Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 112: 192-201, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34955203

RESUMEN

Heavy metal (Cu, Mn, Zn, Pb, and Cd) concentrations were measured in the leaves of Sabina chinensis and Platycladus orientalis collected from urban, suburban, and rural sites in Tianjin, China. Photosynthetic pigment contents, reactive oxygen species content, malondialdehyde (MDA) content and antioxidant enzyme activity were investigated, providing physiological response parameters. Our comparison of the sites revealed that urbanization significantly influenced the heavy metal concentrations in both plant leaves. At the rural site, both plant leaves exhibited the lowest heavy metal accumulation. The highest Cu, Mn, and Zn concentrations were found in S. chinensis leaves from the urban site; the highest Pb and Cd concentrations were found in P. orientalis leaves from the urban site. These results indicate that the urban site contained larger heavy metal concentrations in the plant leaves that may reflect the anthropogenic emission gradient. It is also found that S. chinensis may be used to monitor airborne heavy metal pollution because it is highly quick response to heavy metals, while P. orientalis may be used for mitigation due to its high resistance. The results of this study can contribute to the development of monitoring and environmental management plans by providing information on sensitive and resistant tree species for city greening in North China.


Asunto(s)
Cupressaceae , Juniperus , Metales Pesados , Contaminantes del Suelo , China , Ciudades , Cupressaceae/efectos de los fármacos , Cupressaceae/fisiología , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Juniperus/efectos de los fármacos , Juniperus/fisiología , Metales Pesados/metabolismo , Hojas de la Planta/química , Contaminantes del Suelo/metabolismo , Árboles/efectos de los fármacos , Árboles/fisiología
2.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506038

RESUMEN

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Sequías , Calor , Juniperus/fisiología , Fotosíntesis , Pinus/fisiología , Hojas de la Planta/fisiología , Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo
3.
J Plant Physiol ; 248: 153156, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32244105

RESUMEN

Next to global warming, excessive deposition of nitrogen has an alarming environmental impact on forest ecology, especially within dioecious species. Resource availability affects seed quality and can affect the distribution of plant species. Lower seed productivity can also be a result of limited pollen availability or lower pollen quality. A few studies have assessed the effect of nutrient availability on the quantity and quality of pollen grains produced. Therefore, rooted shoots of dioecious, male Juniperus communis L. grown in different nutritional conditions were used to assess the impact on productivity and quality attributes of produced pollen grains (pollen volume, morphology, germination, and chemical composition). The results indicated that nutrient availability impacts pollen grain development. Male plants growing in nutrient-rich environments appear to compensate for the lower quality of produced pollen grains by producing a higher number of male cones and thus a greater quantity of pollen. In contrast, the opposite was observed in plants growing in nutrient-poor environments. The availability of nitrogen and other nutrients will probably continue to impact soils in the foreseeable future due to anthropogenic activity and can be one of the drivers that can impact the reproduction and distribution of plants.


Asunto(s)
Juniperus/fisiología , Polen/fisiología , Nutrientes , Polen/química , Polen/citología , Reproducción
4.
New Phytol ; 225(2): 679-692, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31276231

RESUMEN

Trees may survive prolonged droughts by shifting water uptake to reliable water sources, but it is unknown if the dominant mechanism involves activating existing roots or growing new roots during drought, or some combination of the two. To gain mechanistic insights on this unknown, a dynamic root-hydraulic modeling framework was developed that set up a feedback between hydraulic controls over carbon allocation and the role of root growth on soil-plant hydraulics. The new model was tested using a 5 yr drought/heat field experiment on an established piñon-juniper stand with root access to bedrock groundwater. Owing to the high carbon cost per unit root area, modeled trees initialized without adequate bedrock groundwater access experienced potentially lethal declines in water potential, while all of the experimental trees maintained nonlethal water potentials. Simulated trees were unable to grow roots rapidly enough to mediate the hydraulic stress, particularly during warm droughts. Alternatively, modeled trees initiated with root access to bedrock groundwater matched the hydraulics of the experimental trees by increasing their water uptake from bedrock groundwater when soil layers dried out. Therefore, the modeling framework identified a critical mechanism for drought response that required trees to shift water uptake among existing roots rather than growing new roots.


Asunto(s)
Carbono/metabolismo , Sequías , Modelos Biológicos , Raíces de Plantas/fisiología , Tracheophyta/fisiología , Agua/fisiología , Simulación por Computador , Agua Subterránea , Juniperus/fisiología , Pinus/fisiología , Raíces de Plantas/crecimiento & desarrollo , Transpiración de Plantas/fisiología , Factores de Tiempo
5.
Sci Total Environ ; 689: 434-443, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31279190

RESUMEN

How leaf traits vary with environmental and climatic variables in cold and arid environments is an essential issue in environmental ecology. Here, we analyzed the variations in leaf nitrogen (N) and phosphorus (P) stoichiometry and leaf dry matter content (LDMC) in Qilian juniper (Juniperus przewalskii Kom.) growing in 14 environmentally different plots on the northeastern Tibetan Plateau. The results showed that the N and P concentrations, N:P ratio and LDMC of Qilian juniper were 10.89 mg.g-1, 1.04 mg.g-1, 10.80 and 483.06 mg.g-1, respectively. The spatial coefficients of the variations in leaf N and P stoichiometry were significantly higher than the seasonal ones, and the correlations of leaf N and P concentrations with spatial variables were stronger than their correlations with the season. During the growing season, only the leaf N concentration and N:P ratio significantly increased. Soil nutrients were highly positively significantly correlated with leaf P concentrations but negatively correlated with the N:P ratio and LDMC. However, leaf N concentrations showed no significant correlations with soil nutrients. We suggest that the effects of temperature on the N concentration and LDMC were stronger than the effects of drought, while those on the P concentration and N:P ratio were weaker. Drought reduced leaf N and P concentrations and increased the N:P ratio and LDMC. In the arid region, with an increasing mean annual temperature (MAT), leaf N concentration significantly decreased, and LDMC significantly increased. In the semi-arid region, as MAT increased, leaf N and P concentrations significantly increased and LDMC and the N:P ratio significantly decreased. These opposite results supported the growth rate hypothesis that plant N and P concentrations increase while the N:P ratio and LDMC decrease as the growth rate increases.


Asunto(s)
Clima Desértico , Juniperus/fisiología , Hojas de la Planta/fisiología , China , Frío , Juniperus/química , Juniperus/crecimiento & desarrollo , Nitrógeno/metabolismo , Fósforo/metabolismo , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo
6.
Tree Physiol ; 39(1): 55-63, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215810

RESUMEN

Understanding how climate alters plant-soil water dynamics, and its impact on physiological functions, is critical to improved predictions of vegetation responses to climate change. Here we analyzed how belowground interactions for water shift under warming and drought, and associated impacts on plant functions. In a semi-arid woodland, adult trees (piñon and juniper) and perennial grasses (blue grama) were exposed to warming and precipitation reduction. After 6 years of continuous treatment exposure, soil and plant water isotopic composition was measured to assess plant water uptake depths and community-level water source partitioning. Warming and drought modified plant water uptake depths. Under warming, contrasting changes in water sources between grasses and trees reduced belowground water source partitioning, resulting in higher interspecific competition for water. Under drought, shifts in trees and grass water sources to deeper soil layers resulted in the maintenance of the naturally occurring water source partitioning among species. Trees showed higher water stress, and reduced water use and photosynthesis in response to warming and drought. This case study demonstrates that neighboring plants shift their competitive interactions for water under prolonged warming and drought, but regardless of whether changes in moisture sources will result in increased competition among species or maintained partitioning of water resources, these competitive adaptations may easily be overridden by climate extremes.


Asunto(s)
Dióxido de Carbono/metabolismo , Cambio Climático , Sequías , Agua Subterránea , Juniperus/fisiología , Pinus/fisiología , Poaceae/fisiología , Árboles/fisiología , Transpiración de Plantas , Suelo/química
7.
Tree Physiol ; 39(1): 135-142, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272223

RESUMEN

The leaf area to sapwood area ratios of trees (Al:AS) can shift to maintain homeostatic gas exchange per unit leaf area in response to climate variability. We tested the hypothesis that trees alter their Al:AS ratios in response to long-term warming and reduced precipitation in order to maintain leaf-specific gas exchange rates under more stressful conditions. Whole-tree Al:AS was measured on mature piñon pine (Pinus edulis Engelm.) and one-seed juniper (Juniperus monosperma (Engelm.) Sarg.) trees after 5 years (2012-16) of chronic exposure to increased temperature (+4.8 °C), precipitation reduction (-45%), or both simultaneously. No difference was found in Al:As among treatments for either species. Associated with this lack of shift in Al:As were large changes in pre-dawn leaf water potential and stomatal conductance, consistent with theoretical expectations of interactions between leaf and whole-tree hydraulic supply. Our results suggest that a lack of whole-tree acclimation in Al:As results in the reductions in plant gas exchange and water status associated with long-term warming and reduced precipitation in semi-arid woodlands.


Asunto(s)
Aclimatación , Calentamiento Global , Juniperus/fisiología , Pinus/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología , Sequías , Juniperus/anatomía & histología , Pinus/anatomía & histología , Hojas de la Planta/anatomía & histología , Árboles/anatomía & histología , Agua
8.
Glob Chang Biol ; 24(12): 5655-5667, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30215879

RESUMEN

Woody plant encroachment (WPE) into grasslands has been occurring globally and may be accelerated by climate change in the future. This land cover change is expected to alter the carbon and water cycles, but it remains uncertain how and to what extent the carbon and water cycles may change with WPE into grasslands under current climate. In this study, we examined the difference of vegetation indices (VIs), evapotranspiration (ET), gross primary production (GPP), and solar-induced chlorophyll fluorescence (SIF) during 2000-2010 between grasslands and juniper-encroached grasslands. We also quantitatively assessed the changes of GPP and ET for grasslands with different proportions of juniper encroachment (JWPE). Our results suggested that JWPE increased the GPP, ET, greenness-related VIs, and SIF of grasslands. Mean annual GPP and ET were, respectively, ~55% and ~45% higher when grasslands were completely converted into juniper forests under contemporary climate during 2000-2010. The enhancement of annual GPP and ET for grasslands with JWPE varied over years ranging from about +20% GPP (~+30% for ET) in the wettest year (2007) to about twice as much GPP (~+55% for ET) in the severe drought year (2006) relative to grasslands without encroachment. Additionally, the differences in GPP and ET showed significant seasonal dynamics. During the peak growing season (May-August), GPP and ET for grasslands with JWPE were ~30% and ~40% higher on average. This analysis provided insights into how and to what degree carbon and water cycles were impacted by JWPE, which is vital to understanding how JWPE and ecological succession will affect the regional and global carbon and water budgets in the future.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Bosques , Pradera , Juniperus/fisiología , Agua , Sequías , Transpiración de Plantas , Estaciones del Año , Luz Solar
9.
Plant Cell Environ ; 41(11): 2627-2637, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29974965

RESUMEN

Climate warming should result in hotter droughts of unprecedented severity in this century. Such droughts have been linked with massive tree mortality, and data suggest that warming interacts with drought to aggravate plant performance. Yet how forests will respond to hotter droughts remains unclear, as does the suite of mechanisms trees use to deal with hot droughts. We used an ecosystem-scale manipulation of precipitation and temperature on piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees to investigate nitrogen (N) cycling-induced mitigation processes related to hotter droughts. We found that while negative impacts on plant carbon and water balance are manifest after prolonged drought, performance reductions were not amplified by warmer temperatures. Rather, increased temperatures for 5 years stimulated soil N cycling under piñon trees and modified tree N allocation for both species, resulting in mitigation of hotter drought impacts on tree water and carbon functions. These findings suggest that adjustments in N cycling are likely after multi-year warming conditions and that such changes may buffer reductions in tree performance during hotter droughts. The results highlight our incomplete understanding of trees' ability to acclimate to climate change, raising fundamental questions about the resistance potential of forests to long-term, compound climatic stresses.


Asunto(s)
Ciclo del Nitrógeno , Árboles/fisiología , Carbono/metabolismo , Deshidratación , Sequías , Calor , Juniperus/metabolismo , Juniperus/fisiología , Nitrógeno/metabolismo , Ciclo del Nitrógeno/fisiología , Pinus/metabolismo , Pinus/fisiología , Árboles/metabolismo
10.
Plant Cell Environ ; 41(8): 1926-1934, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29761501

RESUMEN

We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (∼45% reduction in precipitation), heat (∼4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole-plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.


Asunto(s)
Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Deshidratación , Respuesta al Choque Térmico , Juniperus/metabolismo , Juniperus/fisiología , Pinus/metabolismo , Pinus/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Agua/metabolismo
11.
Plant Cell Environ ; 41(7): 1551-1564, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569276

RESUMEN

Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation-tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long-term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X-ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one-seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.


Asunto(s)
Juniperus/anatomía & histología , Floema/anatomía & histología , Pinus/anatomía & histología , Árboles/anatomía & histología , Xilema/anatomía & histología , Deshidratación , Juniperus/fisiología , Juniperus/ultraestructura , Microscopía , Floema/fisiología , Floema/ultraestructura , Pinus/fisiología , Pinus/ultraestructura , Estomas de Plantas/fisiología , Estomas de Plantas/ultraestructura , Árboles/fisiología , Árboles/ultraestructura , Microtomografía por Rayos X , Xilema/fisiología , Xilema/ultraestructura
12.
Plant Cell Environ ; 41(3): 576-588, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29314069

RESUMEN

From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole-tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground.


Asunto(s)
Sequías , Modelos Biológicos , Árboles/fisiología , Diospyros/fisiología , Juniperus/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Tallos de la Planta/fisiología , Estomas de Plantas/fisiología , Prosopis/fisiología , Quercus/fisiología , Texas , Agua/fisiología
13.
Plant Cell Environ ; 41(2): 421-435, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29215745

RESUMEN

Hydraulic architecture imposes a fundamental control on water transport, underpinning plant productivity, and survival. The extent to which hydraulic architecture of mature trees acclimates to chronic drought is poorly understood, limiting accuracy in predictions of forest responses to future droughts. We measured seasonal shoot hydraulic performance for multiple years to assess xylem acclimation in mature piñon (Pinus edulis) and juniper (Juniperus monosperma) after 3+ years of precipitation manipulation. Our treatments consisted of water addition (+20% ambient precipitation), partial precipitation-exclusion (-45% ambient precipitation), and exclusion-structure control. Supplemental watering elevated leaf water potential, sapwood-area specific hydraulic conductivity, and leaf-area specific hydraulic conductivity relative to precipitation exclusion. Shifts in allocation of leaf area to sapwood area enhanced differences between irrigated and droughted KL in piñon but not juniper. Piñon and juniper achieved similar KL under ambient conditions, but juniper matched or outperformed piñon in all physiological measurements under both increased and decreased precipitation treatments. Embolism vulnerability and xylem anatomy were unaffected by treatments in either species. Absence of significant acclimation combined with inferior performance for both hydraulic transport and safety suggests piñon has greater risk of local extirpation if aridity increases as predicted in the southwestern USA.


Asunto(s)
Juniperus/anatomía & histología , Pinus/anatomía & histología , Xilema/anatomía & histología , Clima , Deshidratación , Juniperus/fisiología , Pinus/fisiología , Brotes de la Planta/anatomía & histología , Brotes de la Planta/fisiología , Lluvia , Sudoeste de Estados Unidos , Agua/metabolismo , Madera/anatomía & histología
14.
Plant Biol (Stuttg) ; 19(6): 934-941, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28834121

RESUMEN

Changes in land-use patterns are a major driver of global environmental change. Cessation of traditional land-use practices has led to forest expansion and shifts in forest composition. Consequently, former monospecific forests maintained by traditional management are progressing towards mixed forests. However, knowledge is scarce on how the presence of other tree species will affect reproduction of formerly dominant species. We explored this question in the wind-pollinated tree Juniperus thurifera. We hypothesised that the presence of heterospecific trees would have a negative effect on cone production and on the proportion of cones attacked by specialised predators. We assessed the relative importance of forest composition on cone production, seed development and pre-dispersal cone damage on nine paired pure and mixed J. thurifera forests in three regions across the Iberian Peninsula. The effects of forest composition on crop size, cone and seed characteristics, as well as damage by pre-dispersal arthropods were tested using mixed models. Cone production was lower and seed abortion higher in mixed forests, suggesting higher pollination failure. In contrast, cone damage by arthropods was higher in pure forests, supporting the hypothesis that presence of non-host plants reduces damage rates. However, the response of each arthropod to forest composition was species-specific and the relative rates of cone damage varied depending on individual tree crops. Larger crop sizes in pure forests compensated for the higher cone damage rates, leading to a higher net production of sound seeds compared to mixed forests. This study indicates that ongoing changes in forest composition after land abandonment may impact tree reproduction.


Asunto(s)
Bosques , Juniperus/fisiología , Polinización/fisiología , Ecosistema , Flores/fisiología , Reproducción , Semillas/fisiología , España
15.
PLoS One ; 11(4): e0153888, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100092

RESUMEN

Assessments of climate change impacts on forests and their vitality are essential for semi-arid environments such as Central Asia, where the mountain regions belong to the globally important biodiversity hotspots. Alterations in species distribution or drought-induced tree mortality might not only result in a loss of biodiversity but also in a loss of other ecosystem services. Here, we evaluate spatial trends and patterns of the growth-climate relationship in a tree-ring network comprising 33 juniper sites from the northern Pamir-Alay and Tien Shan mountain ranges in eastern Uzbekistan and across Kyrgyzstan for the common period 1935-2011. Junipers growing at lower elevations are sensitive to summer drought, which has increased in intensity during the studied period. At higher elevations, juniper growth, previously favored by warm summer temperatures, has in the recent few decades become negatively affected by increasing summer aridity. Moreover, response shifts are observed during all seasons. Rising temperatures and alterations in precipitation patterns during the past eight decades can account for the observed increase in drought stress of junipers at all altitudes. The implications of our findings are vital for the application of adequate long-term measures of ecosystem conservation, but also for paleo-climatic approaches and coupled climate-vegetation model simulations for Central Asia.


Asunto(s)
Cambio Climático , Sequías , Juniperus/fisiología , Estrés Fisiológico , Árboles/crecimiento & desarrollo , Asia , Biodiversidad , Ecosistema
16.
Tree Physiol ; 36(4): 502-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26705312

RESUMEN

Forecasted warmer and drier conditions will probably lead to reduced growth rates and decreased carbon fixation in long-term woody pools in drought-prone areas. We therefore need a better understanding of how climate stressors such as drought constrain wood formation and drive changes in wood anatomy. Drying trends could lead to reduced growth if they are more intense in spring, when radial growth rates of conifers in continental Mediterranean climates peak. Since tree species from the aforementioned areas have to endure dry summers and also cold winters, we chose two coexisting species: Aleppo pine (Pinus halepensisMill., Pinaceae) and Spanish juniper (Juniperus thuriferaL., Cupressaceae) (10 randomly selected trees per species), to analyze how growth (tree-ring width) and wood-anatomical traits (lumen transversal area, cell-wall thickness, presence of intra-annual density fluctuations-IADFs-in the latewood) responded to climatic variables (minimum and maximum temperatures, precipitation, soil moisture deficit) calculated for different time intervals. Tree-ring width and mean lumen area showed similar year-to-year variability, which indicates that they encoded similar climatic signals. Wet and cool late-winter to early-spring conditions increased lumen area expansion, particularly in pine. In juniper, cell-wall thickness increased when early summer conditions became drier and the frequency of latewood IADFs increased in parallel with late-summer to early-autumn wet conditions. Thus, latewood IADFs of the juniper capture increased water availability during the late growing season, which is reflected in larger tracheid lumens. Soil water availability was one of the main drivers of wood formation and radial growth for the two species. These analyses allow long-term (several decades) growth and wood-anatomical responses to climate to be inferred at intra-annual scales, which agree with the growing patterns already described by xylogenesis approaches for the same species. A plastic bimodal growth behavior, driven by dry summer conditions, is coherent with the presented wood-anatomical data. The different wood-anatomical responses to drought stress are observed as IADFs with contrasting characteristics and responses to climate. These different responses suggest distinct capacities to access soil water between the two conifer species.


Asunto(s)
Clima , Sequías , Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Cambio Climático , Juniperus/fisiología , Pinus/fisiología , Madera/anatomía & histología , Xilema/crecimiento & desarrollo
17.
Oecologia ; 180(1): 91-102, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26400794

RESUMEN

An increased understanding of intraspecific seed packaging (i.e. seed size/number strategy) variation across different environments may improve current knowledge of the ecological forces that drive seed evolution in plants. In particular, pre-dispersal seed predation may influence seed packaging strategies, triggering a reduction of the resources allocated to undamaged seeds within the preyed fruits. Assessing plant reactions to pre-dispersal seed predation is crucial to a better understanding of predation effects, but the response of plants to arthropod attacks remains unexplored. We have assessed the effect of cone predation on the size and viability of undamaged seeds in populations of Juniperus thurifera with contrasting seed packaging strategies, namely, North African populations with single-large-seeded cones and South European populations with multi-small-seeded cones. Our results show that the incidence of predation was lower on the single-large-seeded African cones than on the multi-small-seeded European ones. Seeds from non-preyed cones were also larger and had a higher germination success than uneaten seeds from preyed cones, but only in populations with multi-seeded cones and in cones attacked by Trisetacus sp., suggesting a differential plastic response to predation. It is possible that pre-dispersal seed predation has been a strong selective pressure in European populations with high cone predation rates, being a process which maintains multi-small-seeded cones and empty seeds as a strategy to save some seeds from predation. Conversely, pre-dispersal predation might not have a strong effect in the African populations with single-large-seeded cones characterized by seed germination and filling rates higher than those in the European populations. Our results indicate that differences in pre-dispersal seed predators and predation levels may affect both selection on and intraspecific variation in seed packaging.


Asunto(s)
Herbivoria , Juniperus/fisiología , Ácaros , Conducta Predatoria , Dispersión de Semillas , Semillas/fisiología , Selección Genética , África del Norte , Animales , Evolución Biológica , Europa (Continente) , Frutas , Variación Genética , Fenotipo , Enfermedades de las Plantas , Reproducción
18.
Plant Cell Environ ; 39(1): 38-49, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26081870

RESUMEN

Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.


Asunto(s)
Carbono/metabolismo , Juniperus/fisiología , Pinus/fisiología , Transpiración de Plantas/fisiología , Sequías , Modelos Biológicos , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Árboles , Agua/fisiología , Xilema/fisiología
19.
Plant Biol (Stuttg) ; 18(1): 147-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25892115

RESUMEN

Fruit production in animal-dispersed plants has a strong influence on fitness because large crops increase the number of seeds dispersed by frugivores. Large crops are costly, and environmental control of plant resources is likely play a role in shaping temporal and spatial variations in seed production, particularly in fluctuating environments such as the Mediterranean. The number of fruits that start to develop and the proportion of viable seeds produced are also linked to the number of flowers formed and the efficiency of pollination in wind-pollinated plants. Finally, large fruit displays also attract seed predators, having a negative effect on seed output. We assessed the relative impact of environmental conditions on fruit production, and their combined effect on seed production, abortion and seed loss through three predispersal predators in Juniperus thurifera L., sampling 14 populations across the Iberian Peninsula. Wetter than average conditions during flowering and early fruit development led to larger crop sizes; this effect was amplified at tree level, with the most productive trees during more favourable years yielding fruits with more viable seeds and less empty and aborted seeds. In addition, large crops satiated the less mobile seed predator. The other two predispersal predators responded to plant traits, the presence of other seed predators and environmental conditions, but did not show a satiation response to the current-year crop. Our large-scale study on a dioecious, wind-pollinated Mediterranean juniper indicates that pollination efficiency and satiation of seed predators, mediated by environmental conditions, are important determinants of reproductive output in this juniper species.


Asunto(s)
Juniperus/fisiología , Polinización/fisiología , Semillas/crecimiento & desarrollo , Animales , Artrópodos/fisiología , Bosques , Frutas/crecimiento & desarrollo , Conducta Predatoria , Saciedad , España
20.
Plant Biol (Stuttg) ; 18(3): 417-22, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26465806

RESUMEN

With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper.


Asunto(s)
Gametogénesis en la Planta , Juniperus/fisiología , Semillas/fisiología , Bélgica , Clima , Europa (Continente) , Fertilización , Francia , Juniperus/embriología , Reproducción , Semillas/embriología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...