Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.184
Filtrar
1.
Commun Biol ; 7(1): 797, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956406

RESUMEN

The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Kluyveromyces , Kluyveromyces/genética , Edición Génica/métodos , Plásmidos/genética , Biología Sintética/métodos , Hemo/metabolismo , Hemo/genética , Hemo/biosíntesis
2.
Commun Biol ; 7(1): 825, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38971878

RESUMEN

Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.


Asunto(s)
Kluyveromyces , Kluyveromyces/genética , Kluyveromyces/fisiología , Saccharomyces cerevisiae/genética , Genoma Fúngico , Mutación , Evolución Molecular , Adaptación Fisiológica/genética , Selección Genética , Evolución Biológica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Genómica/métodos
3.
Food Funct ; 15(12): 6717-6730, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38833212

RESUMEN

Although only Saccharomyces boulardii has been studied for ulcerative colitis (UC), probiotic yeasts have immense therapeutic potential. Herein, we evaluated the kefir yeast Kluyveromyces marxianus A4 (Km A4) and its anti-inflammatory effect with sulfasalazine in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration continued for 7 days after the mice were randomly divided into seven groups: control (CON, normal mice administered with saline), DSS-induced colitis mice administered saline (DSS), and DSS-induced colitis mice administered sulfasalazine only (S), Km A4 only (A4), Km A4 plus sulfasalazine (A4 + S), S. boulardii ATCC MYA-796 (Sb MYA-796) only (Sb), and Sb MYA-796 plus sulfasalazine (Sb + S). The ß-glucan content of Km A4 was significantly higher than that of Sb MYA-796 (P < 0.05). Body weight gain (BWG) significantly correlated with colon length, cyclooxygenase-2 (Cox-2) levels, and Bacteroides abundance (P < 0.05). In colitis-induced mice, the A4 + S group had the lowest histological score (6.00) compared to the DSS group (12.67), indicating the anti-inflammatory effects of this combination. The A4 + S group showed significantly downregulated expression of interleukin (Il)-6, tumor necrosis factor-α (Tnf-α), and Cox-2 and upregulated expression of Il-10 and occludin (Ocln) compared to the DSS group. Mice treated with A4 + S had enhanced Bacteroides abundance in their gut microbiota compared with the DSS group (P < 0.05). Bacteroides were significantly correlated with all colitis biomarkers (BWG, colon length, Il-6, Tnf-α, Il-10, Cox-2, and Ocln; P < 0.05). The anti-inflammatory effects of Km A4 could be attributed to high ß-glucan content and gut microbiota modulation. Thus, treatment with Km A4 and sulfasalazine could alleviate UC.


Asunto(s)
Antiinflamatorios , Colitis Ulcerosa , Microbioma Gastrointestinal , Kluyveromyces , Ratones Endogámicos BALB C , Probióticos , Sulfasalazina , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Sulfasalazina/farmacología , Ratones , Antiinflamatorios/farmacología , Probióticos/farmacología , Masculino , Kéfir/microbiología , Sulfato de Dextran/efectos adversos , Humanos , Colon/microbiología , Colon/metabolismo , Colon/efectos de los fármacos , Colon/patología , Modelos Animales de Enfermedad , Femenino
4.
Commun Biol ; 7(1): 627, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789513

RESUMEN

In recombinant protein-producing yeast strains, cells experience high production-related stresses similar to high temperatures. It is possible to increase recombinant protein production by enhancing thermotolerance, but few studies have focused on this topic. Here we aim to identify cellular regulators that can simultaneously activate thermotolerance and high yield of recombinant protein. Through screening at 46 °C, a heat-resistant Kluyveromyces marxianus (K. marxianus) strain FDHY23 is isolated. It also exhibits enhanced recombinant protein productivity at both 30 °C and high temperatures. The CYR1N1546K mutation is identified as responsible for FDHY23's improved phenotype, characterized by weakened adenylate cyclase activity and reduced cAMP production. Introducing this mutation into the wild-type strain greatly enhances both thermotolerance and recombinant protein yields. RNA-seq analysis reveals that under high temperature and recombinant protein production conditions, CYR1 mutation-induced reduction in cAMP levels can stimulate cells to improve its energy supply system and optimize material synthesis, meanwhile enhance stress resistance, based on the altered cAMP signaling cascades. Our study provides CYR1 mutation as a novel target to overcome the bottleneck in achieving high production of recombinant proteins under high temperature conditions, and also offers a convenient approach for high-throughput screening of recombinant proteins with high yields.


Asunto(s)
AMP Cíclico , Kluyveromyces , Proteínas Recombinantes , Transducción de Señal , AMP Cíclico/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Kluyveromyces/genética , Kluyveromyces/metabolismo , Termotolerancia/genética , Mutación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Calor
5.
J Biotechnol ; 389: 78-85, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38718873

RESUMEN

In a bid to explore the on-site biorefinery approach for conversion of forestry residues, lignocellulosic biomass into value-added products was studied. The bark white pine wood was subjected to the microwave technique of fast and slow hydrolysis under varying acid and biomass concentrations to produce levulinic acid (LA). The HCl (2% v/v) and plant biomass (1% w/v) were identified as the optimum conditions for fast wood hydrolysis (270 ºC for 12 sec), which led to maximum LA yield of 446.68 g/kgPB. The proposed sustainable approach is mild, quick, and utilized a very low concentration of the HCl for the production of LA. The hydrolysate was used as a medium for Kluyveromyces marxianus growth to produce 2-phenylethanol (2-PE). K. marxianus used 74-95% of furfural from hydrolysate as a co-substrate to grow. The proposed model of the integrated biorefinery is an affordable on-site approach of using forest waste into localized solutions to produce LA and 2-PE.


Asunto(s)
Biomasa , Ácidos Levulínicos , Alcohol Feniletílico , Madera , Ácidos Levulínicos/metabolismo , Madera/química , Madera/metabolismo , Hidrólisis , Alcohol Feniletílico/metabolismo , Kluyveromyces/metabolismo , Kluyveromyces/crecimiento & desarrollo , Lignina/metabolismo , Lignina/química , Pinus/metabolismo , Pinus/química
6.
J Agric Food Chem ; 72(22): 12798-12809, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38772384

RESUMEN

Patulin (PAT) is a mycotoxin produced by Penicillium species, which often contaminates fruit and fruit-derived products, posing a threat to human health and food safety. This work aims to investigate the detoxification of PAT by Kluyveromyces marxianus YG-4 (K. marxianus YG-4) and its application in apple juice. The results revealed that the detoxification effect of K. marxianus YG-4 on PAT includes adsorption and degradation. The adsorption binding sites were polysaccharides, proteins, and some lipids on the cell wall of K. marxianus YG-4, and the adsorption groups were hydroxyl groups, amino acid side chains, carboxyl groups, and ester groups, which were combined through strong forces (ion interactions, electrostatic interactions, and hydrogen bonding) and not easily eluted. The degradation active substance was an intracellular enzyme, and the degradation product was desoxypatulinic acid (DPA) without cytotoxicity. K. marxianus YG-4 can also effectively adsorb and degrade PAT in apple juice. The contents of organic acids and polyphenols significantly increased after detoxification, significantly improving the quality of apple juice. The detoxification ability of K. marxianus YG-4 toward PAT would be a novel approach for the elimination of PAT contamination.


Asunto(s)
Jugos de Frutas y Vegetales , Kluyveromyces , Malus , Patulina , Kluyveromyces/metabolismo , Kluyveromyces/química , Patulina/metabolismo , Patulina/química , Malus/química , Malus/metabolismo , Jugos de Frutas y Vegetales/análisis , Contaminación de Alimentos/análisis , Adsorción
7.
Bioresour Technol ; 403: 130832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754558

RESUMEN

This study focused on optimizing the production of fermented Spirulina (FS) products using a bioactivity-guided strategy with Lactobacillus helveticus B-4526 and Kluyveromyces marxianus Y-329 in a 3-L bioreactor. Various operating conditions, including aeration rates and pH modes, were tested. While both microorganisms thrived under all conditions, the "cascade" mode, controlling dissolved oxygen, enhanced protein hydrolysis and antioxidant activity, as confirmed by SDS-PAGE and DPPH/TEAC assays, respectively. Screening revealed that "cascade" FS significantly decreased viability of colon cancer cells (HT-29) in a dose-dependent manner, with up to a 72 % reduction. Doses ≤ 500 µg mL-1 of "cascade" FS proved safe and effective in suppressing NO release without compromising cellular viability. Additionally, "cascade" FS exhibited diverse volatile organic compounds and reducing the characteristic "seaweed" aroma. These findings highlight "cascade" FS as a promising alternative food source with improved bioactive properties, urging further exploration of its bioactive compounds, particularly bioactive peptides.


Asunto(s)
Reactores Biológicos , Fermentación , Kluyveromyces , Lactobacillus helveticus , Spirulina , Kluyveromyces/metabolismo , Lactobacillus helveticus/metabolismo , Spirulina/metabolismo , Humanos , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células HT29 , Concentración de Iones de Hidrógeno , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología
8.
Adv Appl Microbiol ; 126: 27-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38637106

RESUMEN

Kluyveromyces marxianus is a non-Saccharomyces yeast that has gained importance due to its great potential to be used in the food and biotechnology industries. In general, K. marxianus is a known yeast for its ability to assimilate hexoses and pentoses; even this yeast can grow in disaccharides such as sucrose and lactose and polysaccharides such as agave fructans. Otherwise, K. marxianus is an excellent microorganism to produce metabolites of biotechnological interest, such as enzymes, ethanol, aroma compounds, organic acids, and single-cell proteins. However, several studies highlighted the metabolic trait variations among the K. marxianus strains, suggesting genetic diversity within the species that determines its metabolic functions; this diversity can be attributed to its high adaptation capacity against stressful environments. The outstanding metabolic characteristics of K. marxianus have motivated this yeast to be a study model to evaluate its easy adaptability to several environments. This chapter will discuss overview characteristics and applications of K. marxianus and recent insights into the stress response and adaptation mechanisms used by this non-Saccharomyces yeast.


Asunto(s)
Etanol , Kluyveromyces , Biotecnología , Etanol/metabolismo , Fermentación , Kluyveromyces/genética , Kluyveromyces/metabolismo
9.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592508

RESUMEN

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Asunto(s)
Kluyveromyces , Ácido Succínico , Kluyveromyces/genética , Perfilación de la Expresión Génica , Transcriptoma
10.
J Mol Biol ; 436(11): 168586, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663544

RESUMEN

Stabilizing proteins without otherwise hampering their function is a central task in protein engineering and design. PYR1 is a plant hormone receptor that has been engineered to bind diverse small molecule ligands. We sought a set of generalized mutations that would provide stability without affecting functionality for PYR1 variants with diverse ligand-binding capabilities. To do this we used a global multi-mutant analysis (GMMA) approach, which can identify substitutions that have stabilizing effects and do not lower function. GMMA has the added benefit of finding substitutions that are stabilizing in different sequence contexts and we hypothesized that applying GMMA to PYR1 with different functionalities would identify this set of generalized mutations. Indeed, conducting FACS and deep sequencing of libraries for PYR1 variants with two different functionalities and applying a GMMA analysis identified 5 substitutions that, when inserted into four PYR1 variants that each bind a unique ligand, provided an increase of 2-6 °C in thermal inactivation temperature and no decrease in functionality.


Asunto(s)
Análisis Mutacional de ADN , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Ingeniería de Proteínas , Estabilidad Proteica , Receptores de Superficie Celular , Sustitución de Aminoácidos/genética , Ligandos , Mutación , Unión Proteica , Ingeniería de Proteínas/métodos , Análisis Mutacional de ADN/métodos , Kluyveromyces , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Ácido Abscísico/metabolismo
11.
Rev Argent Microbiol ; 56(2): 134-139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38472028

RESUMEN

A bioassay containing Kluyveromyces marxianus in microtiter plates was used to determine the inhibitory action of 28 antibiotics (aminoglycosides, beta-lactams, macrolides, quinolones, tetracyclines and sulfonamides) against this yeast in whey. For this purpose, the dose-response curve for each antibiotic was constructed using 16 replicates of 12 different concentrations of the antibiotic. The plates were incubated at 40°C until the negative samples exhibited their indicator (5-7h). Subsequently, the absorbances of the yeast cells in each plate were measured by the turbidimetric method (λ=600nm) and the logistic regression model was applied. The concentrations causing 10% (IC10) and 50% (IC50) of growth inhibition of the yeast were calculated. The results allowed to conclude that whey contaminated with cephalosporins, quinolones and tetracyclines at levels close to the Maximum Residue Limits inhibits the growth of K. marxianus. Therefore, previous inactivation treatments should be implemented in order to re-use this contaminated whey by fermentation with K. marxianus.


Asunto(s)
Antibacterianos , Kluyveromyces , Suero Lácteo , Kluyveromyces/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga
12.
Bioresour Technol ; 399: 130627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522677

RESUMEN

Overexpression of a gene with unknown function in Kluyveromyces marxianus markedly improved tolerance to lignocellulosic biomass-derived inhibitors. This overexpression also enhanced tolerance to elevated temperatures, ethanol, and high concentrations of NaCl and glucose. Inhibitor degradation and transcriptome analyses related this K. marxianusMultiple Stress Resistance (KmMSR) gene to the robustness of yeast cells. Nuclear localization and DNA-binding domain analyses indicate that KmMsr is a putative transcriptional regulator. Overexpression of a mutant protein with deletion in the flexible region between amino acids 100 and 150 further enhanced tolerance to multiple inhibitors during fermentation, with ethanol production and productivity increasing by 36.31 % and 80.22 %, respectively. In simultaneous saccharification co-fermentation of corncob without detoxification, expression of KmMSR with the deleted flexible region improved ethanol production by 5-fold at 42 °C and 2-fold at 37 °C. Overexpression of the KmMSR mutant provides a strategy for constructing robust lignocellulosic biomass using strains.


Asunto(s)
Kluyveromyces , Zea mays , Zea mays/metabolismo , Fermentación , Kluyveromyces/genética , Kluyveromyces/metabolismo , Etanol/metabolismo
13.
World J Microbiol Biotechnol ; 40(4): 121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441729

RESUMEN

Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Kluyveromyces , Regulación de la Expresión Génica , Kluyveromyces/genética , Ésteres
14.
J Dairy Res ; 91(1): 108-115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38494756

RESUMEN

This research paper addresses the hypotheses that Kluyveromyces marxianus can be cultured with good alcohol production on different whey-derived matrices, and that the fermented product can be used in order to develop alcoholic beverages with acceptable sensory characteristics by mixtures with yeast-fermented fruit-based matrices. Growth and fermentative characteristics of Kluyveromyces marxianus LFIQK1 in different whey-derived matrices were explored by culturing (24 h, 30°C) on reconstituted whey, demineralized whey, heat-treated whey and milk permeate media. High lactose consumption, ethanol production and yield were observed. Reconstituted whey matrix was selected for mixing with orange or strawberry juices fermented using Saccharomyces cerevisiae to obtain alcoholic beverages (W-OR and W-ST, respectively). Consumer evaluation of beverages was performed using acceptability and Check-All-That-Apply (CATA) questions. Good acceptance was observed, significantly higher for W-ST than for W-OR. CATA questions gave information about organoleptic characteristics of beverages. Penalty analysis showed W-R and W-ST were positively associated with smooth/refreshing and fruity/natural, respectively. Liking was represented, accordingly with penalty analysis, by natural/refreshing. A novel alternative for utilization of whey and whey-related matrices by alcoholic beverages production with natural ingredients is presented.


Asunto(s)
Bebidas Alcohólicas , Fermentación , Jugos de Frutas y Vegetales , Kluyveromyces , Suero Lácteo , Kluyveromyces/metabolismo , Suero Lácteo/química , Bebidas Alcohólicas/análisis , Jugos de Frutas y Vegetales/análisis , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Gusto , Humanos
15.
Metab Eng ; 83: 102-109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554744

RESUMEN

Precise control of gene expression is critical for optimizing cellular metabolism and improving the production of valuable biochemicals. However, hard-wired approaches to pathway engineering, such as optimizing promoters, can take time and effort. Moreover, limited tools exist for controlling gene regulation in non-conventional hosts. Here, we develop a two-channel chemically-regulated gene expression system for the multi-stress tolerant yeast Kluyveromyces marxianus and use it to tune ethyl acetate production, a native metabolite produced at high titers in this yeast. To achieve this, we repurposed the plant hormone sensing modules (PYR1ABA/HAB1 and PYR1*MANDI/HAB1*) for high dynamic-range gene activation and repression controlled by either abscisic acid (ABA) or mandipropamid (mandi). To redirect metabolic flux towards ethyl acetate biosynthesis, we simultaneously repress pyruvate dehydrogenase (PDA1) and activate pyruvate decarboxylase (PDC1) to enhance ethyl acetate titers. Thus, we have developed new tools for chemically tuning gene expression in K. marxianus and S. cerevisiae that should be deployable across many non-conventional eukaryotic hosts.


Asunto(s)
Kluyveromyces , Kluyveromyces/genética , Kluyveromyces/metabolismo , Acetatos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Ingeniería Metabólica , Regulación Fúngica de la Expresión Génica , Ácido Abscísico/metabolismo
16.
Rev. esp. quimioter ; 37(1): 93-96, Feb. 2024. ilus, tab
Artículo en Inglés | IBECS | ID: ibc-230427

RESUMEN

Introduction. Non-albicans Candida species, such as Candida kefyr, are emerging pathogens. Chromogenic media are highly useful for the diagnosis of urinary tract infections (UTIs). The aim was to describe the behavior of this specie on a non-specific chromogenic medium. Material and methods. A retrospective study of cases of candiduria detected in the Microbiology laboratory of the Virgen de las Nieves Hospital in Granada (Spain) between 2016 and 2021 (N=2,130). Urine samples were quantitatively seeded on non-selective UriSelect™4 chromogenic agar. Results. Between 2016 and 2021, C. kefyr was the seventh most frequent Candida species responsible for candiduria in our setting (n=15). The macroscopic appearance of C. kefyr colonies, punctiform and bluish, allowed the direct identification of these microorganisms. Conclusions. This study provides the first description of the specific behavior of C. kefyr on UriSelect™4 agar, which differentiates it from other Candida species based on its enzymatic characteristics. (AU)


Introducción. Las especies de Candida no-albicans, como Candida kefyr, son patógenos emergentes. Los medios cromogénicos son muy útiles para el diagnóstico de infecciones del tracto urinario (ITU). El objetivo era describir el comportamiento de esta especie en un medio cromogénico no específico. Material y métodos. Estudio retrospectivo de casos de candiduria detectados en el laboratorio de Microbiología del Hospital Virgen de las Nieves de Granada (España) entre 2016 y 2021 (N=2.130). Las muestras de orina se sembraron cuantitativamente en agar cromogénico no selectivo Uri Select™4. Resultados. C. kefyr fue la séptima especie de Candida responsables de la candiduria en nuestro medio (n = 15). El aspecto macroscópico de las colonias de C. kefyr, puntiformes y azuladas, permitió su identificación presuntiva directamente. Conclusiones. Este estudio proporciona la primera descripción del comportamiento específico de C. kefyr en agar Uri Select™4, que lo diferencia de otras especies de Candida en función de sus características enzimáticas. (AU)


Asunto(s)
Humanos , Agar , Candida , Candidiasis/diagnóstico , Candidiasis/microbiología , Infecciones Urinarias/microbiología , Kluyveromyces , Estudios Retrospectivos
17.
Prep Biochem Biotechnol ; 54(6): 849-857, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38240251

RESUMEN

Mixture designs are employed to systematically change the composition of mixtures and investigate how those changes impact their properties. However, all mixture designs currently available are impractical for analyzing mixtures with relatively large numbers of ingredients. In response, this article presents a novel solution that builds on the construction of a new experimental design called "fractional mixture design". The design involves screening the ingredients in mixtures and enables the subsequent construction of a classical mixture design for optimizing mixtures. The design and its accompanying methodology were developed to analyze native strains found in successful spontaneous fermentations with the goal of constructing a mixed starter culture to transition from spontaneous to directed fermentation in the production of agave distillates. The results showed that a starter culture composed of the native strains Kluyveromyces marxianus, Clavispora lusitaniae, and Kluyveromyces marxianus var. drosophilarum, in respective proportions of 35%, 32%, and 33%, enabled the production of a fermented product with 2.1% alcohol and a broad profile of aromatic compounds. Hence, the results show, for the first time, a tool that addresses the technical challenge that allows studying a relatively large number of ingredients in mixtures and a two-stage sequential methodology to construct optimal mixtures.


Asunto(s)
Fermentación , Kluyveromyces , Agave/química , Proyectos de Investigación
18.
Microb Cell Fact ; 23(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172836

RESUMEN

BACKGROUND: The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS: We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION: The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.


Asunto(s)
Kluyveromyces , Regiones no Traducidas 5' , Secuencia de Bases , Kluyveromyces/genética , Kluyveromyces/metabolismo , ARN Mensajero/genética
19.
Rev Esp Quimioter ; 37(1): 93-96, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37925628

RESUMEN

OBJECTIVE: Non-albicans Candida species, such as Candida kefyr, are emerging pathogens. Chromogenic media are highly useful for the diagnosis of urinary tract infections (UTIs). The aim was to describe the behavior of this specie on a non-specific chromogenic medium. METHODS: A retrospective study of cases of candiduria detected in the Microbiology laboratory of the Virgen de las Nieves Hospital in Granada (Spain) between 2016 and 2021 (N=2,130). Urine samples were quantitatively seeded on non-selective UriSelect™4 chromogenic agar. RESULTS: Between 2016 and 2021, C. kefyr was the seventh most frequent Candida species responsible for candiduria in our setting (n=15). The macroscopic appearance of C. kefyr colonies, punctiform and bluish, allowed the direct identification of these microorganisms. CONCLUSIONS: This study provides the first description of the specific behavior of C. kefyr on UriSelect™4 agar, which differentiates it from other Candida species based on its enzymatic characteristics.


Asunto(s)
Candidiasis , Kluyveromyces , Infecciones Urinarias , Humanos , Agar , Medios de Cultivo , Estudios Retrospectivos , Candida , Candidiasis/diagnóstico , Candidiasis/microbiología , Infecciones Urinarias/microbiología
20.
mSystems ; 8(6): e0084123, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37882535

RESUMEN

IMPORTANCE: The food industry has always used many strains of microorganisms including fungi in their production processes. These strains have been widely characterized for their biotechnological value, but we still know very little about their interaction capacities with the host at a time when the intestinal microbiota is at the center of many pathologies. In this study, we characterized five yeast strains from food production which allowed us to identify two new strains with high probiotic potential and beneficial effects in a model of intestinal inflammation.


Asunto(s)
Kluyveromyces , Probióticos , Candida , Inflamación , Probióticos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...