Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.618
Filtrar
1.
PLoS One ; 19(5): e0301210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709710

RESUMEN

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB), characterized by isoniazid and rifampicin resistance, is caused by chromosomal mutations that restrict treatment options and complicate tuberculosis management. This study sought to investigate the prevalence of pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) tuberculosis, as well as mutation pattern, in Nepalese patients with MDR/rifampicin-resistant (RR)-TB strains. METHODS: A cross-sectional study was conducted on MDR/RR-TB patients at the German Nepal Tuberculosis Project from June 2017 to June 2018. The MTBDRsl line probe assay identified pre-XDR-TB and XDR-TB. Pre-XDR-TB included MDR/RR-TB with resistance to any fluoroquinolone (FLQ), while XDR-TB included MDR/RR-TB with resistance to any FLQ and at least one additional group A drug. Mutation status was determined by comparing bands on reaction zones [gyrA and gyrB for FLQ resistance, rrs for SILD resistance, and eis for low-level kanamycin resistance, according to the GenoType MTBDRsl VER 2.0, Hain Lifescience GmbH, Nehren, Germany definition of pre-XDR and XDR] to the evaluation sheet. SPSS version 17.0 was used for data analysis. RESULTS: Out of a total of 171 patients with MDR/RR-TB, 160 had (93.57%) had MTBC, of whom 57 (35.63%) had pre-XDR-TB and 10 (6.25%) had XDR-TB. Among the pre-XDR-TB strains, 56 (98.25%) were FLQ resistant, while 1 (1.75%) was SLID resistant. The most frequent mutations were found at codons MUT3C (57.14%, 32/56) and MUT1 (23.21%, 13/56) of the gyrA gene. One patient had SLID resistant genotype at the MUT1 codon of the rrs gene (100%, 1/1). XDR-TB mutation bands were mostly detected on MUT1 (30%, 3/10) of the gyrA and rrs, MUT3C (30%, 3/10) of the gyrA, and MUT1 (30%, 3/10) of the rrs. CONCLUSIONS: Pre-XDR-TB had a significantly higher likelihood than XDR-TB, with different specific mutation bands present in gyrA and rrs genes.


Asunto(s)
Antituberculosos , Tuberculosis Extensivamente Resistente a Drogas , Mutación , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Nepal/epidemiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Masculino , Femenino , Adulto , Estudios Transversales , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/epidemiología , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Persona de Mediana Edad , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Pruebas de Sensibilidad Microbiana , Rifampin/uso terapéutico , Rifampin/farmacología , Isoniazida/uso terapéutico , Isoniazida/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Adulto Joven , Fluoroquinolonas/farmacología , Fluoroquinolonas/uso terapéutico , Adolescente , Anciano
2.
Front Public Health ; 12: 1356826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566794

RESUMEN

Purpose: This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods: From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results: Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion: In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Rifampin/farmacología , Etiopía , Estudios Transversales , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Mutación , Genotipo , Fluoroquinolonas
3.
J Korean Med Sci ; 39(13): e104, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599596

RESUMEN

BACKGROUND: The hollow-fiber infection model (HFIM) is a valuable tool for evaluating pharmacokinetics/pharmacodynamics relationships and determining the optimal antibiotic dose in monotherapy or combination therapy, but the application for personalized precision medicine in tuberculosis treatment remains limited. This study aimed to evaluate the efficacy of adjusted antibiotic doses for a tuberculosis patient using HFIM. METHODS: Model-based Bayesian forecasting was utilized to assess the proposed reduction of the isoniazid dose from 300 mg daily to 150 mg daily in a patient with an ultra-slow-acetylation phenotype. The efficacy of the adjusted 150-mg dose was evaluated in a time-to-kill assay performed using the bacterial isolate Mycobacterium tuberculosis (Mtb) H37Ra in a HFIM that mimicked the individual pharmacokinetic profile of the patient. RESULTS: The isoniazid concentration observed in the HFIM adequately reflected the target drug exposures simulated by the model. After 7 days of repeated dose administration, isoniazid killed 4 log10 Mtb CFU/mL in the treatment arm, while the control arm without isoniazid increased 1.6 log10 CFU/mL. CONCLUSION: Our results provide an example of the utility of the HFIM for predicting the efficacy of specific recommended doses of anti-tuberculosis drugs in real clinical setting.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Teorema de Bayes , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
4.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38623831

RESUMEN

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Asunto(s)
Cementos para Huesos , Hidrazonas , Isoniazida , Isoniazida/química , Isoniazida/farmacología , Cementos para Huesos/química , Animales , Hidrazonas/química , Hidrazonas/farmacología , Antituberculosos/química , Antituberculosos/farmacología , Antituberculosos/administración & dosificación , Ratones , Liberación de Fármacos , Polimetil Metacrilato/química , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
5.
Front Public Health ; 12: 1372146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510351

RESUMEN

Background: Isoniazid-resistant, rifampicin-susceptible tuberculosis (Hr-TB) globally exhibits a high prevalence and serves as a potential precursor to multidrug-resistant tuberculosis (MDR-TB). Recognizing the spatial distribution of Hr-TB and identifying associated factors can provide strategic entry points for interventions aimed at early detection of Hr-TB and prevention of its progression to MDR-TB. This study aims to analyze spatial patterns and identify socioeconomic, demographic, and healthcare factors associated with Hr-TB in Shanghai at the county level. Method: We conducted a retrospective study utilizing data from TB patients with available Drug Susceptible Test (DST) results in Shanghai from 2010 to 2016. Spatial autocorrelation was explored using Global Moran's I and Getis-Ord Gi∗ statistics. A Bayesian hierarchical model with spatial effects was developed using the INLA package in R software to identify potential factors associated with Hr-TB at the county level. Results: A total of 8,865 TB patients with DST were included in this analysis. Among 758 Hr-TB patients, 622 (82.06%) were new cases without any previous treatment history. The drug-resistant rate of Hr-TB among new TB cases in Shanghai stood at 7.20% (622/8014), while for previously treated cases, the rate was 15.98% (136/851). Hotspot areas of Hr-TB were predominantly situated in southwestern Shanghai. Factors positively associated with Hr-TB included the percentage of older adult individuals (RR = 3.93, 95% Crl:1.93-8.03), the percentage of internal migrants (RR = 1.35, 95% Crl:1.15-1.35), and the number of healthcare institutions per 100 population (RR = 1.17, 95% Crl:1.02-1.34). Conclusion: We observed a spatial heterogeneity of Hr-TB in Shanghai, with hotspots in the Songjiang and Minhang districts. Based on the results of the models, the internal migrant population and older adult individuals in Shanghai may be contributing factors to the emergence of areas with high Hr-TB notification rates. Given these insights, we advocate for targeted interventions, especially in identified high-risk hotspots and high-risk areas.


Asunto(s)
Migrantes , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Anciano , China/epidemiología , Estudios Retrospectivos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Teorema de Bayes , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico
6.
Bioorg Chem ; 146: 107250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460337

RESUMEN

Multidrug-resistant tuberculosis continues to pose a health security risk and remains a public health emergency. Antimicrobial resistance result from treatment regimens that are both insufficient and incomplete leading to the emergence of multidrug-resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug-resistant tuberculosis. The impact of tuberculosis on the people suffering from HIV (Human immunodeficiency virus infection) have resulted in the increased research efforts in designing and discovery of novel antitubercular drugs that may result in decreasing treatment duration, minimising the need for multiple drug intake, minimising cytotoxicity and enhancing the mechanism of action of drug. While many drugs are available to treat tuberculosis, a precise and timely cure is still absent. Consequently, further investigation is needed to identify more recent molecular equivalents that have the potential to swiftly remove this disease. Isoniazid (INH), a treatment for tuberculosis (TB), targets the enzyme InhA (mycobacterium enoyl acyl carrier protein reductase), the Mycobacterium tuberculosis enoyl-acyl carrier protein (ACP) reductase, most common INH resistance is circumvented by InhA inhibitors that do not require KatG (catalase-peroxidase) activation, as a result, researchers are trying to work in the area of development of InhA inhibitors which could help in eradicating the era of tuberculosis from the world.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Proteína Transportadora de Acilo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Proteínas Bacterianas/metabolismo , Mutación , Pruebas de Sensibilidad Microbiana
7.
BMJ Glob Health ; 9(3)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548342

RESUMEN

BACKGROUND: Global tuberculosis (TB) drug resistance (DR) surveillance focuses on rifampicin. We examined the potential of public and surveillance Mycobacterium tuberculosis (Mtb) whole-genome sequencing (WGS) data, to generate expanded country-level resistance prevalence estimates (antibiograms) using in silico resistance prediction. METHODS: We curated and quality-controlled Mtb WGS data. We used a validated random forest model to predict phenotypic resistance to 12 drugs and bias-corrected for model performance, outbreak sampling and rifampicin resistance oversampling. Validation leveraged a national DR survey conducted in South Africa. RESULTS: Mtb isolates from 29 countries (n=19 149) met sequence quality criteria. Global marginal genotypic resistance among mono-resistant TB estimates overlapped with the South African DR survey, except for isoniazid, ethionamide and second-line injectables, which were underestimated (n=3134). Among multidrug resistant (MDR) TB (n=268), estimates overlapped for the fluoroquinolones but overestimated other drugs. Globally pooled mono-resistance to isoniazid was 10.9% (95% CI: 10.2-11.7%, n=14 012). Mono-levofloxacin resistance rates were highest in South Asia (Pakistan 3.4% (0.1-11%), n=111 and India 2.8% (0.08-9.4%), n=114). Given the recent interest in drugs enhancing ethionamide activity and their expected activity against isolates with resistance discordance between isoniazid and ethionamide, we measured this rate and found it to be high at 74.4% (IQR: 64.5-79.7%) of isoniazid-resistant isolates predicted to be ethionamide susceptible. The global susceptibility rate to pyrazinamide and levofloxacin among MDR was 15.1% (95% CI: 10.2-19.9%, n=3964). CONCLUSIONS: This is the first attempt at global Mtb antibiogram estimation. DR prevalence in Mtb can be reliably estimated using public WGS and phenotypic resistance prediction for key antibiotics, but public WGS data demonstrates oversampling of isolates with higher resistance levels than MDR. Nevertheless, our results raise concerns about the empiric use of short-course fluoroquinolone regimens for drug-susceptible TB in South Asia and indicate underutilisation of ethionamide in MDR treatment.


Asunto(s)
Antituberculosos , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Isoniazida/uso terapéutico , Etionamida/uso terapéutico , Rifampin/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Genómica , Pruebas de Sensibilidad Microbiana , Aprendizaje Automático
8.
Bull Exp Biol Med ; 176(4): 466-471, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38488964

RESUMEN

We studied the possibility of using 4-hexylresorcinol to increase the efficiency of anti-mycobacterial chemotherapy. In an in vitro experiment, 4-hexylresorcinol increased the efficiency of rifampicin, kanamycin, and isoniazid against Mycobacterium smegmatis by 3-5 times. Experiments in sanitation of BALB/c mice infected with M. smegmatis showed the best efficacy of the isoniazid and 4-hexylresorcinol combination in comparison with isoniazid monotherapy. The growth-inhibiting activity of the combination of antibiotic rifabutin with 4-hexylresorcinol was shown on 6 strains of M. tuberculosis. A 2-fold decrease in the minimum inhibitory concentration of this antibiotic in the presence of half-minimum inhibitory concentration of 4-hexylresorcinol was demonstrated for monoresistant strain M. tuberculosis 5360/42Hr. On the mouse model of experimental tuberculosis caused by M. tuberculosis H37Rv, a 5-fold decrease in lung contamination and more rapid complete cure were achieved in animals treated with the combination of rifabutin and 4-hexylresorcinol in comparison with rifabutin monotherapy.


Asunto(s)
Hexilresorcinol , Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Isoniazida/uso terapéutico , Hexilresorcinol/farmacología , Rifabutina/farmacología , Rifabutina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Adyuvantes Inmunológicos/uso terapéutico
9.
Eur J Med Res ; 29(1): 147, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429734

RESUMEN

BACKGROUND: The aim of the study was to investigate whether the expression of CD27-CD38+ in interferon (IFN)-γ+CD4+ T cells stimulated by the specific antigen early secreted antigenic target-6 (ESAT-6)/culture filter protein-10 (CFP-10) could be a potential new therapeutic evaluation indicator for anti-tuberculosis (TB) treatment. METHODS: Newly diagnosed active pulmonary TB patients, latent TB infection (LTBI) and healthy controls were enrolled from January 2021 to December 2021. PTB patients were treated by standard anti-TB regimen 2HREZ/4HR (2 months of isoniazid (H), rifampin (R), ethambutol (E), and pyrazinamide (Z) followed by 4 months of isoniazid (H) and rifampin (R)). The difference of CD27-CD38+ expression in IFN-γ+CD4+ T cells before treatment, 2 months after treatment, and 6 months after treatment were compared. RESULTS: Total 45 PTB patients, 38 LTBI cases and 43 healthy controls were enrolled. The expression of CD27-CD38+ decreased significantly after anti-TB treatment and was comparable with that in LTBI and healthy controls when the 6-month anti-TB treatment course was completed. The decline rate of CD27-CD38+ between 6 months after treatment and baseline was positively correlated with erythrocyte sedimentation rate (r = 0.766, P < 0.0001), C-reactive protein (r = 0.560, P = 0.003) and chest computerized tomography severity score (r = 0.632, P = 0.0005). The area under receiver operator characteristic curve of CD27-CD38+ in distinguish pulmonary TB patients before and after treatment was 0.779. CONCLUSION: The expression of CD27-CD38+ in ESAT-6/CFP-10 stimulated IFN-γ+CD4+T cells can well reflect the changes of the disease before and after anti-TB treatment, which is expected to be a potential new therapeutic evaluation index. Clinical Registry number chiCTR1800019966.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Linfocitos T CD4-Positivos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Isoniazida/metabolismo , Rifampin/metabolismo , Tuberculosis/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico
10.
Int J Pharm ; 654: 123960, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38447778

RESUMEN

Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored. The antibacterial effect of INH and D-LAK combination was first evaluated on three MDR clinical isolates of Mycobacteria tuberculosis (Mtb). The minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indexes (FICIs) were determined. The combination was synergistic against Mtb with FICIs ranged from 0.25 to 0.38. The INH and D-LAK peptide at 2:1 mole ratio (equivalent to 1: 10 mass ratio) was identified to be optimal. This ratio was adopted for the preparation of dry powder formulation for pulmonary delivery, with mannitol used as bulking excipient. Spherical particles with mass median aerodynamic diameter (MMAD) of around 5 µm were produced by spray drying. The aerosol performance of the spray dried powder was moderate, as evaluated by the Next Generation Impactor (NGI), with emitted fraction and fine particle fraction of above 70 % and 45 %, respectively. The circular dichroism spectra revealed that both D-LAK peptides retained their secondary structure after spray drying, and the antibacterial effect of the combination against the MDR Mtb clinical isolates was successfully preserved. The combination was found to be effective against MDR Mtb isolates with KatG or InhA mutations. Overall, the synergistic combination of INH with D-LAK peptide formulated as inhaled dry powder offers a new therapeutic approach against MDR-TB.


Asunto(s)
Isoniazida , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Isoniazida/farmacología , Polvos/química , Péptidos Antimicrobianos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Aerosoles/química , Administración por Inhalación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Inhaladores de Polvo Seco , Tamaño de la Partícula
11.
Microbiol Spectr ; 12(4): e0213323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466098

RESUMEN

The incidence of isoniazid (INH) resistant Mycobacterium tuberculosis is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in M. tuberculosis strains collected from the same patients during the standard course of treatment. Three M. tuberculosis strains were collected from a patient before and during antituberculosis (anti-TB) therapy. The strains were characterized using phenotypic drug susceptibility tests, Mycobacterial Interspersed Repeated Unit-Variable-Number Tandem Repeats (MIRU-VNTR), and whole-genome sequencing (WGS) to identify mutations associated with INH resistance. To validate the role of the novel mutations in INH resistance, the mutated katG genes were electroporated into a KatG-deleted M. tuberculosis strain (GA03). Three-dimensional structures of mutated KatG were modeled to predict their impact on INH binding. The pre-treatment strain was susceptible to INH. However, two INH-resistant strains were isolated from the patient after anti-TB therapy. MIRU-VNTR and WGS revealed that the three strains were clonally identical. A missense mutation (P232L) and a nonsense mutation (Q461Stop) were identified in the katG of the two post-treatment strains, respectively. Transformation experiments showed that katG of the pre-treatment strain restored INH susceptibility in GA03, whereas the mutated katG genes from the post-treatment strains rendered negative catalase activity and INH resistance. The protein model indicated that P232L reduced INH-KatG binding affinity while Q461Stop truncated gene transcription. Our results showed that the two katG mutations, P232L and Q461Stop, accounted for the co-emergence of INH-resistant clones during anti-TB therapy. The inclusion of these mutations in the design of molecular assays could increase the diagnostic performance.IMPORTANCEThe evolution of drug-resistant strains of Mycobacterium tuberculosis within the lung lesions of a patient has a detrimental impact on treatment outcomes. This is particularly concerning for isoniazid (INH), which is the most potent first-line antimycobacterial drug. However, the precise genetic factors responsible for drug resistance in patients have not been fully elucidated, with approximately 15% of INH-resistant strains harboring unknown genetic factors. This raises concerns about the emergence of drug-resistant clones within patients, further contributing to the global epidemic of resistance. In this study, we revealed the presence of two novel katG mutations, which emerged independently due to the stress exerted by antituberculosis (anti-TB) treatment on a parental strain. Importantly, we experimentally demonstrated the functional significance of both mutations in conferring resistance to INH. Overall, this research sheds light on the genetic mechanisms underlying the evolution of INH resistance within patients and provides valuable insights for improving diagnostic performance by targeting specific mutations.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Catalasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación , Pruebas de Sensibilidad Microbiana
12.
Sci Data ; 11(1): 220, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374088

RESUMEN

Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB, 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB. This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of this disease.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
13.
Microbiol Spectr ; 12(3): e0346223, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323824

RESUMEN

Isoniazid-resistant tuberculosis (Hr-TB) is an important drug-resistant tuberculosis (TB). In addition to rifampicin, resistance to other medications for Hr-TB can impact the course of treatment; however, there are currently limited data in the literature. In this study, the drug susceptibility profiles of Hr-TB treatment and resistance-conferring mutations were investigated for Hr-TB clinical isolates from Thailand. Phenotypic drug susceptibility testing (pDST) and genotypic drug susceptibility testing (gDST) were retrospectively and prospectively investigated using the Mycobacterium Growth Indicator Tube (MGIT), the broth microdilution (BMD) method, and whole-genome sequencing (WGS)-based gDST. The prevalence of Hr-TB cases was 11.2% among patients with TB. Most Hr-TB cases (89.5%) were newly diagnosed patients with TB. In the pDST analysis, approximately 55.6% (60/108) of the tested Hr-TB clinical isolates exhibited high-level isoniazid resistance. In addition, the Hr-TB clinical isolates presented co-resistance to ethambutol (3/161, 1.9%), levofloxacin (2/96, 2.1%), and pyrazinamide (24/118, 20.3%). In 56 Hr-TB clinical isolates, WGS-based gDST predicted resistance to isoniazid [katG S315T (48.2%) and fabG1 c-15t (26.8%)], rifampicin [rpoB L430P and rpoB L452P (5.4%)], and fluoroquinolones [gyrA D94G (1.8%)], but no mutation for ethambutol was detected. The categorical agreement for the detection of resistance to isoniazid, rifampicin, ethambutol, and levofloxacin between WGS-based gDST and the MGIT or the BMD method ranged from 80.4% to 98.2% or 82.1% to 100%, respectively. pDST and gDST demonstrated a low co-resistance rate between isoniazid and second-line TB drugs in Hr-TB clinical isolates. IMPORTANCE: The prevalence of isoniazid-resistant tuberculosis (Hr-TB) is the highest among other types of drug-resistant tuberculosis. Currently, the World Health Organization (WHO) guidelines recommend the treatment of Hr-TB with rifampicin, ethambutol, pyrazinamide, and levofloxacin for 6 months. The susceptibility profiles of Hr-TB clinical isolates, especially when they are co-resistant to second-line drugs, are critical in the selection of the appropriate treatment regimen to prevent treatment failure. This study highlights the susceptibility profiles of the WHO-recommended treatment regimen in Hr-TB clinical isolates from a tertiary care hospital in Thailand and the concordance and importance of using the phenotypic drug susceptibility testing or genotypic drug susceptibility testing for accurate and comprehensive interpretation of results.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Pirazinamida/uso terapéutico , Etambutol , Rifampin/farmacología , Rifampin/uso terapéutico , Levofloxacino/uso terapéutico , Tailandia/epidemiología , Pruebas de Sensibilidad Microbiana , Estudios Retrospectivos , Centros de Atención Terciaria , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación
14.
J Pak Med Assoc ; 74(1 (Supple-2)): S74-S78, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38385476

RESUMEN

Objective: To locate resistomes in tuberculosis strains, to determine the severity of drug resistance, and to infer its implications with respect to high tuberculosis prevalence in a Third World setting. METHODS: The pangenomic study was conducted from October 2022 to January 2023 in Sir Syed University of Engineering and Technology, Karachi, and comprised 2012-22 data on multiple sequence alignment to assess the genetic evolution of tuberculosis strains. Antibiotic resistance drug classes were identified using the Canadian Antibiotic Resistance Database, which entailed multidrug-resistant and extremely drug-resistant strains. Also, GenBank was used for tuberculosis genome FASTA (fast-all; nucleotide and protein sequence representation) files, prediction of resistome sequences on the basis of Canadian Antibiotic Resistance Database, and multiple sequence alignment was done in Mauve. RESULTS: Evolutionarily, the 6 strains identified were structurally similar with polymorphisms in their core chromosomal regions. Their resistome genes showed perfect hits for isoniazid, rifamycin, cephalosporin, fluoroquinolone, aminoglycosides, penem, penam and cephamycin. Conclusion: Drugs discovered in antibiotic resistance genes are now less effective in treatment, and have the potential to develop into more dangerous bacteria, if not monitored. For treatment, staying long durations in hospitals for quality healthcare and supervision in third world countries is unaffordable.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/genética , Canadá , Isoniazida/farmacología , Isoniazida/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana
15.
Tuberculosis (Edinb) ; 145: 102479, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262199

RESUMEN

Persistence of Mycobacterium tuberculosis (Mtb) is one of the challenges to successful treatment of tuberculosis (TB). In vitro models of non-replicating Mtb are used to test the efficacy of new molecules against Mtb persisters. The H37Ra strain is attenuated for growth in macrophages and mice. We validated H37Ra-infected immunocompetent mice for testing anti-TB molecules against slow/non-replicating Mtb in vivo. Swiss mice were infected intravenously with H37Ra and monitored for CFU burden and histopathology for a period of 12 weeks. The bacteria multiplied at a slow pace reaching a maximum load of ∼106 in 8-12 weeks depending on the infection dose, accompanied by time and dose-dependent histopathological changes in the lungs. Surprisingly, four-weeks of treatment with isoniazid-rifampicin-ethambutol-pyrazinamide combination caused only 0.4 log10 and 1 log10 reduction in CFUs in lungs and spleen respectively. The results show that ∼40 % of the H37Ra bacilli in lungs are persisters after 4 weeks of anti-TB therapy. Isoniazid/rifampicin monotherapy also showed similar results. A combination of bedaquiline and isoniazid reduced the CFU counts to <200 (limit of detection), compared to ∼5000 CFUs by isoniazid alone. The study demonstrates an in vivo model of Mtb persisters for testing new leads using a BSL-2 strain.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Isoniazida/farmacología , Isoniazida/uso terapéutico , Rifampin/farmacología , Rifampin/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Pirazinamida/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico
16.
Clin Microbiol Infect ; 30(5): 637-645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38286176

RESUMEN

OBJECTIVES: We elucidated the factors, evolution, and compensation of antimicrobial resistance (AMR) in Mycobacterium tuberculosis (MTB) isolates under dual pressure from the intra-host environment and anti-tuberculosis (anti-TB) drugs. METHODS: This retrospective case-control study included 337 patients with pulmonary tuberculosis from 15 clinics in Tianjin, China, with phenotypic drug susceptibility testing results available for at least two time points between January 1, 2009 and December 31, 2016. Patients in the case group exhibited acquired AMR to isoniazid (INH) or rifampicin (RIF), while those in the control group lacked acquired AMR. The whole-genome sequencing (WGS) was conducted on 149 serial longitudinal MTB isolates from 46 patients who acquired or reversed phenotypic INH/RIF-resistance during treatment. The genetic basis, associated factors, and intra-host evolution of acquired phenotypic INH/RIF-resistance were elucidated using a combined analysis. RESULTS: Anti-TB interruption duration of ≥30 days showed association with acquired phenotypic INH/RIF resistance (aOR = 2·2, 95% CI, 1·0-5·1) and new rpoB mutations (p = 0·024). The MTB evolution was 1·2 (95% CI, 1·02-1·38) single nucleotide polymorphisms per genome per year under dual pressure from the intra-host environment and anti-TB drugs. AMR-associated mutations occurred before phenotypic AMR appearance in cases with acquired phenotypic INH (10 of 16) and RIF (9 of 22) resistances. DISCUSSION: Compensatory evolution may promote the fixation of INH/RIF-resistance mutations and affect phenotypic AMR. The TB treatment should be adjusted based on gene sequencing results, especially in persistent culture positivity during treatment, which highlights the clinical importance of WGS in identifying reinfection and AMR acquisition before phenotypic drug susceptibility testing.


Asunto(s)
Antituberculosos , Isoniazida , Mycobacterium tuberculosis , Rifampin , Tuberculosis Pulmonar , Secuenciación Completa del Genoma , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles , Rifampin/farmacología , Rifampin/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Isoniazida/farmacología , Isoniazida/uso terapéutico , China , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Fenotipo , Mutación , Farmacorresistencia Bacteriana/genética , Anciano , Evolución Molecular , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética
17.
mBio ; 15(3): e0296823, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38294237

RESUMEN

Of the approximately 10 million cases of Mycobacterium tuberculosis (Mtb) infections each year, over 10% are resistant to the frontline antibiotic isoniazid (INH). INH resistance is predominantly caused by mutations that decrease the activity of the bacterial enzyme KatG, which mediates the conversion of the pro-drug INH to its active form INH-NAD. We previously discovered an inhibitor of Mtb respiration, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a collection of INH-resistant mutants to INH through an unknown mechanism. To investigate the mechanism of action of C10, we exploited the toxicity of high concentrations of C10 to select for resistant mutants. We discovered two mutations that confer resistance to the disruption of energy metabolism and allow for the growth of Mtb in high C10 concentrations, indicating that growth inhibition by C10 is associated with inhibition of respiration. Using these mutants as well as direct inhibitors of the Mtb electron transport chain, we provide evidence that inhibition of energy metabolism by C10 is neither sufficient nor necessary to potentiate killing by INH. Instead, we find that C10 acts downstream of INH-NAD synthesis, causing Mtb to become particularly sensitive to inhibition of the INH-NAD target, InhA, without changing the concentration of INH-NAD or the activity of InhA, the two predominant mechanisms of potentiating INH. Our studies revealed that there exists a vulnerability in Mtb that can be exploited to render Mtb sensitive to otherwise subinhibitory concentrations of InhA inhibitor.IMPORTANCEIsoniazid (INH) is a critical frontline antibiotic to treat Mycobacterium tuberculosis (Mtb) infections. INH efficacy is limited by its suboptimal penetration of the Mtb-containing lesion and by the prevalence of clinical INH resistance. We previously discovered a compound, C10, that enhances the bactericidal activity of INH, prevents the emergence of INH-resistant mutants, and re-sensitizes a set of INH-resistant mutants to INH. Resistance is typically mediated by katG mutations that decrease the activation of INH, which is required for INH to inhibit the essential enzyme InhA. Our current work demonstrates that C10 re-sensitizes INH-resistant katG-hypomorphs without enhancing the activation of INH. We furthermore show that C10 causes Mtb to become particularly vulnerable to InhA inhibition without compromising InhA activity on its own. Therefore, C10 represents a novel strategy to curtail the development of INH resistance and to sensitize Mtb to sub-lethal doses of INH, such as those achieved at the infection site.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Isoniazida/farmacología , Mycobacterium tuberculosis/genética , Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación , Catalasa/genética , Pruebas de Sensibilidad Microbiana
18.
SAR QSAR Environ Res ; 35(1): 53-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38282553

RESUMEN

Novel antimycobacterial compounds are needed to expand the existing toolbox of therapeutic agents, which sometimes fail to be effective. In our study we extracted, filtered, and aggregated the diverse data on antimycobacterial activity of chemical compounds from the ChEMBL database version 24.1. These training sets were used to create the classification and regression models with PASS and GUSAR software. The IOC chemical library consisting of approximately 200,000 chemical compounds was screened using these (Q)SAR models to select novel compounds potentially having antimycobacterial activity. The QikProp tool (Schrödinger) was used to predict ADME properties and find compounds with acceptable ADME profiles. As a result, 20 chemical compounds were selected for further biological evaluation, of which 13 were the Schiff bases of isoniazid. To diversify the set of selected compounds we applied substructure filtering and selected an additional 10 compounds, none of which were Schiff bases of isoniazid. Thirty compounds selected using virtual screening were biologically evaluated in a REMA assay against the M. tuberculosis strain H37Rv. Twelve compounds demonstrated MIC below 20 µM (ranging from 2.17 to 16.67 µM) and 18 compounds demonstrated substantially higher MIC values. The discovered antimycobacterial agents represent different chemical classes.


Asunto(s)
Mycobacterium tuberculosis , Isoniazida/farmacología , Bases de Schiff/farmacología , Bases de Schiff/química , Ligandos , Relación Estructura-Actividad Cuantitativa , Antibacterianos/farmacología , Antituberculosos/farmacología , Antituberculosos/química , Pruebas de Sensibilidad Microbiana
19.
Bioorg Med Chem ; 98: 117562, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184947

RESUMEN

In this report, a library consisting of three sets of indole-piperazine derivatives was designed through the molecular hybridization approach. In total, fifty new hybrid compounds (T1-T50) were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv strain (ATCC-27294). Five (T36, T43, T44, T48 and T49) among fifty compounds exhibited significant inhibitory potency with the MIC of 1.6 µg/mL, which is twofold more potent than the standard first-line TB drug Pyrazinamide and equipotent with Isoniazid. N-1,2,3-triazolyl indole-piperazine derivatives displayed improved inhibition activity as compared to the simple and N-benzyl indole-piperazine derivatives. In addition, the observed activity profile of indole-piperazines was similar to standard anti-TB drugs (isoniazid and pyrazinamide) against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa strains, demonstrating the compounds' selectivity towards the Mycobacterium tuberculosis H37Rv strain. All the active anti-TB compounds are proved to be non-toxic (with IC50 > 300 µg/mL) as verified through the toxicity evaluation against VERO cell lines. Additionally, molecular docking studies against two target enzymes (Inh A and CYP121) were performed to validate the activity profile of indole-piperazine derivatives. Further, in silico-ADME prediction and pharmacokinetic parameters indicated that these compounds have good oral bioavailability.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Simulación del Acoplamiento Molecular , Isoniazida/farmacología , Pirazinamida , Piperazinas/farmacología , Triazoles/farmacología , Triazoles/metabolismo , Piperazina , Relación Estructura-Actividad , Mycobacterium tuberculosis/metabolismo , Indoles/farmacología , Pruebas de Sensibilidad Microbiana
20.
ACS Infect Dis ; 10(2): 513-526, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38238154

RESUMEN

Identification of structurally unique chemical entities targeting unexplored bacterial targets is a prerequisite to combat increasing drug resistance against Mycobacterium tuberculosis. This study employed a whole-cell screening approach as an initial filter to scrutinize a 10,000-compound chemical library, resulting in the discovery of seven potent compounds with MIC values ranging from 1.56 to 25 µM. These compounds were categorized into four distinct chemical groups. Remarkably, they demonstrated efficacy against drug-resistant and nonreplicating tuberculosis strains, highlighting their effectiveness across different infection states. With a favorable selectivity index (>10), these compounds showed a safe therapeutic range and exhibited potency in an intracellular model of Mtb infection, mimicking the in vivo setup. Combining these identified hits with established anti-TB drugs revealed additive effects with rifampicin, isoniazid, and bedaquiline. Notably, IIIM-IDD-01 exhibited synergy with isoniazid and bedaquiline, likely due to their complementary mechanisms of targeting Mtb. Most potent hits, IIIM-IDD-01 and IIIM-IDD-02, displayed time- and concentration-dependent killing of Mtb. Mechanistic insights were sought through SEM and docking studies, although comprehensive evaluation is ongoing to unravel the hits' specific targets and modes of action. The hits demonstrated favorable pharmacokinetic properties (ADME-Tox) and showed a low risk of adverse effects, along with a predicted high level of oral bioavailability. These promising hits can serve as an initial basis for subsequent medicinal chemistry endeavors aimed at developing a new series of anti-TB agents. Moreover, the study affirms the significance of high-throughput in vitro assays for the TB drug discovery. It also emphasizes the necessity of targeting diverse TB strains to address the heterogeneity of tuberculosis bacteria.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/química , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...