Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Drug Des Devel Ther ; 17: 3023-3031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789971

RESUMEN

This review aims to provide a comprehensive overview of the current literature on the drug design, development, and therapy of lurasidone for the treatment of schizophrenia. Lurasidone has antagonistic effects on the dopamine D2, 5-hydroxytryptamine (5-HT)2A, and 5-HT7 receptors and a partial agonistic effect on the 5-HT1A receptor with low affinities for muscarinic M1, histamine H1, and a1 adrenergic receptors. The receptor-binding profile of lurasidone is thought to be associated with fewer side effects such as anticholinergic effects, lipid abnormalities, hyperglycemia, and weight gain. Behavioral pharmacological studies have demonstrated that lurasidone exerts anxiolytic and antidepressive effects and improves cognitive function, which are associated with the modulation of 5-HT7 and 5-HT1A receptors. Literature search using PubMed was performed to find published studies of randomized controlled trials and recent meta-analyses regarding efficacy and safety, particularly metabolic side effects of lurasidone in schizophrenia. In short-term studies, the results of randomized placebo-controlled trials and meta-analyses have suggested that lurasidone was superior to placebo in improving total psychopathology, positive symptoms, negative symptoms, and general psychopathology in patients with acute schizophrenia. Regarding safety, lurasidone had minimal metabolic side effects, and was identified as one of the drugs with the most benign profiles for metabolic side effects. Long-term trials revealed that lurasidone had the preventive effects on relapse, with minimal effects on weight gain and other metabolic side effects. Furthermore, lurasidone improves cognitive and functional performance of patients with schizophrenia, especially in long-term treatment. Patients with schizophrenia require long-term treatment with antipsychotics for relapse prevention; thus, minimizing weight gain and other side effects is crucial. Lurasidone is suitable as one of the first-line antipsychotic drugs in the acute phase, and a switching strategy should be considered during the maintenance phase, to balance efficacy and adverse effects and achieve favorable outcomes in the long-term course of schizophrenia.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Clorhidrato de Lurasidona/efectos adversos , Esquizofrenia/tratamiento farmacológico , Serotonina , Isoindoles/farmacología , Tiazoles/farmacología , Antipsicóticos/efectos adversos , Aumento de Peso
2.
Chem Biol Drug Des ; 102(6): 1448-1457, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37712451

RESUMEN

In this study, synthesis of novel isoindole-1,3-dione analogues bearig halo, hydroxy, and acetoxy groups at the position 4,5,6 of the bicyclic imide ring was performed to examine their potential anticancer effects against some cell lines. A multistep chemical pathway was used to synthesize the derivatives. The cytotoxic effect of trisubstituted isoindole derivatives were evaluated by determining cellular viability using the MTT assay against A549, PC-3, HeLa, Caco-2, and MCF-7 cell lines. The C-2 selective ring-opening products were obtained from the ring-opening reaction of 5-alkyl/aryl-2-hydroxyhexahydro-4H-oxireno[2,3-e]isoindole-4,6(5H)-diones with nucleophiles such as chloride (Cl- ) and bromide (Br- ) ions. In addition, the ring-opening products halodiols were converted to their related acetates. The anticancer activity of synthesized isoindole-1,3-dione derivatives was investigated against HeLa, A549, MCF-7, PC3, and Caco-2 cells in vitro and resulted in varies cytotoxic effect depend on the group attached to the isoindole molecule. Furthermore, the evaluation of the antimicrobial action of trisubstituted isoindole derivatives against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was assessed and found out selective inhibition of the both bacterial growth via different trisubstituted isoindole derivatives. The results of this work encourage further research on the potential utilization of trisubstituted isoindole derivatives as cytotoxic and antimicrobial agents.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Humanos , Células CACO-2 , Isoindoles/química , Isoindoles/farmacología , Antibacterianos/química , Antineoplásicos/química , Antiinfecciosos/farmacología , Relación Estructura-Actividad , Estructura Molecular
4.
J Med Chem ; 66(3): 2054-2063, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36661843

RESUMEN

Screening of 25 analogs of Ebselen, diversified at the N-aromatic residue, led to the identification of the most potent inhibitors of Sporosarcina pasteurii urease reported to date. The presence of a dihalogenated phenyl ring caused exceptional activity of these 1,2-benzisoselenazol-3(2H)-ones, with Ki value in a low picomolar range (<20 pM). The affinity was attributed to the increased π-π and π-cation interactions of the dihalogenated phenyl ring with αHis323 and αArg339 during the initial step of binding. Complementary biological studies with selected compounds on the inhibition of ureolysis in whole Proteus mirabilis cells showed a very good potency (IC50 < 25 nM in phosphate-buffered saline (PBS) buffer and IC90 < 50 nM in a urine model) for monosubstituted N-phenyl derivatives. The crystal structure of S. pasteurii urease inhibited by one of the most active analogs revealed the recurrent selenation of the Cys322 thiolate, yielding an unprecedented Cys322-S-Se-Se chemical moiety.


Asunto(s)
Inhibidores Enzimáticos , Ureasa , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Bacterias/metabolismo , Isoindoles/farmacología , Azoles/farmacología
5.
Eur J Med Chem ; 245(Pt 1): 114865, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335743

RESUMEN

The development of novel therapeutics promoting selective tumor elimination is the mainstay of clinical oncology. Emerging insights into tumor targeting reveal caspases activation, especially caspase-3, as a personalized anticancer strategy. Our on-going cancer research has exploited Passerini α-acyloxy carboxamides as caspase-3/7-dependent apoptotic inducers. Herein, we adopted scaffold hopping design to introduce new series of isoindole-based Passerini adducts as caspase-3/7 activators inspired by natural alkaloids from Lion's Mane mushroom promoting caspase-3-mediated apoptosis. Additional pharmacophoric motifs of lead caspase activators were merged into the tailored Passerini skeleton. The rationally designed adducts were synthesized utilizing one-pot reaction of the novel 4-(2'-phthalimido)phenylisonitrile 5, cyclohexanone and miscellaneous carboxylic acids under Passerini conditions. All derivatives were screened for their antiproliferative activities against lung A549, colorectal Caco-2 and breast MDA-MB 231 cancer cells compared to normal fibroblasts utilizing MTT assay. Most of the evaluated derivatives were superior to 5-fluorouracil. The 2-(1H-indol-3-yl)acetate derivative (8a) recorded the highest anticancer potency (IC50 = 0.04-0.11 µM) and selectivity (SI = 42.59-125.53), followed by the 3-(4-(trifluoromethyl)phenyl)acrylate (8m), the 2-(phenylsulfonyl)glycinate (8q), and the 2-(2-(3-phenyl-1,2,4-oxadiazol-5-yl)phenoxy)acetate (8c) derivatives, respectively. The four hits induced cancer cells apoptosis (up to 57.99%) via caspase-3/7 activation (up to 5.47 folds). Apoptosis-inducing factor1 (AIF1) quantification assay excluded their caspase-independent apoptosis induction potential via AIF1 signaling pathway. Docking simulations clarified the possible binding modes of the hit compounds with XIAP BIR2 domain; the specific receptor of caspase-3/7 activators, and aided identifying their structural determinants of activity. Finally, their practical LogP, efficiency metrics, in silico ADMET profiling were drug-like.


Asunto(s)
Antineoplásicos , Apoptosis , Caspasa 3 , Caspasa 7 , Isoindoles , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Células CACO-2 , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Isoindoles/química , Isoindoles/farmacología , Estructura Molecular , Relación Estructura-Actividad , Células A549
7.
Antimicrob Agents Chemother ; 66(12): e0122622, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36374026

RESUMEN

Tecovirimat is an antiviral drug initially developed against variola virus (VARV) to treat smallpox infection. Due to its mechanism of action, it has activity against the family of orthopoxviruses, including vaccinia and the human monkeypox virus (HMPXV). Efficacy studies have thus far been limited to animal models, with human safety trials showing no serious adverse events. Currently approved by the FDA only for the treatment of smallpox, tecovirimat shows promise for the treatment of HMPXV. Tecovirimat has been prescribed via an expanded access for an investigational new drug protocol during the 2022 outbreak. This review will examine the literature surrounding tecovirimat's mechanism of action, pharmacokinetics, safety, efficacy, and potential for resistance.


Asunto(s)
Mpox , Viruela , Virus de la Viruela , Animales , Humanos , Viruela/tratamiento farmacológico , Monkeypox virus , Antivirales/efectos adversos , Benzamidas/farmacología , Benzamidas/uso terapéutico , Isoindoles/uso terapéutico , Isoindoles/farmacología , Mpox/tratamiento farmacológico
8.
Nat Microbiol ; 7(12): 1951-1955, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36344621

RESUMEN

The ongoing monkeypox virus (MPXV) outbreak is the largest ever recorded outside of Africa. We isolated and sequenced a virus from the first clinical MPXV case diagnosed in France (May 2022). We report that tecovirimat (ST-246), a US Food and Drug Administration approved drug, is efficacious against this isolate in vitro at nanomolar concentrations, whereas cidofovir is only effective at micromolar concentrations. Our results support the use of tecovirimat in ongoing human clinical trials.


Asunto(s)
Monkeypox virus , Mpox , Estados Unidos , Humanos , Mpox/tratamiento farmacológico , Isoindoles/farmacología , Isoindoles/uso terapéutico , Benzamidas/farmacología , Benzamidas/uso terapéutico
9.
Sci Transl Med ; 14(673): eade7646, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36318038

RESUMEN

The recent emergence of the monkeypox virus (MPXV) in non-endemic countries has been designated a Public Health Emergency of International Concern by the World Health Organization. There are currently no approved treatments for MPXV infection in the United States or Canada. The antiviral drug tecovirimat (commonly called TPOXX), previously approved for smallpox treatment, is currently being deployed for treatment of MPXV infections where available based on previously accrued data. We tested the efficacy of TPOXX both in vitro and in vivo against a clade 2 Canadian 2022 isolate of MPXV isolated during the current outbreak. TPOXX prevented MPXV replication in vitro with an effective concentration in the nanomolar range. To evaluate TPOXX efficacy in vivo, we first characterized the CAST/EiJ mouse model with the same 2022 Canadian isolate. Unlike previous descriptions of this model, the Canadian isolate was not lethal in CAST/EiJ mice, although it replicated efficiently in the respiratory tract after intranasal infection. Subsequent experiments demonstrated that daily oral TPOXX treatment markedly reduced viral titers in the tissues 1 and 2 weeks after infection. Our data indicate that TPOXX is highly effective against currently circulating MPXV strains and could be an important contributor to curbing the ongoing outbreak.


Asunto(s)
Monkeypox virus , Mpox , Ratones , Animales , Canadá , Mpox/tratamiento farmacológico , Mpox/prevención & control , Isoindoles/farmacología , Isoindoles/uso terapéutico
10.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142133

RESUMEN

Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CALR) via dissociation of the PP1/GADD34 complex. In this regard, we computationally predicted the ability of SIX2G to induce CALR exposure by interacting with the PP1 RVxF domain. We then assessed both the potential cytotoxic and immunogenic activity of SIX2G on in vitro models of multiple myeloma (MM), which is an incurable hematological malignancy characterized by an immunosuppressive milieu. We found that the treatment with SIX2G inhibited cell viability by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, we observed the increase of hallmarks of ICD such as CALR exposure, ATP release and phospho-eIF2α protein level. Through co-culture experiments with immune cells, we demonstrated the increase of (i) CD86 maturation marker on dendritic cells, (ii) CD69 activation marker on cytotoxic T cells, and (iii) phagocytosis of tumor cells following treatment with SIX2G, confirming the onset of an immunogenic cascade. In conclusion, our findings provide a framework for further development of SIX2G as a new potential anti-MM agent.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Alcaloides de la Vinca , Humanos , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Calreticulina/metabolismo , Línea Celular Tumoral , Colchicina/farmacología , Muerte Celular Inmunogénica , Isoindoles/farmacología , Microtúbulos/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Oxazoles/farmacología , Taxoides/farmacología , Alcaloides de la Vinca/farmacología , Pemetrexed/farmacología , Pemetrexed/uso terapéutico
11.
Proc Natl Acad Sci U S A ; 119(30): e2201208119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858434

RESUMEN

Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.


Asunto(s)
Acetamidas , Antivirales , Isoindoles , Virus Lassa , Factores de Terminación de Péptidos , Piperidonas , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Acetamidas/farmacología , Acetamidas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular Tumoral , Humanos , Isoindoles/farmacología , Isoindoles/uso terapéutico , Fiebre de Lassa/tratamiento farmacológico , Virus Lassa/efectos de los fármacos , Factores de Terminación de Péptidos/metabolismo , Piperidonas/metabolismo , Piperidonas/farmacología , Piperidonas/uso terapéutico , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteoma , Proteómica , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo
12.
Drug Dev Res ; 83(6): 1331-1341, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35749723

RESUMEN

A series of [1,2]oxazolo[5,4-e]isoindole derivatives was evaluated against HL-60 cell line and its multidrug resistance (MDR) variant, HL-60R, resistant to doxorubicin and to other P-gp substrates by overexpressing the efflux pump. They displayed antiproliferative activities, with IC50 values ranging from 0.02 to 5.5 µM. In particular, the newly synthesized compound 4k produced synergistic effects in terms of cell growth inhibition and cell death induction either in combination with a Vinca alkaloid, Vinblastine, and a Taxane, Paclitaxel in HL-60R cells. The study of the mechanism of action indicated that all compounds showed antimitotic activity through inhibition of tubulin polymerization. Thus, [1,2]oxazoles could represent a valuable tool to overcome MDR mechanism, confirming the potential use of this class of compounds.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Isoindoles/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico
13.
Neuropsychopharmacol Rep ; 42(3): 374-376, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35508301

RESUMEN

In this case report, an adolescent boy with sophophobia (fear of learning) is reported. Although psychoeducation about the condition was helpful to the patient, there was only a limited effect on his symptoms. Psychotropic treatment with escitalopram was initiated. He showed gradual improvement with this treatment, and there was only a limited effect on his symptoms. Hence, the patient was referred for psychotherapy, although he was unable to attend sessions. Augmentation with perospirone resulted in significant improvement. Research about pharmacological approaches to treat childhood and adolescent phobias is limited and requires further investigation.


Asunto(s)
Escitalopram , Isoindoles , Adolescente , Niño , Miedo , Humanos , Isoindoles/farmacología , Isoindoles/uso terapéutico , Masculino , Tiazoles/farmacología , Tiazoles/uso terapéutico
14.
Mol Cell Biochem ; 477(6): 1873-1885, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35338455

RESUMEN

Renal ischemia-reperfusion (I/R) injury is one of the most common causes of chronic kidney disease (CKD). It brings unfavorable outcomes to the patients and leads to a considerable socioeconomic burden. The study of renal I/R injury is still one of the hot topics in the medical field. Ebselen is an organic selenide that attenuates I/R injury in various organs. However, its effect and related mechanism underlying renal I/R injury remains unclear. In this study, we established a rat model of renal I/R injury to study the preventive effect of ebselen on renal I/R injury and further explore the potential mechanism of its action. We found that ebselen pretreatment reduced renal dysfunction and tissue damage caused by renal I/R. In addition, ebselen enhanced autophagy and inhibited oxidative stress. Additionally, ebselen pretreatment activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effect of ebselen was suppressed by autophagy inhibitor wortmannin. In conclusion, ebselen could ameliorate renal I/R injury, probably by enhancing autophagy, activating the Nrf2 signaling pathway, and reducing oxidative stress.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Daño por Reperfusión , Animales , Autofagia , Humanos , Isoindoles/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Compuestos de Organoselenio , Estrés Oxidativo , Ratas , Daño por Reperfusión/metabolismo
15.
J Biochem Mol Toxicol ; 36(5): e23015, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35257437

RESUMEN

In this study, novel hybrid isoindole-1,3(2H)-dione compounds (10 and 11) carrying a 1H-tetrazole moiety were synthesized, characterized and their inhibitory properties against xanthine oxidase (XO) and carbonic anhydrase isoenzymes (hCA I and hCA II) were investigated. Allopurinol for XO and acetazolamide for carbonic anhydrase isoenzymes were used as positive standards in inhibition studies. In addition, compounds 8 and 9, which were obtained in the intermediate step, were also investigated for their inhibition effects against the three enzymes. According to the enzyme inhibition results, hybrid isoindole-1,3(2H)-dione derivatives 10 and 11 showed significant inhibitory effects against all three enzymes. Surprisingly, compound 8, containing a SCN functional group, exhibited a greater inhibitory effect than the other compounds against hCA I and hCA II. The IC50 values of compound 8 against hCA I and hCA II were found to be 3.698 ± 0.079 and 3.147 ± 0.083 µM, respectively. Compound 8 (IC50 = 4.261 ± 0.034 µM) showed higher activity than allopurinol (IC50 = 4.678 ± 0.029 µM) and the other compounds against XO, as well. These results clearly show the effect of the SCN group on the inhibition. In addition, in silico molecular docking studies were performed to understand the molecular interactions between each compound and enzymes, and the results were evaluated.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Alopurinol , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Isoenzimas , Isoindoles/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tetrazoles
16.
Dalton Trans ; 51(11): 4466-4476, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35229854

RESUMEN

The emergence of nanoscience and its effect on the development of diverse scientific fields, particularly materials chemistry, are well known today. In this study, a new di-substituted phthalonitrile derivative, namely 4,5-bis((4-(dimethylamino)phenyl)ethynyl)phthalonitrile (1), and its octa-substituted metal phthalocyanines {M = Co (2), Zn (3)} were prepared. All the newly synthesized compounds were characterized using a number of spectroscopic approaches, including FT-IR, mass, NMR, and UV-vis spectroscopy. The resultant compounds modified the surface of the gold nanoparticles (NG-1-3). Characterization of the newly synthesized conjugates was carried out by transmission electron microscopy. The antioxidant activity of compounds 1-3, NG-1-3, and NG was evaluated using the DPPH scavenging process and the highest radical scavenging activity was obtained with compounds 1, NG-1, 2, and NG-2 (100%). The antimicrobial activity of compounds 1-3, NG-1-3, and NG was studied using a microdilution assay and the most effective antimicrobial activity was obtained for NG-3 against all the tested microorganisms. The newly synthesized compounds demonstrated high DNA cleavage activity. Compounds 1-3, NG-1-3, and NG significantly inhibited the microbial cell viability of E. coli and exhibited perfect antimicrobial photodynamic therapeutic activity with 100% inhibition after 20 min LED irradiation. Besides, the biofilm inhibition activity of compounds 1-3, NG-1-3, and NG on the growth of S. aureus and P. aeruginosa were examined and compounds 1-3 and NG-1-3, especially NG-1-3, displayed high biofilm inhibition activities.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Complejos de Coordinación/farmacología , Escherichia coli/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antioxidantes/síntesis química , Antioxidantes/química , Compuestos de Bifenilo/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Isoindoles/química , Isoindoles/farmacología , Nanopartículas del Metal , Metales Pesados/química , Metales Pesados/farmacología , Pruebas de Sensibilidad Microbiana , Picratos/antagonistas & inhibidores
17.
J Biol Chem ; 298(3): 101612, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065969

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the "copper chaperone for SOD1." Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Compuestos de Organocobre , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Materiales Biomiméticos/farmacología , Cobre/metabolismo , Disulfuros/química , Humanos , Isoindoles/farmacología , Chaperonas Moleculares/metabolismo , Mutación , Compuestos de Organocobre/farmacología , Compuestos de Organoselenio/farmacología , Pliegue de Proteína/efectos de los fármacos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
18.
Biochem Biophys Res Commun ; 591: 82-87, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999258

RESUMEN

Steroid hormone synthesis in steroidogenic cells requires cholesterol (Ch) delivery to/into mitochondria via StAR family trafficking proteins. In previous work, we discovered that 7-OOH, an oxidative stress-induced cholesterol hydroperoxide, can be co-trafficked with Ch, thereby causing mitochondrial redox damage/dysfunction. We now report that exposing MA-10 Leydig cells to Ch/7-OOH-containing liposomes (SUVs) results in (i) a progressive increase in fluorescence probe-detected lipid peroxidation in mitochondrial membranes, (ii) a reciprocal decrease in immunoassay-detected progesterone generation, and ultimately (iii) loss of cell viability with increasing 7-OOH concentration. No significant effects were observed with a phospholipid hydroperoxide over the same concentration range. Glutathione peroxidase GPx4, which can catalyze lipid hydroperoxide detoxification, was detected in mitochondria of MA-10 cells. Mitochondrial lipid peroxidation and progesterone shortfall were exacerbated when MA-10 cells were treated with Ch/7-OOH in the presence of RSL3, a GPx4 inhibitor. However, Ebselen, a selenoperoxidase mimetic, substantially reduced RSL3's negative effects, thereby partially rescuing the cells from peroxidative damage. These findings demonstrate that co-trafficking of oxidative stress-induced 7-OOH can disable steroidogenesis, and that GPx4 can significantly protect against this.


Asunto(s)
Colesterol/análogos & derivados , Células Intersticiales del Testículo/metabolismo , Peroxidación de Lípido , Mitocondrias/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Esteroides/metabolismo , Animales , Carbolinas/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Colesterol/metabolismo , Fluorescencia , Isoindoles/farmacología , Células Intersticiales del Testículo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Compuestos de Organoselenio/farmacología , Fosfatidilcolinas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Progesterona/biosíntesis , Sustancias Protectoras/farmacología
19.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35037045

RESUMEN

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Exorribonucleasas/metabolismo , Genoma Viral/genética , Inestabilidad Genómica , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Exorribonucleasas/antagonistas & inhibidores , Genoma Viral/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Inhibidores de Integrasa VIH/farmacología , Isoindoles/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Compuestos de Organoselenio/farmacología , ARN Viral/biosíntesis , ARN Viral/genética , Raltegravir Potásico/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
Dalton Trans ; 51(2): 478-490, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34755751

RESUMEN

This study presents the preparation of a novel tetra-substituted phthalonitrile (1), namely, 3,6-bis(hexyloxy)-4,5-bis(4-(trifluoromethoxy)phenoxy)phthalonitrile (1) and its metal-free (2)/metal {M = Zn (3), Cu (4), Co (5), Lu(CH3COO) (6), Lu (7)} phthalocyanines. A series of various spectroscopic methods (UV-vis, FT-IR, mass, and 1H NMR spectroscopy) were performed for the characterization of the newly synthesized compounds. The potential of compounds 2, 3, and 6 as photosensitizing materials for photodynamic and sonophotodynamic therapies was evaluated by photophysical, photochemical, and sonochemical methods. The highest singlet quantum yields were obtained for the zinc phthalocyanine derivative 3 by performing photochemical and sonochemical methods. In addition, several biological activities of the new compounds 1-7 were investigated. The newly synthesized phthalocyanines exhibited excellent DPPH scavenging activity and also DNA nuclease activity. The antimicrobial activity of the new compounds was evaluated by the disc diffusion assay. Effective microbial cell viability inhibition was observed with phthalocyanine macromolecules. The photodynamic antimicrobial therapy of the phthalocyanines showed 100% bacterial inhibition when compared to the control. They also exhibited significant biofilm inhibition activity against S. aureus and P. aeruginosa. These results indicate that new phthalocyanines are promising photodynamic antimicrobial therapies for the treatment of infectious diseases.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Isoindoles/farmacología , Metales/farmacología , Fármacos Fotosensibilizantes/farmacología , Antiinfecciosos/química , Antioxidantes/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Compuestos de Bifenilo/química , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/crecimiento & desarrollo , Candida tropicalis/efectos de los fármacos , Candida tropicalis/crecimiento & desarrollo , Desoxirribonucleasas/química , Halogenación , Isoindoles/química , Metales/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Picratos/química , Oxígeno Singlete/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...