Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Clin Exp Med ; 24(1): 98, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727918

RESUMEN

The role of mast cells in physiologic and pathological processes extends far beyond the allergy processes: they are involved in wound healing, chronic inflammation, and tumor growth. This short article emphasizes the role played by mast cells in age-related macular degeneration (AMD). Mast cells can induce angiogenesis and are present around Bruch's membrane during the early and late stages of choroidal neovascularization in AMD. Proteolytic enzymes released by mast cells lead to thinning of the choroid in AMD as well as degradation of vascular basement membranes and Bruch's membrane, which in turn could result in retinal pigment epithelial death and choriocapillaris degeneration in geographical atrophy and exudative AMD.


Asunto(s)
Coroides , Degeneración Macular , Mastocitos , Humanos , Coroides/patología , Degeneración Macular/patología , Degeneración Macular/metabolismo , Neovascularización Coroidal/patología , Neovascularización Coroidal/metabolismo , Lámina Basal de la Coroides/patología , Lámina Basal de la Coroides/metabolismo
2.
Transl Vis Sci Technol ; 13(4): 29, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38656313

RESUMEN

Purpose: To describe the ocular findings of murine pseudoxanthoma elasticum (PXE) models with ATP-binding cassette subfamily C member 6 (Abcc6) gene knockout. Methods: This experiment was conducted in four Abcc6-/- rats and compared with six wild-type Abcc6+/+ control rats. The animals underwent necropsy at 6 months of age. Histological examination of the eyes was performed. Results: Histological examination of eight eyes from four Abcc6-/- rats revealed multiple nodular foci of calcification in the uvea, sclera, and conjunctiva, focally in perivascular distribution, as well as linear and nodular calcification of Bruch's membrane. Calcific foci were not associated with inflammation in the knockout rats. There was no evidence of calcification in control eyes. Discussion: The Abcc6-/- rat model shows that PXE can affect multiple ocular tissues beyond the calcification in Bruch's membrane noted in human eyes. Nodular calcific foci probably correspond to comet lesions seen in patients with PXE. The presence of ectopic calcium without inflammation distinguishes it from inflammatory calcium deposition in atherosclerosis. Further studies are needed to determine why PXE does not cause inflammatory infiltration. Translational Relevance: The Abcc6-/- murine model may be suitable for studying ocular PXE pathophysiology and ectopic calcification and developing effective therapies.


Asunto(s)
Modelos Animales de Enfermedad , Seudoxantoma Elástico , Animales , Masculino , Ratas , Lámina Basal de la Coroides/patología , Lámina Basal de la Coroides/metabolismo , Calcinosis/patología , Calcinosis/genética , Técnicas de Inactivación de Genes , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/patología , Seudoxantoma Elástico/metabolismo
3.
Invest Ophthalmol Vis Sci ; 65(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38170540

RESUMEN

Purpose: Retinal pigment epithelium (RPE) cells show strong autofluorescence (AF). Here, we characterize the AF spectra of individual RPE cells in healthy eyes and those affected by age-related macular degeneration (AMD) and investigate associations between AF spectral response and the number of intracellular AF granules per cell. Methods: RPE-Bruch's membrane flatmounts of 22 human donor eyes, including seven AMD-affected eyes (early AMD, three; geographic atrophy, one; neovascular, three) and 15 unaffected macula (<51 years, eight; >80 years, seven), were imaged at the fovea, perifovea, and near-periphery using confocal AF microscopy (excitation 488 nm), and emission spectra were recorded (500-710 nm). RPE cells were manually segmented with computer assistance and stratified by disease status, and emission spectra were analyzed using cubic spline transforms. Intracellular granules were manually counted and classified. Linear mixed models were used to investigate associations between spectra and the number of intracellular granules. Results: Spectra of 5549 RPE cells were recorded. The spectra of RPE cells in healthy eyes showed similar emission curves that peaked at 580 nm for fovea and perifovea and at 575 and 580 nm for near-periphery. RPE spectral curves in AMD eyes differed significantly, being blue shifted by 10 nm toward shorter wavelengths. No significant association coefficients were found between wavelengths and granule counts. Conclusions: This large series of RPE cell emission spectra at precisely predefined retinal locations showed a hypsochromic spectral shift in AMD. Combining different microscopy techniques, our work has identified cellular RPE spectral AF and subcellular granule properties that will inform future in vivo investigations using single-cell imaging.


Asunto(s)
Atrofia Geográfica , Mácula Lútea , Degeneración Macular , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/diagnóstico , Degeneración Macular/metabolismo , Lámina Basal de la Coroides/metabolismo , Atrofia Geográfica/metabolismo , Mácula Lútea/metabolismo
4.
Adv Exp Med Biol ; 1415: 21-26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440009

RESUMEN

Matrix metalloproteinases (MMPs) are a tightly regulated family of proteolytic enzymes that break down extracellular matrix (ECM) and basement membrane components. Because it is associated with development, morphogenesis, tissue remodeling, and repair, ECM remodeling is an important mechanism. MMPs are thought to act as a double-edged sword, as they contribute to maintaining photoreceptors/retinal pigment epithelium (RPE)/Bruch's membrane (BM)/choroid complex homeostasis and also contribute to the onset and progression of age-related macular degeneration (AMD). Polymorphisms and/or altered expression in MMPs and their tissue inhibitors (TIMPs) are associated with age-related macular degeneration (AMD). Here, we review the evidence for MMPs' role in the onset and progression of AMD via addressing their regulation and TIMPs' significant regulatory functions.


Asunto(s)
Degeneración Macular , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Lámina Basal de la Coroides/metabolismo , Coroides , Epitelio Pigmentado de la Retina/metabolismo , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo
5.
ACS Biomater Sci Eng ; 9(8): 5051-5061, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37458693

RESUMEN

Bruch's membrane resides in the subretinal tissue and regulates the flow of nutrients and waste between the retinal pigment epithelial (RPE) and vascular layers of the eye. With age, Bruch's membrane becomes thicker, stiffer, and less permeable, which impedes its function as a boundary layer in the subretina. These changes contribute to pathologies such as age-related macular degeneration (AMD). To better understand how aging in Bruch's membrane affects surrounding tissues and to determine the relationship between aging and disease, an in vitro model of Bruch's membrane is needed. An accurate model of Bruch's membrane must be a proteinaceous, semipermeable, and nonporous biomaterial with similar mechanical properties to in vivo conditions. Additionally, this model must support RPE cell growth. While models of subretinal tissue exist, they typically differ from in vivo Bruch's membrane in one or more of these properties. This study evaluates the capability of membranes created from recombinant hagfish intermediate filament (rHIF) proteins to accurately replicate Bruch's membrane in an in vitro model of the subretinal tissue. The physical characteristics of these rHIF membranes were evaluated using mechanical testing, permeability assays, brightfield microscopy, and scanning electron microscopy. The capacity of the membranes to support RPE cell culture was determined using brightfield and fluorescent microscopy, as well as immunocytochemical staining. This study demonstrates that rHIF protein membranes are an appropriate biomaterial to accurately mimic both healthy and aged Bruch's membrane for in vitro modeling of the subretinal tissue.


Asunto(s)
Lámina Basal de la Coroides , Anguila Babosa , Animales , Lámina Basal de la Coroides/metabolismo , Lámina Basal de la Coroides/patología , Proteínas de Filamentos Intermediarios/metabolismo , Biomimética , Epitelio Pigmentado Ocular/metabolismo , Epitelio Pigmentado Ocular/patología , Materiales Biocompatibles
6.
Cells ; 12(9)2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37174708

RESUMEN

Abnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD. Serum levels of elastin-derived peptides and anti-elastin antibodies are significantly elevated in AMD patients along with the prevalence of polymorphisms of genes regulating elastin turnover. Despite these results indicating significant associations between abnormal elastin turnover and AMD, very little is known about its exact role in AMD pathogenesis. Here we report on results that suggest that elastase enzymes could play a direct role in the pathogenesis of AMD. We found significantly increased elastase activity in the retinas and RPE cells of AMD mouse models, and AMD patient-iPSC-derived RPE cells. A1AT, a protease inhibitor that inactivates elastase, reduced CNV lesion sizes in mouse models. A1AT completely inhibited elastase-induced VEGFA expression and secretion, and restored RPE monolayer integrity in ARPE-19 monolayers. A1AT also mitigated RPE thickening, an early AMD phenotype, in HTRA1 overexpressing mice, HTRA1 being a serine protease with elastase activity. Finally, in an exploratory study, examining archival records from large patient data sets, we identified an association between A1AT use, age and AMD risk. Our results suggest that repurposing A1AT may have therapeutic potential in modifying the progression to AMD.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Humanos , Ratones , Animales , Elastasa Pancreática , Degeneración Macular/metabolismo , Lámina Basal de la Coroides/metabolismo , Coroides/metabolismo , Retina/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas
7.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240326

RESUMEN

The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.


Asunto(s)
Células Endoteliales , Degeneración Macular , Humanos , Células Endoteliales/metabolismo , Coroides/metabolismo , Retina/metabolismo , Lámina Basal de la Coroides/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Autofagia
8.
Biomater Adv ; 147: 213343, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36801797

RESUMEN

The outer retina consists of the light-sensitive photoreceptors, the pigmented epithelium, and the choroid, which interact in a complex manner to sustain homeostasis. The organisation and function of these cellular layers are mediated by the extracellular matrix compartment named Bruch's membrane, situated between the retinal epithelium and the choroid. Like many tissues, the retina experiences age-related structural and metabolic changes, which are relevant for understanding major blinding diseases of the elderly, such as age-related macular degeneration. Compared with other tissues, the retina mainly comprises postmitotic cells, making it less able to maintain its mechanical homeostasis over the years functionally. Aspects of retinal ageing, like the structural and morphometric changes of the pigment epithelium and the heterogenous remodelling of the Bruch's membrane, imply changes in tissue mechanics and may affect functional integrity. In recent years, findings in the field of mechanobiology and bioengineering highlighted the importance of mechanical changes in tissues for understanding physiological and pathological processes. Here, we review the current knowledge of age-related changes in the outer retina from a mechanobiological perspective, aiming to generate food for thought for future mechanobiology studies in the outer retina.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado Ocular , Humanos , Anciano , Epitelio Pigmentado Ocular/metabolismo , Epitelio Pigmentado Ocular/patología , Retina/metabolismo , Retina/patología , Coroides/metabolismo , Coroides/patología , Lámina Basal de la Coroides/metabolismo , Lámina Basal de la Coroides/patología , Degeneración Macular/metabolismo , Degeneración Macular/patología
9.
Ageing Res Rev ; 81: 101735, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113764

RESUMEN

Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of ß-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch's membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.


Asunto(s)
Péptidos beta-Amiloides , Degeneración Macular , Envejecimiento/patología , Péptidos beta-Amiloides/metabolismo , Lámina Basal de la Coroides/metabolismo , Lámina Basal de la Coroides/patología , Humanos , Degeneración Macular/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
10.
Geroscience ; 44(6): 2623-2653, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35978068

RESUMEN

Age-related macular degeneration (AMD) is a progressive neurodegenerative disease affecting the central area (macula lutea) of the retina. Research on the pathogenic mechanism of AMD showed complex cellular contribution governed by such risk factors as aging, genetic predisposition, diet, and lifestyle. Recent studies suggested that microbiota is a transducer and a modifier of risk factors for neurodegenerative diseases, and mitochondria may be one of the intracellular targets of microbial signaling molecules. This review explores studies supporting a new concept on the contribution of microbiota-mitochondria disorders to AMD. We discuss metabolic, vascular, immune, and neuronal mechanism in AMD as well as key alterations of photoreceptor cells, retinal pigment epithelium (RPE), Bruch's membrane, choriocapillaris endothelial, immune, and neuronal cells. Special attention was paid to alterations of mitochondria contact sites (MCSs), an organelle network of mitochondria, endoplasmic reticulum, lipid droplets (LDs), and peroxisomes being documented based on our own electron microscopic findings from surgically removed human eyes. Morphometry of Bruch's membrane lipids and proteoglycans has also been performed in early AMD and aged controls. Microbial metabolites (short-chain fatty acids, polyphenols, and secondary bile acids) and microbial compounds (lipopolysaccharide, peptidoglycan, and bacterial DNA)-now called postbiotics-in addition to local effects on resident microbiota and mucous membrane, regulate systemic metabolic, vascular, immune, and neuronal mechanisms in normal conditions and in various common diseases. We also discuss their antioxidant, anti-inflammatory, and metabolic effects as well as experimental and clinical observations on regulating the main processes of photoreceptor renewal, mitophagy, and autophagy in early AMD. These findings support an emerging concept that microbiota-mitochondria disorders may be a crucial pathogenic mechanism of early AMD; and similarly, to other age-related neurodegenerative diseases, new treatment approaches should be targeted at these disorders.


Asunto(s)
Degeneración Macular , Enfermedades Neurodegenerativas , Humanos , Anciano , Degeneración Macular/metabolismo , Degeneración Macular/patología , Lámina Basal de la Coroides/metabolismo , Lámina Basal de la Coroides/patología , Lámina Basal de la Coroides/ultraestructura , Coroides/irrigación sanguínea , Mitocondrias/metabolismo
11.
Alzheimers Res Ther ; 14(1): 57, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449033

RESUMEN

BACKGROUND: To evaluate a wide range of optical coherence tomography (OCT) parameters for possible application as a screening tool for cognitively healthy individuals at risk of Alzheimer's disease (AD), assessing the potential relationship with established cerebrospinal fluid (CSF) core AD biomarkers and magnetic resonance imaging (MRI). METHODS: We studied 99 participants from the Valdecilla Study for Memory and Brain Aging. This is a prospective cohort for multimodal biomarker discovery and validation that includes participants older than 55 years without dementia. Participants received a comprehensive neuropsychological battery and underwent structural 3-T brain MRI, lumbar puncture for CSF biomarkers (phosphorylated-181-Tau (pTau), total Tau (tTau), beta-amyloid 1-42 (Aß 1-42), and beta-amyloid 1-40 (Aß 1-40)). All individuals underwent OCT to measure the retinal ganglion cell layer (GCL), the retinal nerve fiber layer (RFNL), the Bruch's membrane opening-minimum rim width (BMO-MRW), and choroidal thickness (CT). In the first stage, we performed a univariate analysis, using Student's t-test. In the second stage, we performed a multivariate analysis including only those OCT parameters that discriminated at a nominal level, between positive/negative biomarkers in stage 1. RESULTS: We found significant differences between the OCT measurements of pTau- and tTau-positive individuals compared with those who were negative for these markers, most notably that the GCL and the RNFL were thinner in the former. In stage 2, our dependent variables were the quantitative values of CSF markers and the hippocampal volume. The Aß 1-42/40 ratio did not show a significant correlation with OCT measurements while the associations between pTau and tTau with GCL were statistically significant, especially in the temporal region of the macula. Besides, the multivariate analysis showed a significant correlation between hippocampal volume with GCL and RNFL. However, after false discovery rate correction, only the associations with hippocampal volume remained significant. CONCLUSIONS: We found a significant correlation between Tau (pTau) and neurodegeneration biomarkers (tTau and hippocampus volume) with GCL degeneration and, to a lesser degree, with damage in RFNL. OCT analysis constitutes a non-invasive and unexpensive biomarker that allows the detection of neurodegeneration in cognitively asymptomatic individuals.


Asunto(s)
Enfermedad de Alzheimer , Células Ganglionares de la Retina , Enfermedad de Alzheimer/patología , Biomarcadores , Lámina Basal de la Coroides/metabolismo , Humanos , Estudios Prospectivos , Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica/métodos
12.
Methods Mol Biol ; 2441: 223-231, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35099740

RESUMEN

Murine laser-induced laser choroidal neovascularization is a widely used and robust model of wet (exudative) age-related macular degeneration (wAMD). wAMD is one of the leading causes of blindness in the Western world. In brief, a focused laser beam is used to penetrate Bruch's membrane, which separates the choriocapillaris (well-vascularized choroid layer) from the pigmented layers of the retina. Damage to the integrity of this membrane during diabetes leads to fluid accumulation and vascular invasion into the subretinal layers resulting in a progressive worsening of vision. Here we describe a 14-day model using untreated C57/Bl6 mice, but it is equally applicable to incorporation into transgenic studies and therapeutic agent development (such as eye drops), injection of therapeutic agents (including antibodies), and for longer time course studies. In vivo functional analysis or lesioned choroids can be studied with further immunohistochemical staining for further analyses.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Animales , Lámina Basal de la Coroides/metabolismo , Coroides/irrigación sanguínea , Neovascularización Coroidal/etiología , Rayos Láser , Degeneración Macular/metabolismo , Ratones
13.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166340, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35032596

RESUMEN

BACKGROUND: Visual outcome of patients with neovascular age-related macular degeneration has significantly improved during the last years following the introduction of anti-vascular endothelial growth factor (VEGF) therapy. However, about one third of patients show persistent exudation and decreasing visual acuity despite recurrent anti-VEGF treatment, which implies a role of other, still unknown proangiogenic mediators. METHODS: The present study applied transcriptional profiling of human and mouse (C57BL/6J wildtype) choroidal neovascularization (CNV) membranes each with reference to healthy control tissue to identify yet unrecognized mediators of CNV formation. Key factors were further investigated by immunohistochemistry as well as by intravitreal inhibition experiments and multiplex protein assays in the laser-induced CNV mouse model. FINDINGS: Transcriptional profiles of CNV membranes were characterized by enhanced activation of blood vessel development, cytoskeletal organization, and cytokine production, with angiogenesis and wound healing processes predominating in humans and activation of immune processes in mice. Besides several species-specific factors, 95 phylogenetically conserved CNV-associated genes were detected, among which fibroblast growth factor inducible-14 (FN14), a member of the tumor necrosis factor (TNF) receptor family, was identified as a key player of CNV formation. Blocking the pathway by intravitreal injection of a FN14 decoy receptor modulated the cytokine profile - most notably IL-6 - and led to a significant reduction of CNV size in vivo. INTERPRETATION: This study characterizes the transcriptome of human and mouse CNV membranes in an unprejudiced manner and identifies FN14 as a phylogenetically conserved mediator of CNV formation and a promising new therapeutic target for neovascular AMD. FUNDING: This study was funded by the Helmut Ecker Foundation and the Volker Homann Foundation.


Asunto(s)
Coroides/metabolismo , Neovascularización Coroidal/metabolismo , Degeneración Macular/patología , Receptor de TWEAK/metabolismo , Transcriptoma , Animales , Lámina Basal de la Coroides/metabolismo , Estudios de Casos y Controles , Coroides/patología , Neovascularización Coroidal/etiología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Rayos Láser/efectos adversos , Ligandos , Degeneración Macular/metabolismo , Ratones , Ratones Endogámicos C57BL , Filogenia , Receptor de TWEAK/antagonistas & inhibidores , Receptor de TWEAK/clasificación , Receptor de TWEAK/genética , Regulación hacia Arriba
14.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34830181

RESUMEN

The retinal pigment epithelium (RPE), situated upon Bruch's membrane, plays multiple roles in the ocular system by interacting with photoreceptors and. Therefore, dysfunction of the RPE causes diseases related to vision loss, such as age-related macular degeneration (AMD). Despite AMD being a global cause of blindness, the pathogenesis remains unclear. Understanding the pathogenesis of AMD is the first step for its prevention and treatment. This review summarizes the common pathways of RPE dysfunction and their effect in AMD. Potential treatment strategies for AMD based on targeting the RPE have also been discussed.


Asunto(s)
Lámina Basal de la Coroides/metabolismo , Degeneración Macular/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Apoptosis/fisiología , Barrera Hematorretinal/metabolismo , Lámina Basal de la Coroides/fisiopatología , Humanos , Degeneración Macular/fisiopatología , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Epitelio Pigmentado de la Retina/fisiopatología
15.
Exp Eye Res ; 213: 108854, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34808137

RESUMEN

The etiology of age-related macular degeneration (AMD) is diverse; however, recent evidence suggests that the lipid metabolism-cholesterol pathway might be associated with the pathophysiology of AMD. The ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1, are essential for the formation of high-density lipoprotein (HDL) and the regulation of macrophage cholesterol efflux. The failure of retinal or retinal pigment epithelium (RPE) cholesterol efflux to remove excess intracellular lipids causes morphological and functional damage to the retina. In this study, we investigated whether treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMP-activated protein kinase (AMPK) activator, improves RPE cholesterol efflux and Bruch's membrane (BM) lipid deposits. The protein and mRNA levels of ABCA1 and ABCG1 in ARPE-19 cells and retinal and RPE/choroid tissue from apolipoprotein E-deficient (ApoE-/-) mice were evaluated after 24 weeks of AICAR treatment. The cholesterol efflux capacity of ARPE-19 cells and the cholesterol-accepting capacity of apoB-depleted serum from mice were measured. The thickness of the BM and the degree of lipid deposition were evaluated using electron microscopy. AICAR treatment increased the phosphorylation of AMPK and the protein and mRNA expression of ABCA1 and ABCG1 in vitro. It promoted cholesterol efflux from ARPE-19 cells and upregulated the protein and mRNA levels of ABCA1 and ABCG1 in the retina and RPE in vivo. ApoB-depleted serum from the AICAR-treated group showed enhanced cholesterol-accepting capacity. Long-term treatment with AICAR reduced BM thickening and lipid deposition in ApoE-/- mice. In conclusion, AICAR treatment increased the expression of lipid transporters in the retina and RPE in vivo, facilitated intracellular cholesterol efflux from the RPE in vitro, and improved the functionality of HDL to accept cholesterol effluxed from the cell, possibly via AMPK activation. Collectively, these effects might contribute to the improvement of early age-related pathologic changes in the BM. Pharmacological improvement of RPE cholesterol efflux via AMPK activation may be a potential treatment strategy for AMD.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Lámina Basal de la Coroides/efectos de los fármacos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/fisiología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Ribonucleótidos/farmacología , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Aminoimidazol Carboxamida/farmacología , Animales , Apolipoproteínas E/deficiencia , Western Blotting , Lámina Basal de la Coroides/metabolismo , Línea Celular , Colesterol/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Reacción en Cadena en Tiempo Real de la Polimerasa , Epitelio Pigmentado de la Retina/metabolismo , Tomografía de Coherencia Óptica , Regulación hacia Arriba
16.
Cells ; 10(3)2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804633

RESUMEN

The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-ß, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.


Asunto(s)
Coroides/metabolismo , Córnea/metabolismo , Matriz Extracelular/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Lámina Basal de la Coroides/metabolismo , Humanos , Degeneración Macular/metabolismo , Neovascularización Patológica/metabolismo
17.
ACS Chem Biol ; 15(10): 2655-2661, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32975399

RESUMEN

Although there is ample evidence that the advanced glycation end-product (AGE) glucosepane contributes to age-related morbidities and diabetic complications, the impact of glucosepane modifications on proteins has not been extensively explored due to the lack of sufficient analytical tools. Here, we report the development of the first polyclonal anti-glucosepane antibodies using a synthetic immunogen that contains the core bicyclic ring structure of glucosepane. We investigate the recognition properties of these antibodies through ELISAs involving an array of synthetic AGE derivatives and determine them to be both high-affinity and selective in binding glucosepane. We then employ these antibodies to image glucosepane in aging mouse retinae via immunohistochemistry. Our studies demonstrate for the first time accumulation of glucosepane within the retinal pigment epithelium, Bruch's membrane, and choroid: all regions of the eye impacted by age-related macular degeneration. Co-localization studies further suggest that glucosepane colocalizes with lipofuscin, which has previously been associated with lysosomal dysfunction and has been implicated in the development of age-related macular degeneration, among other diseases. We believe that the anti-glucosepane antibodies described in this study will prove highly useful for examining the role of glycation in human health and disease.


Asunto(s)
Anticuerpos/inmunología , Productos Finales de Glicación Avanzada/análisis , Retina/metabolismo , Envejecimiento/metabolismo , Animales , Lámina Basal de la Coroides/inmunología , Lámina Basal de la Coroides/metabolismo , Femenino , Productos Finales de Glicación Avanzada/síntesis química , Productos Finales de Glicación Avanzada/inmunología , Inmunohistoquímica , Ratones Endogámicos C57BL , Epitelio Pigmentado Ocular/inmunología , Epitelio Pigmentado Ocular/metabolismo , Conejos , Retina/inmunología
18.
J Biol Chem ; 295(39): 13601-13616, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32737203

RESUMEN

Strong evidence suggests that dysregulated lipid metabolism involving dysfunction of the retinal pigmented epithelium (RPE) underlies the pathogenesis of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly. A hallmark of AMD is the overproduction of lipid- and protein-rich extracellular deposits that accumulate in the extracellular matrix (Bruch's membrane (BrM)) adjacent to the RPE. We analyzed apolipoprotein A-1 (ApoA-1)-containing lipoproteins isolated from BrM of elderly human donor eyes and found a unique proteome, distinct from high-density lipoprotein (HDL) isolated from donor plasma of the same individuals. The most striking difference is higher concentrations of ApoB and ApoE, which bind to glycosaminoglycans. We hypothesize that this interaction promotes lipoprotein deposition onto BrM glycosaminoglycans, initiating downstream effects that contribute to RPE dysfunction/death. We tested this hypothesis using two potential therapeutic strategies to alter the lipoprotein/protein profile of these extracellular deposits. First, we used short heparan sulfate oligosaccharides to remove lipoproteins already deposited in both the extracellular matrix of RPE cells and aged donor BrM tissue. Second, an ApoA-1 mimetic, 5A peptide, was demonstrated to modulate the composition and concentration of apolipoproteins secreted from primary porcine RPE cells. Significantly, in a mouse model of AMD, this 5A peptide altered the proteomic profile of circulating HDL and ameliorated some of the potentially harmful changes to the protein composition resulting from the high-fat, high-cholesterol diet in this model. Together, these results suggest that targeting HDL interactions with BrM represents a new strategy to slow AMD progression in humans.


Asunto(s)
Lipoproteínas HDL/metabolismo , Degeneración Macular/metabolismo , Animales , Apolipoproteína A-I/análisis , Apolipoproteína A-I/metabolismo , Lámina Basal de la Coroides/metabolismo , Células Cultivadas , Humanos , Lipoproteínas HDL/sangre , Lipoproteínas HDL/aislamiento & purificación , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Porcinos
19.
Proc Natl Acad Sci U S A ; 117(23): 13094-13104, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434914

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. While the histopathology of the different disease stages is well characterized, the cause underlying the progression, from the early drusen stage to the advanced macular degeneration stage that leads to blindness, remains unknown. Here, we show that photoreceptors (PRs) of diseased individuals display increased expression of two key glycolytic genes, suggestive of a glucose shortage during disease. Mimicking aspects of this metabolic profile in PRs of wild-type mice by activation of the mammalian target of rapamycin complex 1 (mTORC1) caused early drusen-like pathologies, as well as advanced AMD-like pathologies. Mice with activated mTORC1 in PRs also displayed other early disease features, such as a delay in photoreceptor outer segment (POS) clearance and accumulation of lipofuscin in the retinal-pigmented epithelium (RPE) and of lipoproteins at the Bruch's membrane (BrM), as well as changes in complement accumulation. Interestingly, formation of drusen-like deposits was dependent on activation of mTORC1 in cones. Both major types of advanced AMD pathologies, including geographic atrophy (GA) and neovascular pathologies, were also seen. Finally, activated mTORC1 in PRs resulted in a threefold reduction in di-docosahexaenoic acid (DHA)-containing phospholipid species. Feeding mice a DHA-enriched diet alleviated most pathologies. The data recapitulate many aspects of the human disease, suggesting that metabolic adaptations in photoreceptors could contribute to disease progression in AMD. Identifying the changes downstream of mTORC1 that lead to advanced pathologies in mouse might present new opportunities to study the role of PRs in AMD pathogenesis.


Asunto(s)
Envejecimiento/patología , Mácula Lútea/patología , Degeneración Macular/patología , Células Fotorreceptoras Retinianas Conos/patología , Anciano , Anciano de 80 o más Años , Animales , Lámina Basal de la Coroides/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Lipofuscina/metabolismo , Lipoproteínas/metabolismo , Mácula Lútea/citología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Células Fotorreceptoras Retinianas Conos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
20.
Prog Retin Eye Res ; 79: 100859, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32278708

RESUMEN

Secretory proteostasis integrates protein synthesis, processing, folding and trafficking pathways that are essential for efficient cellular secretion. For the retinal pigment epithelium (RPE), secretory proteostasis is of vital importance for the maintenance of the structural and functional integrity of apical (photoreceptors) and basal (Bruch's membrane/choroidal blood supply) sides of the environment it resides in. This integrity is achieved through functions governed by RPE secreted proteins, which include extracellular matrix modelling/remodelling, angiogenesis and immune response modulation. Impaired RPE secretory proteostasis affects not only the extracellular environment, but leads to intracellular protein aggregation and ER-stress with subsequent cell death. Ample recent evidence implicates dysregulated proteostasis as a key factor in the development of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, and research aiming to characterise the roles of various proteins implicated in AMD-associated dysregulated proteostasis unveiled unexpected facets of the mechanisms involved in degenerative pathogenesis. This review analyses cellular processes unveiled by the study of the top 200 transcripts most abundantly expressed by the RPE/choroid in the light of the specialised secretory nature of the RPE. Functional roles of these proteins and the mechanisms of their impaired secretion, due to age and genetic-related causes, are analysed in relation to AMD development. Understanding the importance of RPE secretory proteostasis in relation to maintaining retinal health and how it becomes impaired in disease is of paramount importance for the development and assessment of future therapeutic advancements involving gene and cell therapies.


Asunto(s)
Degeneración Macular/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Transporte Biológico , Lámina Basal de la Coroides/metabolismo , Lámina Basal de la Coroides/patología , Humanos , Degeneración Macular/genética , Degeneración Macular/patología , Proteostasis , Retina/patología , Epitelio Pigmentado de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...