Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
1.
Environ Microbiol ; 26(4): e16621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558504

RESUMEN

The Candidate Phyla Radiation (CPR) encompasses widespread uncultivated bacteria with reduced genomes and limited metabolic capacities. Most CPR bacteria lack the minimal set of enzymes required for peptidoglycan (PG) synthesis, leaving it unclear how these bacteria produce this essential envelope component. In this study, we analysed the distribution of d-amino acid racemases that produce the universal PG components d-glutamate (d-Glu) or d-alanine (d-Ala). We also examined moonlighting enzymes that synthesize d-Glu or d-Ala. Unlike other phyla in the domain Bacteria, CPR bacteria do not exhibit these moonlighting activities and have, at most, one gene encoding either a Glu or Ala racemase. One of these 'orphan' racemases is a predicted Glu racemase (MurICPR) from the CPR bacterium Candidatus Saccharimonas aalborgenesis. The expression of MurICPR restores the growth of a Salmonella d-Glu auxotroph lacking its endogenous racemase and results in the substitution of l-Ala by serine as the first residue in a fraction of the PG stem peptides. In vitro, MurICPR exclusively racemizes Glu as a substrate. Therefore, Ca. Saccharimonas aalborgensis may couple Glu racemization to serine and d-Glu incorporation into the stem peptide. Our findings provide the first insights into the synthesis of PG by an uncultivated environmental bacterium and illustrate how to experimentally test enzymatic activities from CPR bacteria related to PG metabolism.


Asunto(s)
Isomerasas de Aminoácido , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Racemasas y Epimerasas , Bacterias/metabolismo , Ácido Glutámico/metabolismo , Serina
2.
Plant Cell Environ ; 47(5): 1503-1512, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251436

RESUMEN

d-amino acids are the d stereoisomers of the common l-amino acids found in proteins. Over the past two decades, the occurrence of d-amino acids in plants has been reported and circumstantial evidence for a role in various processes, including interaction with soil microorganisms or interference with cellular signalling, has been provided. However, examples are not numerous and d-amino acids can also be detrimental, some of them inhibiting growth and development. Thus, the persistence of d-amino acid metabolism in plants is rather surprising, and the evolutionary origins of d-amino acid metabolism are currently unclear. Systemic analysis of sequences associated with d-amino acid metabolism enzymes shows that they are not simply inherited from cyanobacterial metabolism. In fact, the history of plant d-amino acid metabolism enzymes likely involves multiple steps, cellular compartments, gene transfers and losses. Regardless of evolutionary steps, enzymes of d-amino acid metabolism, such as d-amino acid transferases or racemases, have been retained by higher plants and have not simply been eliminated, so it is likely that they fulfil important metabolic roles such as serine, folate or plastid peptidoglycan metabolism. We suggest that d-amino acid metabolism may have been critical to support metabolic functions required during the evolution of land plants.


Asunto(s)
Isomerasas de Aminoácido , Embryophyta , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , Aminoácidos/metabolismo , Plantas/metabolismo , Embryophyta/metabolismo , Bacterias/metabolismo
3.
FEBS J ; 289(19): 5895-5898, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35587531

RESUMEN

d-Amino acids (d-AAs) are key components of the peptidoglycan matrix in bacterial cells. Various bacterial species are known to produce d-AAs by using different enzymes, such as highly specific and broad-spectrum racemases. Miyamoto et al. studied the biosynthesis of d-glutamate in the hyperthermophile and anaerobic Gram-negative bacterium, Thermotoga maritima, which does not possess a broad-spectrum racemase. The investigated TM0831 enzyme catalyzes both a d-amino acid aminotransferase reaction producing d-glutamate and an amino acid racemase activity aimed at generating d-aspartate and d-glutamate from the corresponding l-enantiomers. TM0831 represents an example of natural molecular evolution process favoring the enzyme versatility. Comment on: https://doi.org/10.1111/febs.16452.


Asunto(s)
Isomerasas de Aminoácido , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , Aminoácidos/metabolismo , Bacterias/metabolismo , Ácido D-Aspártico , Ácido Glutámico/metabolismo , Peptidoglicano/metabolismo , Racemasas y Epimerasas , Transaminasas/genética
4.
Biochemistry ; 60(50): 3829-3840, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34845903

RESUMEN

Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.


Asunto(s)
Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Liasas de Carbono-Carbono/química , Liasas de Carbono-Carbono/metabolismo , Isomerasas de Aminoácido/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Amycolatopsis/enzimología , Amycolatopsis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Liasas de Carbono-Carbono/genética , Dominio Catalítico/genética , Secuencia Conservada , Cristalografía por Rayos X , Estabilidad de Enzimas/genética , Evolución Molecular , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
5.
Nucleic Acids Res ; 49(19): 11038-11049, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34643703

RESUMEN

A key pathway for mRNA degradation in bacterial cells begins with conversion of the initial 5'-terminal triphosphate to a monophosphate, a modification that renders transcripts more vulnerable to attack by ribonucleases whose affinity for monophosphorylated 5' ends potentiates their catalytic efficacy. In Escherichia coli, the only proteins known to be important for controlling degradation via this pathway are the RNA pyrophosphohydrolase RppH, its heteromeric partner DapF, and the 5'-monophosphate-assisted endonucleases RNase E and RNase G. We have now identified the metabolic enzyme cytidylate kinase as another protein that affects rates of 5'-end-dependent mRNA degradation in E. coli. It does so by utilizing two distinct mechanisms to influence the 5'-terminal phosphorylation state of RNA, each dependent on the catalytic activity of cytidylate kinase and not its mere presence in cells. First, this enzyme acts in conjunction with DapF to stimulate the conversion of 5' triphosphates to monophosphates by RppH. In addition, it suppresses the direct synthesis of monophosphorylated transcripts that begin with cytidine by reducing the cellular concentration of cytidine monophosphate, thereby disfavoring the 5'-terminal incorporation of this nucleotide by RNA polymerase during transcription initiation. Together, these findings suggest dual signaling pathways by which nucleotide metabolism can impact mRNA degradation in bacteria.


Asunto(s)
Citidina Monofosfato/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Fosfotransferasas/genética , Estabilidad del ARN/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Fosforilación , Fosfotransferasas/metabolismo , ARN Bacteriano/genética , ARN Mensajero/genética , Transducción de Señal
6.
Biosci Biotechnol Biochem ; 85(7): 1650-1657, 2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-33942867

RESUMEN

The amino acid sequence of the OCC_10945 gene product from the hyperthermophilic archaeon Thermococcus litoralis DSM5473, originally annotated as γ-aminobutyrate aminotransferase, is highly similar to that of the uncharacterized pyridoxal 5'-phosphate (PLP)-dependent amino acid racemase from Pyrococcus horikoshii. The OCC_10945 enzyme was successfully overexpressed in Escherichia coli by coexpression with a chaperone protein. The purified enzyme demonstrated PLP-dependent amino acid racemase activity primarily toward Met and Leu. Although PLP contributed to enzyme stability, it only loosely bound to this enzyme. Enzyme activity was strongly inhibited by several metal ions, including Co2+ and Zn2+, and nonsubstrate amino acids such as l-Arg and l-Lys. These results suggest that the underlying PLP-binding and substrate recognition mechanisms in this enzyme are significantly different from those of the other archaeal and bacterial amino acid racemases. This is the first description of a novel PLP-dependent amino acid racemase with moderate substrate specificity in hyperthermophilic archaea.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Proteínas Arqueales/metabolismo , Thermococcus/enzimología , Isomerasas de Aminoácido/química , Secuencia de Aminoácidos , Proteínas Arqueales/química , Electroforesis en Gel de Poliacrilamida , Genes Arqueales , Chaperonas Moleculares/metabolismo , Filogenia , Especificidad por Sustrato , Thermococcus/genética
7.
J Mol Recognit ; 34(9): e2894, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33719110

RESUMEN

Enterococcus faecalis (E. faecalis) is a Gram-positive coccoid, non-sporulating, facultative anaerobic, multidrug resistance bacterium responsible for almost 65% to 80% of all enterococcal nosocomial infections. It usually causes infective endocarditis, urinary tract and surgical wound infections. The increase in E. faecalis resistance to conventionally available antibiotic has rekindled intense interest in developing useful antibacterial drugs. In E. faecalis, diaminopimelate epimerase (DapF) is involved in the lysine biosynthetic pathway. The product of this pathway is precursors of peptidoglycan synthesis, which is a component of bacterial cell wall. Also, because mammals lack this enzyme, consequently E. faecalis diaminopimelate epimerase (EfDapF) represents a potential target for developing novel class of antibiotics. In this regard, we have successfully cloned, overexpressed the gene encoding DapF in BL-21(DE3) and purified with Ni-NTA Agarose resin. In addition to this, binding studies were performed using fluorescence spectroscopy in order to confirm the bindings of the identified lead compounds (acetaminophen and dexamethasone) with EfDapF. Docking studies revealed that acetaminophen found to make hydrogen bonds with Asn72 and Asn13 while dexamethasone interacted by forming hydrogen bonds with Asn205 and Glu223. Thus, biochemical studies indicated acetaminophen and dexamethasone, as potential inhibitors of EfDapF and eventually can reduce the catalytic activity of EfDapF.


Asunto(s)
Acetaminofén/farmacología , Isomerasas de Aminoácido/antagonistas & inhibidores , Dexametasona/farmacología , Enterococcus faecalis/enzimología , Simulación del Acoplamiento Molecular , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Reposicionamiento de Medicamentos , Enterococcus faecalis/efectos de los fármacos , Conformación Proteica
8.
J Biochem ; 170(1): 5-13, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-33788945

RESUMEN

Bacteria produce diverse d-amino acids, which are essential components of cell wall peptidoglycan. Incorporation of these d-amino acids into peptidoglycan contributes to bacterial adaptation to environmental changes and threats. d-Amino acids have been associated with bacterial growth, biofilm formation and dispersal and regulation of peptidoglycan metabolism. The diversity of d-amino acids in bacteria is primarily due to the activities of amino acid racemases that catalyse the interconversion of the d- and l-enantiomers of amino acids. Recent studies have revealed that bacteria possess multiple enzymes with amino acid racemase activities. Therefore, elucidating d-amino acid metabolism by these enzymes is critical to understand the biological significance and behaviour of d-amino acids in bacteria. In this review, we focus on the metabolic pathways of d-amino acids in six types of bacteria.


Asunto(s)
Aminoácidos/metabolismo , Bacterias/química , Isomerasas de Aminoácido/metabolismo , Bacterias/metabolismo
9.
Curr Opin Biotechnol ; 69: 212-220, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33556834

RESUMEN

Amino acids are one of the most important synthons employed in the biotechnology, pharmaceutical and agrochemical industries for the preparation of active agents. Recently, the emerging use of these compounds as tools for protein engineering, has also been reported. Numerous chemo- and biocatalytic strategies have been developed for the stereoselective synthesis of these compounds. One of the most efficient processes is the enzymatic dynamic kinetic resolution of N-acylated derivatives, where an N-acyl amino acid racemase (NAAAR) is coupled with an enantioselective, hydrolytic enzyme (aminoacylase), and used to convert a racemic mixture of starting materials to enantiopure products. Here we provide a brief overview of the structure and mechanism of NAAAR. We will also review the applications of this class of biocatalyst, as well as discussing the various strategies employed to obtain an efficient system for the synthesis of optically pure canonical and non-canonical amino acids.


Asunto(s)
Isomerasas de Aminoácido , Isomerasas de Aminoácido/metabolismo , Aminoácidos/metabolismo , Biocatálisis , Biotecnología , Ingeniería de Proteínas , Estereoisomerismo
10.
J Bacteriol ; 203(7)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33468590

RESUMEN

Members of Thermococcales harbor a number of genes encoding putative aminotransferase class III enzymes. Here, we characterized the TK1211 protein from the hyperthermophilic archaeon Thermococcus kodakarensis The TK1211 gene was expressed in T. kodakarensis under the control of the strong, constitutive promoter of the cell surface glycoprotein gene TK0895 (P csg ). The purified protein did not display aminotransferase activity but exhibited racemase activity. An examination of most amino acids indicated that the enzyme was a racemase with relatively high activity toward Leu and Met. Kinetic analysis indicated that Leu was the most preferred substrate. A TK1211 gene disruption strain (ΔTK1211) was constructed and grown on minimal medium supplemented with l- or d-Leu or l- or d-Met. The wild-type T. kodakarensis is not able to synthesize Leu and displays Leu auxotrophy, providing a direct means to examine the Leu racemase activity of the TK1211 protein in vivo When we replaced l-Leu with d-Leu in the medium, the host strain with an intact TK1211 gene displayed an extended lag phase but displayed cell yield similar to that observed in medium with l-Leu. In contrast, the ΔTK1211 strain displayed growth in medium with l-Leu but could not grow with d-Leu. The results indicate that TK1211 encodes a Leu racemase that is active in T. kodakarensis cells and that no other protein exhibits this activity, at least to an extent that can support growth. Growth experiments with l- or d-Met also confirmed the Met racemase activity of the TK1211 protein in T. kodakarensisIMPORTANCE Phylogenetic analysis of aminotransferase class III proteins from all domains of life reveals numerous groups of protein sequences. One of these groups includes a large number of sequences from Thermococcales species and can be divided into four subgroups. Representatives of three of these subgroups have been characterized in detail. This study reveals that a representative from the remaining uncharacterized subgroup is an amino acid racemase with preference toward Leu and Met. Taken together with results of previous studies on enzymes from Pyrococcus horikoshii and Thermococcus kodakarensis, members of the four subgroups now can be presumed to function as a broad-substrate-specificity amino acid racemase (subgroup 1), alanine/serine racemase (subgroup 2), ornithine ω-aminotransferase (subgroup 3), or Leu/Met racemase (subgroup 4).


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Proteínas Arqueales/metabolismo , Thermococcus/enzimología , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Calor , Cinética , Leucina/metabolismo , Metionina/metabolismo , Filogenia , Especificidad por Sustrato , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
11.
Infect Immun ; 89(1)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33106295

RESUMEN

The Chlamydia trachomatis genome encodes multiple bifunctional enzymes, such as DapF, which is capable of both diaminopimelic acid (DAP) epimerase and glutamate racemase activity. Our previous work demonstrated the bifunctional activity of chlamydial DapF in vitro and in a heterologous system (Escherichia coli). In the present study, we employed a substrate competition strategy to demonstrate DapF Ct function in vivo in C. trachomatis We reasoned that, because DapF Ct utilizes a shared substrate-binding site for both racemase and epimerase activities, only one activity can occur at a time. Therefore, an excess of one substrate relative to another must determine which activity is favored. We show that the addition of excess l-glutamate or meso-DAP (mDAP) to C. trachomatis resulted in 90% reduction in bacterial titers, compared to untreated controls. Excess l-glutamate reduced in vivo synthesis of mDAP by C. trachomatis to undetectable levels, thus confirming that excess racemase substrate led to inhibition of DapF Ct DAP epimerase activity. We previously showed that expression of dapFCt in a murI (racemase) ΔdapF (epimerase) double mutant of E. coli rescues the d-glutamate auxotrophic defect. Addition of excess mDAP inhibited growth of this strain, but overexpression of dapFCt allowed the mutant to overcome growth inhibition. These results confirm that DapF Ct is the primary target of these mDAP and l-glutamate treatments. Our findings demonstrate that suppression of either the glutamate racemase or epimerase activity of DapF compromises the growth of C. trachomatis Thus, a substrate competition strategy can be a useful tool for in vivo validation of an essential bifunctional enzyme.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Chlamydia trachomatis/fisiología , Peptidoglicano/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Infecciones por Chlamydia/microbiología , Ácido Diaminopimélico/metabolismo , Regulación Bacteriana de la Expresión Génica , Ácido Glutámico/metabolismo , Interacciones Huésped-Patógeno , Humanos
12.
Biochem J ; 477(21): 4221-4241, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33079132

RESUMEN

Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , L-Serina Deshidratasa/metabolismo , Aminoácidos/metabolismo , Animales , ADN Complementario/metabolismo , Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Humanos
13.
Proteins ; 88(11): 1513-1527, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32543729

RESUMEN

Protein domains exist by themselves or in combination with other domains to form complex multidomain proteins. Defining domain boundaries in proteins is essential for understanding their evolution and function but is not trivial. More specifically, partitioning domains that interact by forming a single ß-sheet is known to be particularly troublesome for automatic structure-based domain decomposition pipelines. Here, we study edge-to-edge ß-strand interactions between domains in a protein chain, to help define the boundaries for some more difficult cases where a single ß-sheet spanning over two domains gives an appearance of one. We give a number of examples where ß-strands belonging to a single ß-sheet do not belong to a single domain and highlight the difficulties of automatic domain parsers on these examples. This work can be used as a baseline for defining domain boundaries in homologous proteins or proteins with similar domain interactions in the future.


Asunto(s)
Isomerasas de Aminoácido/química , Proteínas de Unión a las Penicilinas/química , Dominios y Motivos de Interacción de Proteínas , Racemasas y Epimerasas/química , Isomerasas de Aminoácido/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/química , Sitios de Unión , Bases de Datos de Proteínas , Conjuntos de Datos como Asunto , Humanos , Modelos Moleculares , Proteínas de Unión a las Penicilinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Racemasas y Epimerasas/metabolismo , Termodinámica
14.
Biotechnol Bioeng ; 117(9): 2683-2693, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32492177

RESUMEN

Enzymes are industrially applied under increasingly diverse environmental conditions that are dictated by the efforts to optimize overall process efficiency. Engineering the operational stability of biocatalysts to enhance their half-lives under the desired process conditions is a widely applied strategy to reduce costs. Here, we present a simple method to enhance enzyme stability in the presence of monophasic aqueous/organic solvent mixtures based on the concept of strengthening the enzyme's surface hydrogen-bond network by exchanging surface-located amino acid residues for arginine. Suitable residues are identified from sequence comparisons with homologous enzymes from thermophilic organisms and combined using a shuffling approach to obtain an enzyme variant with increased stability in monophasic aqueous/organic solvent mixtures. With this approach, we increase the stability of the broad-spectrum amino acid racemase of Pseudomonas putida DSM 3263 eightfold in mixtures with 40% methanol and sixfold in mixtures with 30% acetonitrile.


Asunto(s)
Isomerasas de Aminoácido , Proteínas Bacterianas , Ingeniería de Proteínas/métodos , Acetonitrilos/química , Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Mutación/genética , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Solventes/química
15.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140461, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32474108

RESUMEN

d-Amino acids are physiologically important components of peptidoglycan in the bacterial cell wall, maintaining cell structure and aiding adaptation to environmental changes through peptidoglycan remodelling. Therefore, the biosynthesis of d-amino acids is essential for bacteria to adapt to different environmental conditions. The peptidoglycan of the extremely thermophilic bacterium Thermus thermophilus contains d-alanine (d-Ala) and d-glutamate (d-Glu), but its d-amino acid metabolism remains poorly understood. Here, we investigated the enzyme activity and function of the product of the TTHA1643 gene, which is annotated to be a Glu racemase in the T. thermophilus HB8 genome. Among 21 amino acids tested, TTHA1643 showed highly specific activity toward Glu as the substrate. The catalytic efficiency (kcat/Km) of TTHA1643 toward d- and l-Glu was comparable; however, the kcat value was 18-fold higher for l-Glu than for d-Glu. Temperature and pH profiles showed that the racemase activity of TTHA1643 is high under physiological conditions for T. thermophilus growth. To assess physiological relevance, we constructed a TTHA1643-deficient strain (∆TTHA1643) by replacing the TTHA1643 gene with the thermostable hygromycin resistance gene. Growth of the ∆TTHA1643 strain in synthetic medium without d-Glu was clearly diminished relative to wild type, although the TTHA1643 deletion was not lethal, suggesting that alternative d-Glu biosynthetic pathways may exist. The deterioration in growth was restored by adding d-Glu to the culture medium, showing that d-Glu is required for normal growth of T. thermophilus. Collectively, our findings show that TTHA1643 is a Glu racemase and has the physiological function of d-Glu production in T. thermophilus.


Asunto(s)
Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Pared Celular/química , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/metabolismo , Eliminación de Gen , Genoma Bacteriano , Ácido Glutámico/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Proteínas Recombinantes , Especificidad por Sustrato , Temperatura , Thermus thermophilus/genética , Thermus thermophilus/crecimiento & desarrollo , Thermus thermophilus/fisiología , Transcriptoma
16.
ACS Synth Biol ; 9(6): 1395-1405, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32353226

RESUMEN

Low-molecular-weight poly-γ-glutamic acid (LMW-γ-PGA) has attracted much attention because of its many potential applications in food, agriculture, medicine, and cosmetics. Enzymatic degradation is an efficient way for the synthesis of LMW-γ-PGA. However, the stereochemistry of γ-PGA limits the degradation of γ-PGA. This study identifies the role of γ-PGA synthase (pgsA) and glutamate racemase (racE) in the regulation of γ-PGA stereochemistry and demonstrates their combinational use for LMW-γ-PGA synthesis. First, the expression of pgsA and racE was enhanced, leading to improvements both in the molecular weight (Mw) and the d-glutamate proportion of γ-PGA. Then, an optimal combination of pgsA, racE, and γ-PGA hydrolase pgdS was constructed by exchanging the gene origins for the synthesis of LMW-γ-PGA. Finally, the Mw of γ-PGA was decreased to 6-8 kDa, which was much lower compared with the case without stereochemistry switching (20-30 kDa). This study provides a novel strategy to control the Mw of γ-PGA based on stereochemistry regulation and lays a solid foundation for synthesis of LMW-γ-PGA.


Asunto(s)
Bacillus amyloliquefaciens/metabolismo , Ácido Poliglutámico/análogos & derivados , Isomerasas de Aminoácido/genética , Isomerasas de Aminoácido/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biomasa , Cromatografía Líquida de Alta Presión , Peso Molecular , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Ácido Poliglutámico/análisis , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/química , Espectrofotometría , Estereoisomerismo
17.
Appl Microbiol Biotechnol ; 104(11): 4771-4779, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32291491

RESUMEN

Hydroxyproline is an industrially important compound with applications in the pharmaceutical, nutrition, and cosmetic industries. trans-4-Hydroxy-L-proline is recognized as the most abundant of the eight possible isomers (hydroxy group at C-3 or C-4, cis- or trans-configuration, and L- or D-form). However, little attention has been paid to the rare isomers, probably due to their limited availability. This mini-review provides an overview of recent advances in microbial and enzymatic processes to develop practical production strategies for various hydroxyprolines. Here, we introduce three screening strategies, namely, activity-, sequence-, and metabolite-based approaches, allowing identification of diverse proline-hydroxylating enzymes with different product specificities. All naturally occurring hydroxyproline isomers can be produced by using suitable hydroxylases in a highly regio- and stereo-selective manner. Furthermore, crystal structures of relevant hydroxylases provide much insight into their functional roles. Since hydroxylases acting on free L-proline belong to the 2-oxoglutarate-dependent dioxygenase superfamily, cellular metabolism of Escherichia coli coupled with a hydroxylase is a valuable source of 2-oxoglutarate, which is indispensable as a co-substrate in L-proline hydroxylation. Further, microbial hydroxyproline 2-epimerase may serve as a highly adaptable tool to convert L-hydroxyproline into D-hydroxyproline. KEY POINTS: • Proline hydroxylases serve as powerful tools for selectivel-proline hydroxylation. • Engineered Escherichia coli are a robust platform for hydroxyproline production. • Hydroxyproline epimerase convertsl-hydroxyproline intod-hydroxyproline.


Asunto(s)
Escherichia coli/enzimología , Hidroxiprolina/biosíntesis , Isomerasas de Aminoácido/metabolismo , Biocatálisis , Inducción Enzimática , Hidroxilación , Isomerismo , Oxigenasas de Función Mixta/metabolismo
18.
Mol Biol Rep ; 47(5): 3719-3733, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32338332

RESUMEN

Streptococcus mutans UA159 is responsible for human dental caries with robust cariogenic potential. Our previous study noted that a glutamate racemase (MurI) mutant strain (designated S. mutans FW1718), with the hereditary background of UA159, displayed alterations of morphogenesis, attenuated stress tolerance, and weakened biofilm-forming capabilities, accompanying with unclear mechanisms. In this study, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics to characterize the proteome profiles of the murI mutant strain vs. the wild-type strain in chemically defined media to elucidate the mechanisms by which S. mutans copes with MurI deficiency. Whole-cell proteins of S. mutans FW1718 and UA159 were assessed by iTRAQ-coupled LC-ESI-MS/MS. Furthermore, differentially expressed proteins (DEPs) were identified by Mascot, Gene Ontology (GO) annotation, Cluster of Orthologous Groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, a protein-protein interaction (PPI) network was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Among 1173 total bacterial proteins identified, 112 DEPs exhibited altered expression patterns in S. mutans UA159 with or without the murI mutation. The ΔmurI cells displayed an increase in the relative expression of 93 proteins (fold change ≥ 1.2, p < 0.05) and a decrease in 29 proteins (fold change ≤ 0.833, p < 0.05) compared with the wild-type cells. PPI analysis revealed a complex network of DEPs containing 191 edges and 122 nodes. The DEPs significantly upregulated after murI knockout had roles in diverse functional processes spanning cell-wall biosynthesis, energy production, and DNA replication and repair. We identified distinct variations and diverse modulators caused by murI mutation in the proteome of S. mutans, indicating that the modification of cell membrane structure, redistribution of energy metabolism and enhanced nucleic acid machinery contributed to the S. mutans response to specific environmental contexts.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Streptococcus mutans/metabolismo , Isomerasas de Aminoácido/genética , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/química , Caries Dental/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Ontología de Genes , Mapas de Interacción de Proteínas/genética , Proteoma/metabolismo , Proteómica/métodos , Streptococcus mutans/genética , Espectrometría de Masas en Tándem/métodos
19.
Biochemistry (Mosc) ; 85(2): 248-256, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32093601

RESUMEN

Streptococcus iniae is a pathogenic and zoonotic bacterium responsible for human diseases and mortality of many fish species. Recently, this bacterium has demonstrated an increasing trend for antibiotics resistance, which has warranted a search for new approaches to tackle its infection. Glutamate racemase (MurI) is a ubiquitous enzyme of the peptidoglycan synthesis pathway that plays an important role in the cell wall integrity maintenance; however, the significance of this enzyme differs in different species. In this study, we knocked out the MurI gene in S. iniae in order to elucidate the role of glutamate racemase in maintaining cell wall integrity in this bacterial species. We also cloned, expressed, and purified MurI and determined its biochemical characteristics. Biochemical analysis revealed that the MurI gene in S. iniae encodes a functional enzyme with a molecular weight of 30 kDa, temperature optimum at 35°C, and pH optimum at 8.5. Metal ions, such as Cu2+, Mn2+, Co2+ and Zn2+, inhibited the enzyme activity. MurI was found to be essential for the viability and cell wall integrity of S. iniae. The optimal growth of the MurI-deficient S. iniae mutant can be achieved only by adding a high concentration of D-glutamate to the medium. Membrane permeability assay of the mutant showed an increasing extent of the cell wall damage with time upon D-glutamate starvation. Moreover, the mutant lost its virulence when incubated in fish blood. Our results demonstrated that the MurI knockout leads to the generation of S. iniae auxotroph with damaged cell walls.


Asunto(s)
Isomerasas de Aminoácido/metabolismo , Pared Celular , Viabilidad Microbiana , Streptococcus iniae/enzimología , Isomerasas de Aminoácido/antagonistas & inhibidores , Isomerasas de Aminoácido/genética , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Concentración de Iones de Hidrógeno , Metales Pesados/farmacología , Viabilidad Microbiana/efectos de los fármacos , Mutación , Streptococcus iniae/efectos de los fármacos , Streptococcus iniae/metabolismo
20.
Nucleic Acids Res ; 48(7): 3776-3788, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31960065

RESUMEN

All enzymes face a challenge of discriminating cognate substrates from similar cellular compounds. Finding a correct substrate is especially difficult for the Escherichia coli Nudix hydrolase RppH, which triggers 5'-end-dependent RNA degradation by removing orthophosphate from the 5'-diphosphorylated transcripts. Here we show that RppH binds and slowly hydrolyzes NTPs, NDPs and (p)ppGpp, which each resemble the 5'-end of RNA. A series of X-ray crystal structures of RppH-nucleotide complexes, trapped in conformations either compatible or incompatible with hydrolysis, explain the low reaction rates of mononucleotides and suggest two distinct mechanisms for their hydrolysis. While RppH adopts the same catalytic arrangement with 5'-diphosphorylated nucleotides as with RNA, the enzyme hydrolyzes 5'-triphosphorylated nucleotides by extending the active site with an additional Mg2+ cation, which coordinates another reactive nucleophile. Although the average intracellular pH minimizes the hydrolysis of nucleotides by slowing their reaction with RppH, they nevertheless compete with RNA for binding and differentially inhibit the reactivity of RppH with triphosphorylated and diphosphorylated RNAs. Thus, E. coli RppH integrates various signals, such as competing non-cognate substrates and a stimulatory protein factor DapF, to achieve the differential degradation of transcripts involved in cellular processes important for the adaptation of bacteria to different growth conditions.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , ARN/metabolismo , Ácido Anhídrido Hidrolasas/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Isomerasas de Aminoácido/metabolismo , Dominio Catalítico , Proteínas de Escherichia coli/antagonistas & inhibidores , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Concentración de Iones de Hidrógeno , Magnesio/química , Modelos Moleculares , Nucleótidos/química , Nucleótidos/metabolismo , ARN/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...