated cells can alleviate STZ-induced diabetes in nude mice. This may offer a potential cell source for stem cell-based therapy for treating diabetes in the future.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Diabetes Mellitus Experimental/terapia , Animales , Diferenciación Celular/fisiología , Diabetes Mellitus Experimental/sangre , Femenino , Humanos , Islotes Pancreáticos/citología , Ratones , Ratones Desnudos , Embarazo , Cordón Umbilical/citología
19.
Amino Acids ; 47(8): 1533-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25940922

RESUMEN

Taurine (Tau) regulates ß-cell function and glucose homeostasis under normal and diabetic conditions. Here, we assessed the effects of Tau supplementation upon glucose homeostasis and the morphophysiology of endocrine pancreas, in leptin-deficient obese (ob) mice. From weaning until 90-day-old, C57Bl/6 and ob mice received, or not, 5% Tau in drinking water (C, CT, ob and obT). Obese mice were hyperglycemic, glucose intolerant, insulin resistant, and exhibited higher hepatic glucose output. Tau supplementation did not prevent obesity, but ameliorated glucose homeostasis in obT. Islets from ob mice presented a higher glucose-induced intracellular Ca(2+) influx, NAD(P)H production and insulin release. Furthermore, α-cells from ob islets displayed a higher oscillatory Ca(2+) profile at low glucose concentrations, in association with glucagon hypersecretion. In Tau-supplemented ob mice, insulin and glucagon secretion was attenuated, while Ca(2+) influx tended to be normalized in ß-cells and Ca(2+) oscillations were increased in α-cells. Tau normalized the inhibitory action of somatostatin (SST) upon insulin release in the obT group. In these islets, expression of the glucagon, GLUT-2 and TRPM5 genes was also restored. Tau also enhanced MafA, Ngn3 and NeuroD mRNA levels in obT islets. Morphometric analysis demonstrated that the hypertrophy of ob islets tends to be normalized by Tau with reductions in islet and ß-cell masses, but enhanced δ-cell mass in obT. Our results indicate that Tau improves glucose homeostasis, regulating ß-, α-, and δ-cell morphophysiology in ob mice, indicating that Tau may be a potential therapeutic tool for the preservation of endocrine pancreatic function in obesity and diabetes.


Asunto(s)
Suplementos Dietéticos , Glucagón/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Taurina/administración & dosificación , Taurina/metabolismo , Animales , Glucemia/metabolismo , Calcio/metabolismo , Homeostasis/efectos de los fármacos , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Taurina/sangre
20.
J Steroid Biochem Mol Biol ; 150: 112-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25843210

RESUMEN

The effect of 3ß-hidroxihop-22(29)ene (3-BHO) on insulin and glucagon-like peptide 1 (GLP-1) secretion as well as the mechanism of action of the compound in pancreatic islet on glucose homeostasis was investigated. The data from in vivo treatment show that 3-BHO significantly reduces the hyperglycemia by increasing the insulin and GLP-1 secretion, as well as by accumulating hepatic glycogen in hyperglycemic rats. In rat pancreatic ß-cell, 3-BHO stimulates the glucose uptake, insulin vesicles translocation to the plasma membrane and thus the insulin secretion through the involvement of potassium channels (ATP- and Ca(2+)-dependent K(+) channels) and calcium channels (L-type voltage-dependent calcium channels (L-VDCC)). Furthermore, this study also provides evidence for a crosstalk between intracellular high calcium concentration, PKA and PKC in the signal transduction of 3-BHO to stimulate insulin secretion. In conclusion, 3-BHO diminishes glycaemia, stimulates GLP-1 secretion and potentiates insulin secretion and increase hepatic glycogen content. Moreover, this triterpene modulates calcium influx characterizing ATP-K(+), Ca(2+)-K(+) and L-VDCC channels-dependent pathways as well as PKA and PKC activity in pancreatic islets underlying the signaling of 3-BHO for the secretory activity and contribution on glucose homeostasis.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Péptido 1 Similar al Glucagón/sangre , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Canales KATP/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Triterpenos/farmacología , Animales , Transporte Biológico , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/genética , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Homeostasis/genética , Humanos , Insulina/sangre , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Canales KATP/genética , Masculino , Canales de Potasio Calcio-Activados/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Transducción de Señal , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA