Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
1.
Biomed Phys Eng Express ; 10(5)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39094587

RESUMEN

Resorbable inferior vena cava (IVC) filters require embedded contrast for image-guided placement and integrity monitoring. We calculated correction factors to account for partial volume averaging of thin nanoparticle (NP)-embedded materials, accounting for object and slice thicknesses, background signal, and nanoparticle concentration. We used phantoms containing polycaprolactone disks embedded with bismuth (Bi) or ytterbium (Yb): 0.4- to 1.2-mm-thick disks of 20 mg ml-1NPs (thickness phantom), 0.4-mm-thick disks of 0-20 mg ml-1NPs in 2 mg ml-1iodine (concentration phantom), and 20 mg ml-1NPs in 0.4-mm-thick disks in 0-10 mg ml-1iodine (background phantom). Phantoms were scanned on a dual-source CT with 80, 90, 100, and 150 kVp with tin filtration and reconstructed at 1.0- to 1.5-mm slice thickness with a 0.1-mm interval. Following scanning, disks were processed for inductively coupled plasma optical emission spectrometry (ICP-OES) to determine NP concentration. Mean and maximum CT numbers (HU) of all disks were measured over a 0.5-cm2area for each kVp. HU was converted to concentration using previously measured calibrations. Concentration measurements were corrected for partial volume averaging by subtracting residual slice background and extrapolating disk thickness to both nominal and measured slice sensitivity profiles (SSP, mm). Slice thickness to agreement (STTA, mm) was calculated by replacing the CT-derived concentrations with ICP-OES measurements and solving for thickness. Slice thickness correction factors improved agreement with ICP-OES for all measured data. Yb corrections resulted in lower STTA than Bi corrections in the concentration phantom (1.01 versus 1.31 STTA/SSP, where 1.0 is perfect agreement), phantoms with varying thickness (1.30 versus 1.87 STTA/SSP), and similar ratio in phantoms with varying background iodine concentration (1.34 versus 1.35 STTA/SSP). All measured concentrations correlated strongly with ICP-OES and all corrections for partial volume averaging increased agreement with ICP-OES concentration, demonstrating potential for monitoring the integrity of thin IVC resorbable filters with CT.


Asunto(s)
Fantasmas de Imagen , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Poliésteres/química , Polímeros/química , Medios de Contraste/química , Iterbio/química , Bismuto/química , Humanos , Nanoestructuras/química , Nanopartículas/química , Procesamiento de Imagen Asistido por Computador/métodos
2.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063119

RESUMEN

Thin films of the superconductor YBa2Cu3O7-δ (YBCO) were modified by low-energy light-ion irradiation employing collimated or focused He+ beams, and the long-term stability of irradiation-induced defects was investigated. For films irradiated with collimated beams, the resistance was measured in situ during and after irradiation and analyzed using a phenomenological model. The formation and stability of irradiation-induced defects are highly influenced by temperature. Thermal annealing experiments conducted in an Ar atmosphere at various temperatures demonstrated a decrease in resistivity and allowed us to determine diffusion coefficients and the activation energy ΔE=(0.31±0.03) eV for diffusive oxygen rearrangement within the YBCO unit cell basal plane. Additionally, thin YBCO films, nanostructured by focused He+-beam irradiation into vortex pinning arrays, displayed significant commensurability effects in magnetic fields. Despite the strong modulation of defect densities in these pinning arrays, oxygen diffusion during room-temperature annealing over almost six years did not compromise the signatures of vortex matching, which remained precisely at their magnetic fields predicted by the pattern geometry. Moreover, the critical current increased substantially within the entire magnetic field range after long-term storage in dry air. These findings underscore the potential of ion irradiation in tailoring the superconducting properties of thin YBCO films.


Asunto(s)
Cobre , Cobre/química , Temperatura , Superconductividad , Iterbio/química , Oxígeno/química , Conductividad Eléctrica
3.
Opt Lett ; 49(13): 3612-3615, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950222

RESUMEN

While lasers have found their successful applications in various clinical specialties, in clinical dental practice, traditional mechanical drills are still predominantly utilized. Although erbium-doped lasers have been demonstrated for dental therapy, their clinical performance is still not satisfactory due to the long pulse width, low peak power, and small repetition rate. To attain a smaller thermal diffusion thus better biological safety and surgical precision, as well as more rapid ablation, the advancement of femtosecond laser techniques has opened another route of dental surgery; however, no biological safety investigation has been reported. Here, we present a systematic study of dental ablation by a Yb:CaAlGdO4 regenerative amplifier with a central wavelength of 1040 nm and pulse width of 160 fs. The in vivo experiment of dental surgery investigating the inflammatory response has been reported, for the first time to the best of our knowledge. It is demonstrated that dental surgery by Yb:CaAlGdO4 femtosecond laser ablation has better biological safety compared to the turbine drilling, thanks to its non-contact and ultrafast heat dissipation nature.


Asunto(s)
Terapia por Láser , Terapia por Láser/métodos , Terapia por Láser/instrumentación , Animales , Iterbio/química , Láseres de Estado Sólido
4.
Biomater Sci ; 12(15): 3841-3850, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38881248

RESUMEN

As promising luminescence nanoparticles, near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have received extensive attention in the field of high-sensitivity bioimaging in recent years. However, NIR PLNPs face problems such as short excitation wavelengths and single imaging modes, which limit their applications in in vivo reactivated imaging and multimodal imaging. Here, we report for the first time novel Gd2GaTaO7:Cr3+,Yb3+ (GGTO) NIR PLNPs that integrate X-ray activated NIR persistent luminescence (PersL), high X-ray attenuation and excellent magnetic properties into a single nanoparticle (NP). In this case, Cr3+ is used as the luminescence center. The co-doped Yb3+ and coating effectively enhance the X-ray activated NIR PersL. At the same time, the presence of the high-Z element Ta also makes the GGTO NPs exhibit high X-ray attenuation performance, which can be used as a CT contrast agent to achieve in vivo CT imaging. In addition, since the matrix contains a large amount of Gd, the GGTO NPs show remarkable magnetic properties, which can realize in vivo MR imaging. GGTO NPs combine the trimodal benefits of X-ray reactivated PersL, CT and MR imaging and are suitable for single or combined applications that require high sensitivity and spatial resolution imaging.


Asunto(s)
Imagen por Resonancia Magnética , Nanopartículas , Animales , Nanopartículas/química , Ratones , Rayos X , Luminiscencia , Rayos Infrarrojos , Gadolinio/química , Tomografía Computarizada por Rayos X , Medios de Contraste/química , Iterbio/química , Humanos , Imagen Multimodal
5.
Biomed Mater ; 19(5)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38870928

RESUMEN

In this investigation, we embarked on the synthesis of polyethylene glycol coated NaGdF4:Tm3+/Yb3+upconversion nanoparticles (UCNPs), aiming to assess their utility in enhancing image contrast within the context of swept source optical coherence tomography (OCT) and photo-thermal OCT imaging. Our research unveiled the remarkable UC emissions stemming from the transitions of Tm3+ions, specifically the1G4→3H6transitions, yielding vibrant blue emissions at 472 nm. We delved further into the UC mechanism, meticulously scrutinizing decay times and the nanoparticles' capacity to convert radiation into heat. Notably, these nanoparticles exhibited an impressive photo-thermal conversion efficiency of 37.5%. Furthermore, our investigations into their bio-compatibility revealed a promising outcome, with more than 90% cell survival after 24 h of incubation with HeLa cells treated with UCNPs. The nanoparticles demonstrated a notable thermal sensitivity of 4.7 × 10-3K-1at 300 K, signifying their potential for precise temperature monitoring at the cellular level.


Asunto(s)
Supervivencia Celular , Medios de Contraste , Nanopartículas , Polietilenglicoles , Tomografía de Coherencia Óptica , Iterbio , Tomografía de Coherencia Óptica/métodos , Humanos , Células HeLa , Polietilenglicoles/química , Iterbio/química , Nanopartículas/química , Medios de Contraste/química , Termometría/métodos , Gadolinio/química , Tulio/química , Fluoruros/química , Temperatura , Materiales Biocompatibles Revestidos/química , Rayos Infrarrojos
6.
ACS Sens ; 9(6): 3377-3386, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38783424

RESUMEN

Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions. This integrated platform allows simultaneous PEC and SERS measurements with a 532 nm laser. The obtained photocurrent and Raman spectra of the CdTe/Yb-TCPP nanocomposites are simultaneously influenced by variable bias voltages, and the correlation between them enables us to predict the charge transfer pathway. Moreover, we integrate gold nanorods (Au NRs) into the PEC-SERS system by using magnetic separation and DNA biometrics to construct a biosensor for patulin detection. This biosensor demonstrates the voltage-driven ON/OFF switching of PEC and SERS signals, a phenomenon attributed to the plasmon resonance effect of Au NRs at different voltages, thereby influencing charge transfer. The detection of patulin in apples verified the applicability of the biosensor. The study offers an efficient approach to understanding semiconductor-metal interfaces and presents a new avenue for designing high-performance biosensors.


Asunto(s)
Compuestos de Cadmio , Técnicas Electroquímicas , Oro , Patulina , Puntos Cuánticos , Semiconductores , Espectrometría Raman , Telurio , Espectrometría Raman/métodos , Telurio/química , Compuestos de Cadmio/química , Técnicas Electroquímicas/métodos , Puntos Cuánticos/química , Patulina/análisis , Oro/química , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Nanotubos/química , Iterbio/química , Malus/química , Nanocompuestos/química
7.
ACS Appl Bio Mater ; 7(6): 3821-3827, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38787698

RESUMEN

Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of in vivo deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored. In this study, we investigated the potential application of the NIRF lifetime-based method for temperature measurement of in vivo deep tissues in the abdomen using rare-earth-based particle materials. ß-NaYF4 particles codoped with Nd3+ and Yb3+ (excitation: 808 nm, emission: 980 nm) were used as NIRF thermometers, and their fluorescence decay curves were exponential. Slope linearity analysis (SLA), a screening method, was proposed to extract pixels with valid data. This method involves performing a linearity evaluation of the semilogarithmic plot of the decay curve collected at three delay times after cutting off the pulsed laser irradiation. After intragastric administration of the thermometer, the stomach temperature was monitored by using an NIRF time-gated imaging setup. Concurrently, a heater was attached to the lower abdomens of the mice under anesthesia. A decrease in the stomach temperature under anesthesia and its recovery via the heater indicated changes in the fluorescence lifetime of the thermometer placed inside the body. Thus, NaYF4:Nd3+/Yb3+ functions as a fluorescence thermometer that can measure in vivo temperature based on the temperature dependence of the fluorescence lifetime at 980 nm under 808 nm excitation. This study demonstrated the ability of a rare-earth-based NIRF thermometer to measure deep tissues in live mice, with the proposed SLA method for excluding the noisy deviations from the analysis for measuring temperature using the NIRF lifetime of a rare-earth-based thermometer.


Asunto(s)
Fluoruros , Imagen Óptica , Iterbio , Itrio , Animales , Ratones , Itrio/química , Iterbio/química , Fluoruros/química , Neodimio/química , Materiales Biocompatibles/química , Ensayo de Materiales , Tamaño de la Partícula , Temperatura , Termometría/métodos , Rayos Infrarrojos
8.
Med Phys ; 51(5): 3604-3618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38558460

RESUMEN

BACKGROUND: Intensity modulated brachytherapy based on partially shielded intracavitary and interstitial applicators is possible with a cost-effective 169Yb production method. 169Yb is a traditionally expensive isotope suitable for this purpose, with an average γ-ray energy of 93 keV. Re-activating a single 169Yb source multiple times in a nuclear reactor between clinical uses was shown to theoretically reduce cost by approximately 75% relative to conventional single-activation sources. With re-activation, substantial spatiotemporal variation in isotopic source composition is expected between activations via 168Yb burnup and 169Yb decay, resulting in time dependent neutron transmission, precursor usage, and reactor time needed per re-activation. PURPOSE: To introduce a generalized model of radioactive source production that accounts for spatiotemporal variation in isotopic source composition to improve the efficiency estimate of the 169Yb production process, with and without re-activation. METHODS AND MATERIALS: A time-dependent thermal neutron transport, isotope transmutation, and decay model was developed. Thermal neutron flux within partitioned sub-volumes of a cylindrical active source was calculated by raytracing through the spatiotemporal dependent isotopic composition throughout the source, accounting for thermal neutron attenuation along each ray. The model was benchmarked, generalized, and applied to a variety of active source dimensions with radii ranging from 0.4 to 1.0 mm, lengths from 2.5 to 10.5 mm, and volumes from 0.31 to 7.85 mm3, at thermal neutron fluxes from 1 × 1014 to 1 × 1015 n cm-2 s-1. The 168Yb-Yb2O3 density was 8.5 g cm-3 with 82% 168Yb-enrichment. As an example, a reference re-activatable 169Yb active source (RRS) constructed of 82%-enriched 168Yb-Yb2O3 precursor was modeled, with 0.6 mm diameter, 10.5 mm length, 3 mm3 volume, 8.5 g cm-3 density, and a thermal neutron activation flux of 4 × 1014 neutrons cm-2 s-1. RESULTS: The average clinical 169Yb activity for a 0.99 versus 0.31 mm3 source dropped from 20.1 to 7.5 Ci for a 4 × 1014 n cm-2 s-1 activation flux and from 20.9 to 8.7 Ci for a 1 × 1015 n cm-2 s-1 activation flux. For thermal neutron fluxes ≥2 × 1014 n cm-2 s-1, total precursor and reactor time per clinic-year were maximized at a source volume of 0.99 mm3 and reached a near minimum at 3 mm3. When the spatiotemporal isotopic composition effect was accounted for, average thermal neutron transmission increased over RRS lifetime from 23.6% to 55.9%. A 28% reduction (42.5 days to 30.6 days) in the reactor time needed per clinic-year for the RRS is predicted relative to a model that does not account for spatiotemporal isotopic composition effects. CONCLUSIONS: Accounting for spatiotemporal isotopic composition effects within the RRS results in a 28% reduction in the reactor time per clinic-year relative to the case in which such changes are not accounted for. Smaller volume sources had a disadvantage in that average clinical 169Yb activity decreased substantially below 20 Ci for source volumes under 1 mm3. Increasing source volume above 3 mm3 adds little value in precursor and reactor time savings and has a geometric disadvantage.


Asunto(s)
Braquiterapia , Radioisótopos , Iterbio/química , Neutrones , Modelos Teóricos , Factores de Tiempo
9.
Appl Radiat Isot ; 209: 111328, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663230

RESUMEN

The possibility of laser isotope separation of 175Yb from irradiated natural Yb has been investigated. The optimum process parameters such as powers and bandwidths of the lasers, Doppler broadening and the number density of the atoms have been derived through density matrix calculations. It has been shown that it is possible to produce 175Yb (>42% enriched) at a production rate of 62 µg/hour (or 1.5 mg/day). This corresponds to the production rate of 1350 patient doses (of 7.4 GBq each) per day. The radionuclidic purity of the isotopic mixture is expected to be 99.9999%. The method is highly suitable for the countries having only low-flux nuclear reactors.


Asunto(s)
Rayos Láser , Iterbio , Iterbio/química , Humanos
10.
Biomed Mater ; 19(3)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38545719

RESUMEN

Laser hyperthermia therapy (HT) has emerged as a well-established method for treating cancer, yet it poses unique challenges in comprehending heat transfer dynamics within both healthy and cancerous tissues due to their intricate nature. This study investigates laser HT therapy as a promising avenue for addressing skin cancer. Employing two distinct near-infrared (NIR) laser beams at 980 nm, we analyze temperature variations within tumors, employing Pennes' bioheat transfer equation as our fundamental investigative framework. Furthermore, our study delves into the influence of Ytterbium nanoparticles (YbNPs) on predicting temperature distributions in healthy and cancerous skin tissues. Our findings reveal that the application of YbNPs using a Gaussian beam shape results in a notable maximum temperature increase of 5 °C within the tumor compared to nanoparticle-free heating. Similarly, utilizing a flat top beam alongside YbNPs induces a temperature rise of 3 °C. While this research provides valuable insights into utilizing YbNPs with a Gaussian laser beam configuration for skin cancer treatment, a more thorough understanding could be attained through additional details on experimental parameters such as setup, exposure duration, and specific implications for skin cancer therapy.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias Cutáneas , Humanos , Iterbio , Hipertermia Inducida/métodos , Neoplasias Cutáneas/terapia , Calor , Simulación por Computador , Rayos Láser , Modelos Biológicos
11.
Small ; 20(25): e2310180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38342676

RESUMEN

Knee replacement surgery confronts challenges including patient dissatisfaction and the necessity for secondary procedures. A key requirement lies in dual-modal measurement of force and temperature of artificial joints during postoperative monitoring. Here, a novel non-toxic near-infrared (NIR) phosphor Sr3Sn2O7:Nd, Yb, is designed to realize the dual-modal measurement. The strategy is to entail phonon-assisted upconversion luminescence (UCL) and trap-controlled mechanoluminescence (ML) in a single phosphor well within the NIR biological transmission window. The phosphor is embedded in medical bone cement forming a smart joint in total knee replacements illustrated as a proof-of-concept. The sensing device can be charged in vitro by a commercial X-ray source with a safe dose rate for ML, and excited by a low power 980 nm laser for UCL. It attains impressive force and temperature sensing capabilities, exhibiting a force resolution of 0.5% per 10 N, force detection threshold of 15 N, and a relative temperature sensitive of up to 1.3% K-1 at 309 K. The stability against humidity and thermal shock together with the robustness of the device are attested. This work introduces a novel methodological paradigm, paving the way for innovative research to enhance the functionality of artificial tissues and joints in living organisms.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Temperatura , Humanos , Estroncio/química , Iterbio/química , Luminiscencia , Neodimio/química , Mediciones Luminiscentes/métodos , Rayos Infrarrojos
12.
Dalton Trans ; 53(9): 3980-3984, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38349065

RESUMEN

Two new ytterbium coordination compounds Yb(HPTC)(H2O)2 (Yb1) and Yb(HPTC)(Phen) (Yb2) were obtained using 10-carboxyperylene-3,4,9-tricarboxylate ion (HPTC3-) as a sensitizer. Both coordination compounds exhibited intense NIR-II luminescence upon excitation in the visible range and formed stable suspensions with nanoparticles of 50-70 nm in size in an aqueous solution of sodium alginate. Both complexes demonstrated non-toxicity up to at least 25 mg L-1 in two cell cultures: cancer cells MCF7 and embryonic cells HEK293T - making them suitable for bioimaging. For both complexes, the accumulation in cells was directly measured and it was shown that the accumulation of Yb2 was the same for both cell types (0.51-0.52 πg per cell), while Yb1 demonstrated selective accumulation in cancer cells (0.04 πg per cell for HEK293T and 7.00 πg per cell for MCF7). Thus, Yb1 can also be proposed as a selective vis-excited NIR emitting bioprobe.


Asunto(s)
Nanopartículas , Iterbio , Humanos , Animales , Porcinos , Luminiscencia , Células HEK293
13.
Talanta ; 271: 125723, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295442

RESUMEN

Nanoparticle-enhanced laser-induced breakdown spectroscopy and Tag-LIBS are two approaches that have been shown to significantly enhance LIBS sensitivity and specificity. In an effort to combine both of these approaches, we have initiated a study on the effect of the presence of Silver nanoparticle concentrations on Europium (Eu) and Ytterbium (Yb) LIBS signals. These elements are part of metal-loaded polymers conjugated to antibodies. We observe a signal enhancement of the emission lines of about 10 and 12 times for the Europium and Ytterbium lines. This study shows that Europium and Ytterbium are enhanced differently; Europium shows enhancement for both neutral and ionized species while the Ytterbium shows enhancement only for ionized species. Additionally, we found that NPs at 0.1 mg/mL and 0.05 mg/mL achieved maximum enhancement for Eu and Yb, respectively. Based on our findings, the temperature and electron density of Eu and Yb are not significantly different for NPs concentrations, but the total signal intensity is significantly higher for optimum NP concentrations for both Eu and Yb.


Asunto(s)
Europio , Nanopartículas del Metal , Europio/química , Iterbio/química , Nanopartículas del Metal/química , Plata/química , Análisis Espectral , Biomarcadores , Rayos Láser
14.
Eur J Nucl Med Mol Imaging ; 51(6): 1558-1573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270686

RESUMEN

PURPOSE: Classical brachytherapy of solid malignant tumors is an invasive procedure which often results in an uneven dose distribution, while requiring surgical removal of sealed radioactive seed sources after a certain period of time. To circumvent these issues, we report the synthesis of intrinsically radiolabeled and gum Arabic glycoprotein functionalized [169Yb]Yb2O3 nanoseeds as a novel nanoscale brachytherapy agent, which could directly be administered via intratumoral injection for tumor therapy. METHODS: 169Yb (T½ = 32 days) was produced by neutron irradiation of enriched (15.2% in 168Yb) Yb2O3 target in a nuclear reactor, radiochemically converted to [169Yb]YbCl3 and used for nanoparticle (NP) synthesis. Intrinsically radiolabeled NP were synthesized by controlled hydrolysis of Yb3+ ions in gum Arabic glycoprotein medium. In vivo SPECT/CT imaging, autoradiography, and biodistribution studies were performed after intratumoral injection of radiolabeled NP in B16F10 tumor bearing C57BL/6 mice. Systematic tumor regression studies and histopathological analyses were performed to demonstrate therapeutic efficacy in the same mice model. RESULTS: The nanoformulation was a clear solution having high colloidal and radiochemical stability. Uniform distribution and retention of the radiolabeled nanoformulation in the tumor mass were observed via SPECT/CT imaging and autoradiography studies. In a tumor regression study, tumor growth was significantly arrested with different doses of radiolabeled NP compared to the control and the best treatment effect was observed with ~ 27.8 MBq dose. In histopathological analysis, loss of mitotic cells was apparent in tumor tissue of treated groups, whereas no significant damage in kidney, lungs, and liver tissue morphology was observed. CONCLUSIONS: These results hold promise for nanoscale brachytherapy to become a clinically practical treatment modality for unresectable solid cancers.


Asunto(s)
Braquiterapia , Iterbio , Animales , Braquiterapia/métodos , Ratones , Iterbio/química , Distribución Tisular , Nanopartículas/química , Marcaje Isotópico , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Ratones Endogámicos C57BL , Goma Arábiga/química , Femenino , Glicoproteínas/química , Línea Celular Tumoral , Radioisótopos/química , Radioisótopos/uso terapéutico
15.
Braz Dent J ; 34(4): 93-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909646

RESUMEN

Radiopaque properties in the infiltrant should be interesting for clinicians to feel more confident to indicate this treatment. Thus, the aim of this study was to evaluate the effect of the incorporation of barium and ytterbium particles on the physical properties of resin infiltrants. Groups were divided according to the addition of ytterbium oxide (Y) alone (30 or 40%) or Y with barium (YB) (15/15% or 20/20% respectively) in the Icon commercial infiltrant and in the experimental infiltrant base. Digital radiography (n=5), Microradiography (n=5), Microtomography (n=3), degree of conversion (n=5), water sorption (n=16), solubility (n=16), contact angle (n=16), flexural strength (n=16), elastic modulus (n=16) and Energy dispersive X-ray Spectroscopy (n=10) were performed. Analyses were performed using the R program, with a significance level of 5%, and microradiography and Microtomography analyses were evaluated qualitatively. In groups with 30 or 40% of ytterbium, radiopacity was higher or equal to enamel. Microradiography and Microtomography appear to have more radiopacity in groups with 40% (Y). Among the groups with no particle addition, those of the experimental infiltrant presented a higher degree of conversion than those of Icon®. In most groups, there was solubility below the ISO-recommended levels. The addition of particles resulted in higher viscosity. Groups with Icon had higher flexural strength and elastic modulus than groups with experimental infiltrant. The addition of 40% (Y) improved polymerization, had low solubility, and had greater radiopacity than enamel, however negatively affected the viscosity increasing then. Experimental groups with the base showed a higher water sorption than Icon groups.


Asunto(s)
Resinas Compuestas , Iterbio , Resinas Compuestas/química , Bario , Iterbio/química , Ácidos Polimetacrílicos/química , Ensayo de Materiales , Agua
16.
Comput Biol Chem ; 106: 107930, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37542846

RESUMEN

In this study, the one-pot synthetic methodology for the preparation of substituted pyrroles with diethyl acetylene-dicarboxylate is reported for the various pyrrole derivatives via the Trifimow synthesis process from oximes. This method also offers the literature as a cyclization pathway using a ytterbium triflate catalyst. Another importance of this study is the use of pyrrole derivatives in pharmaceuticals, biological processes, and agrochemicals. From this point of view, the development of a new catalyst in synthetic organic chemistry and the difference in the method is also important. The syntheses of the target substituted pyrroles are accomplished in high yields. Also, all synthesized structures were confirmed by 1H NMR, 13C NMR, and IR spectra. The DFT computations were leveraged for structural and spectroscopic validation of the compounds. Then, FMO and NBO analyses were subsequently employed to elucidate the reactivity characteristics and intramolecular interactions within these compounds. Also, ADMET indices were ascertained to assess potential pharmacokinetic properties, drug-like qualities, and possible adverse effects of these compounds. Last, optimized molecules were analyzed by molecular docking methods against crystal structures of Bovine Serum Albumin and Leukemia Inhibitory Factor, and their binding affinities, interaction details, and inhibition constants were determined.


Asunto(s)
Pirroles , Iterbio , Simulación del Acoplamiento Molecular , Pirroles/química , Catálisis , Estructura Molecular
17.
Acta Biomater ; 168: 628-636, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454706

RESUMEN

The development of functional biomaterials with real-time monitoring of mineralization processes, drug release and biodistribution has potential applications but remains an unsolved challenge. Herein, erbium- and ytterbium- containing mesoporous bioactive glass microspheres (MBGs:Er/Yb) with blue and red emission at an excitation wavelength of 980 nm were synthesized by a sol-gel combined with organic template method. As the concentration of Yb3+ ions gradually increases, the emission intensity of the MBGs:Er/Yb exhibits a clear concentration quenching effect. Combined with in vitro bioactivity tests, the optimal molar ratio of Er3+/Yb3+ was determined to be 4:3. Therefore, MBGs:4Er/3Yb was selected for in vitro biomineralization and drug release monitoring. The results of biomineralization monitoring show that the upconversion luminescence intensity is closely related to the degree of biomineralization. The upconversion luminescence intensity of MBGs:4Er/3Yb is quenched with the increase of the degree of biomineralization. The degree of luminescence quenching during biomineralization can be semiquantized. Drug release monitoring experiments showed that the anticancer drug doxorubicin hydrochloride (DOX) was successfully loaded into MBGs:4Er/3Yb and selectively quenched the green emission. When DOX was released, the green emission recovered stably, and It/I0 increased gradually. Moreover, there was a linear relationship between It/I0 and cumulative drug release, indicating that DOX-MBGs:4Er/3Yb is highly sensitive to DOX release, and monitoring the It/I0 values of DOX-MBGs:4Er/3Yb can achieve real-time tracking of the DOX release process to a certain extent. In conclusion, MBGs:4Er/3Yb has potential application as an upconversion luminescence biomonitoring material in the field of bone tissue engineering. STATEMENT OF SIGNIFICANCE: Mesoporous bioactive glasses have great potential for applications in bone tissue repair due to their excellent biological properties, but the effective information of the repair process cannot be grasped in a timely manner. Therefore, real-time monitoring of mineralization and drug release processes will be beneficial to obtain the degree of healing and optimize the amount and distribution of drugs to improve targeted therapeutic effects. For biomaterials, in vitro biological properties determine their biological properties in vivo, where the environment is more complex and diverse, and thus in vitro biomonitoring is particularly crucial. The organic combination of physical properties and biological properties will also provide a feasible idea for the development of biomaterials.


Asunto(s)
Erbio , Iterbio , Luminiscencia , Microesferas , Liberación de Fármacos , Biomineralización , Distribución Tisular , Ingeniería de Tejidos , Materiales Biocompatibles , Vidrio
18.
ACS Biomater Sci Eng ; 9(8): 4607-4618, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452737

RESUMEN

Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.


Asunto(s)
Nanopartículas del Metal , Iterbio/química , Gadolinio/química , Durapatita/química , Medios de Contraste/química , Nanopartículas del Metal/química , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia
19.
Opt Lett ; 48(14): 3817-3820, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37450758

RESUMEN

A single-frequency distributed-Bragg-reflector fiber laser at 980 nm with a quantum defect of less than 0.6% was developed with a 1.5-cm 12 wt% ytterbium-doped phosphate fiber pumped by a 974.5-nm laser diode. Linearly polarized single-longitude-mode laser with a polarization extinction ratio (PER) of nearly 30 dB and spectral linewidth of less than 1.8 kHz was obtained. A maximum output power of 275 mW was measured at a launched pump power of 620 mW. The performance of the single-frequency fiber laser pumped at 909 nm and 976 nm was also characterized. This research demonstrated an approach to high-power single-frequency fiber laser oscillators with mitigated thermal effects.


Asunto(s)
Láseres de Semiconductores , Iterbio
20.
Opt Lett ; 48(13): 3447-3450, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390152

RESUMEN

Erbium-ion-doped lithium niobate (LN) microcavity lasers working in the communication band have attracted extensive attention recently. However, their conversion efficiencies and laser thresholds still have significant room to improve. Here, we prepared microdisk cavities based on erbium-ytterbium-co-doped LN thin film by using ultraviolet lithography, argon ion etching, and a chemical-mechanical polishing process. Benefiting from the erbium-ytterbium co-doping-induced gain coefficient improvement, laser emission with an ultralow threshold (∼1 µW) and high conversion efficiency (1.8 × 10-3%) was observed in the fabricated microdisks under a 980-nm-band optical pump. This study provides an effective reference for improving the performance of LN thin-film lasers.


Asunto(s)
Erbio , Iterbio , Óxidos , Impresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA