Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Elife ; 122024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727576

RESUMEN

Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called 'polonaise movements', appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.


Asunto(s)
Gastrulación , Morfogénesis , Animales , Movimiento Celular , Línea Primitiva/embriología , Polaridad Celular , Gástrula/embriología , Embrión de Pollo
2.
Cell Syst ; 15(5): 445-461.e4, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692274

RESUMEN

BMP signaling is essential for mammalian gastrulation, as it initiates a cascade of signals that control self-organized patterning. As development is highly dynamic, it is crucial to understand how time-dependent combinatorial signaling affects cellular differentiation. Here, we show that BMP signaling duration is a crucial control parameter that determines cell fates upon the exit from pluripotency through its interplay with the induced secondary signal WNT. BMP signaling directly converts cells from pluripotent to extraembryonic fates while simultaneously upregulating Wnt signaling, which promotes primitive streak and mesodermal specification. Using live-cell imaging of signaling and cell fate reporters together with a simple mathematical model, we show that this circuit produces a temporal morphogen effect where, once BMP signal duration is above a threshold for differentiation, intermediate and long pulses of BMP signaling produce specification of mesoderm and extraembryonic fates, respectively. Our results provide a systems-level picture of how these signaling pathways control the landscape of early human development.


Asunto(s)
Proteínas Morfogenéticas Óseas , Diferenciación Celular , Línea Primitiva , Transducción de Señal , Línea Primitiva/metabolismo , Línea Primitiva/embriología , Proteínas Morfogenéticas Óseas/metabolismo , Humanos , Transducción de Señal/fisiología , Animales , Mesodermo/metabolismo , Mesodermo/embriología , Vía de Señalización Wnt/fisiología , Proteínas Wnt/metabolismo , Regulación del Desarrollo de la Expresión Génica , Gastrulación/fisiología
3.
Dev Cell ; 59(10): 1252-1268.e13, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38579720

RESUMEN

The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.


Asunto(s)
Diferenciación Celular , Gastrulación , Estratos Germinativos , Animales , Ratones , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/metabolismo , Proteínas Fetales/metabolismo , Proteínas Fetales/genética , Vía de Señalización Wnt , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo
4.
Nat Commun ; 15(1): 1463, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368410

RESUMEN

Many amniote vertebrate species including humans can form identical twins from a single embryo, but this only occurs rarely. It has been suggested that the primitive-streak-forming embryonic region emits signals that inhibit streak formation elsewhere but the signals involved, how they are transmitted and how they act has not been elucidated. Here we show that short tracks of calcium firing activity propagate through extraembryonic tissue via gap junctions and prevent ectopic primitive streak formation in chick embryos. Cross-regulation of calcium activity and an inhibitor of primitive streak formation (Bone Morphogenetic Protein, BMP) via NF-κB and NFAT establishes a long-range BMP gradient spanning the embryo. This mechanism explains how embryos of widely different sizes can maintain positional information that determines embryo polarity. We provide evidence for similar mechanisms in two different human embryo models and in Drosophila, suggesting an ancient evolutionary origin.


Asunto(s)
Proteínas Morfogenéticas Óseas , Calcio , Animales , Embrión de Pollo , Humanos , Calcio/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Gastrulación/fisiología , Línea Primitiva , Reproducción
5.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982461

RESUMEN

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Asunto(s)
Gastrulación , Organogénesis , Ratones , Animales , Diferenciación Celular , Organogénesis/genética , Línea Primitiva , Endotelio , Embrión de Mamíferos , Mamíferos
6.
Stem Cells ; 41(12): 1142-1156, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37819786

RESUMEN

In early embryogenesis, the primitive streak (PrS) generates the mesendoderm and is essential for organogenesis. However, because the PrS is a minute and transient tissue, elucidating the mechanism of its formation has been challenging. We performed comprehensive screening of 2 knockout mouse databases based on the fact that failure of PrS formation is lethal. We identified 812 genes involved in various cellular functions and responses that might be linked to PrS formation, with the category of greatest abundance being "Metabolism." In this study, we focused on genes of sphingolipid metabolism and investigated their roles in PrS formation using an in vitro mouse ES cell differentiation system. We show here that elevated intracellular ceramide negatively regulates gene expression essential for PrS formation and instead induces neurogenesis. In addition, sphingosine-1-phosphate (a ceramide derivative) positively regulates neural maturation. Our results indicate that ceramide regulates both PrS formation and the induction of neural differentiation.


Asunto(s)
Ceramidas , Línea Primitiva , Ratones , Animales , Ceramidas/metabolismo , Línea Primitiva/metabolismo , Diferenciación Celular/genética , Neurogénesis/genética , Fenotipo
7.
Nature ; 622(7983): 574-583, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369348

RESUMEN

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.


Asunto(s)
Linaje de la Célula , Implantación del Embrión , Desarrollo Embrionario , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Diferenciación Celular , Estratos Germinativos/citología , Estratos Germinativos/enzimología , Células Madre Embrionarias Humanas/citología , Placenta/citología , Células Madre Pluripotentes/citología , Línea Primitiva/citología , Línea Primitiva/embriología , Saco Vitelino/citología , Saco Vitelino/embriología
8.
Cell Stem Cell ; 30(6): 867-884.e11, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209681

RESUMEN

Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation. Although cells in the gastruloid-core revert to pluripotency, peripheral cells become primitive streak-like. These two populations subsequently break radial symmetry and initiate axial elongation. By performing a compound screen, perturbing thousands of gastruloids, we derive a phenotypic landscape and infer networks of genetic interactions. Finally, using a dual Wnt modulation, we improve the formation of anterior structures in the existing gastruloid model. This work provides a resource to understand how gastruloids develop and generate complex patterns in vitro.


Asunto(s)
Embrión de Mamíferos , Células Madre Pluripotentes , Ratones , Animales , Embrión de Mamíferos/metabolismo , Línea Primitiva/metabolismo , Desarrollo Embrionario
9.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37067451

RESUMEN

During gastrulation, early embryos specify and reorganise the topology of their germ layers. Surprisingly, this fundamental and early process does not appear to be rigidly constrained by evolutionary pressures; instead, the morphology of gastrulation is highly variable throughout the animal kingdom. Recent experimental results demonstrate that it is possible to generate different alternative gastrulation modes in single organisms, such as in early cnidarian, arthropod and vertebrate embryos. Here, we review the mechanisms that underlie the plasticity of vertebrate gastrulation both when experimentally manipulated and during evolution. Using the insights obtained from these experiments we discuss the effects of the increase in yolk volume on the morphology of gastrulation and provide new insights into two crucial innovations during amniote gastrulation: the transition from a ring-shaped mesoderm domain in anamniotes to a crescent-shaped domain in amniotes, and the evolution of the reptilian blastoporal plate/canal into the avian primitive streak.


Asunto(s)
Gástrula , Gastrulación , Animales , Mesodermo , Estratos Germinativos , Línea Primitiva
10.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
11.
Stem Cell Reports ; 17(12): 2643-2660, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36368331

RESUMEN

In the mammalian embryo, a formative pluripotent phase is proposed to exist at the early post-implantation period, during the transition from the pre-implantation naive-to the post-implantation primed-epiblast. By recapitulating a laminin component of the extracellular matrix niche during embryonic formative transition, and defined culture conditions, we generated cultures highly enriched for self-renewing human pluripotent stem cells (hPSCs), exhibiting properties of early post-implantation epiblast cells. These hPSCs display post-implantation-epiblast gene expression profiles. FGF and TGF-ß signaling maintain their self-renewal for multiple passages. They have inactive canonical Wnt signaling, do not express primitive streak markers, and are competent to initiate differentiation toward germline and somatic fates. hPSCs exhibiting early post-implantation epiblast properties may shed light on human embryonic PSCs development and may serve for initiating somatic and germ cell specification.


Asunto(s)
Estratos Germinativos , Células Madre Pluripotentes , Animales , Humanos , Células Madre Pluripotentes/metabolismo , Embrión de Mamíferos , Línea Primitiva , Diferenciación Celular , Vía de Señalización Wnt , Mamíferos
12.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210251, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252214

RESUMEN

During the early development of Placentalia, a distinctive projection emerges at the posterior embryonic-extraembryonic interface of the conceptus; its fingerlike shape presages maturation into the placental umbilical cord, whose major role is to shuttle fetal blood to and from the chorion for exchange with the mother during pregnancy. Until recently, the biology of the cord's vital vascular anlage, called the body stalk/allantois in humans and simply the allantois in rodents, has been largely unknown. Here, new insights into the development of the mouse allantois are featured, from its origin and mechanism of arterial patterning through its union with the chorion. Key to generating the allantois and its critical functions are the primitive streak and visceral endoderm, which together are sufficient to create the entire fetal-placental connection. Their newly discovered roles at the embryonic-extraembryonic interface challenge conventional wisdom, including the physical limits of the primitive streak, its function as sole purveyor of mesoderm in the mouse, potency of visceral endoderm, and the putative role of the allantois in the germ line. With this working model of allantois development, understanding a plethora of hitherto poorly understood orphan diseases in humans is now within reach. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Alantoides , Placenta , Alantoides/irrigación sanguínea , Animales , Embrión de Mamíferos , Femenino , Humanos , Mesodermo , Ratones , Embarazo , Línea Primitiva
13.
Dev Genes Evol ; 232(5-6): 115-123, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36149507

RESUMEN

During primitive streak formation in the chick embryo, cells undergo mesendoderm specification and convergent extension at the same time and in the same cells. Previous work has implicated cVG1 (GDF3) as a key factor for induction of primitive streak identity and positioning the primitive streak, whereas FGF signalling was implicated in regulating cell intercalation via regulation of components of the WNT-planar cell polarity (PCP) pathway. FGF has also been reported to be able to induce a primitive streak (but lacking the most axial derivatives such as notochord/prechordal mesendoderm). These signals emanate from different cell populations in the embryo, so how do they interact to ensure that the same cells undergo both cell intercalation and acquire primitive streak identity? Here we begin to address this question by examining in more detail the ability of the two classes of signals in regulating the two developmental events. Using misexpression of inducers and/or exposure to inhibitors and in situ hybridisation, we study how these two signals regulate expression of Brachyury (TBXT) and PRICKLE1 as markers for the primitive streak and the PCP, respectively. We find that both signals can induce both properties, but while FGF seems to be required for induction of the streak by cVG1, it is not necessary for induction of PRICKLE1. The results are consistent with cVG1 being a common regulator for both primitive streak identity and the initiation of convergent extension that leads to streak elongation.


Asunto(s)
Gastrulación , Línea Primitiva , Animales , Embrión de Pollo , Transducción de Señal , Polaridad Celular , Gástrula
14.
Stem Cell Reports ; 17(10): 2239-2255, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179694

RESUMEN

The mechanism governing the transition of human embryonic stem cells (hESCs) toward differentiated cells is only partially understood. To explore this transition, the activity and expression of the ubiquitous phosphatidylinositol 3-kinase (PI3Kα and PI3Kß) were modulated in primed hESCs. The study reports a pathway that dismantles the restraint imposed by the EZH2 polycomb repressor on an essential stemness gene, NODAL, and on transcription factors required to trigger primitive streak formation. The primitive streak is the site where gastrulation begins to give rise to the three embryonic cell layers from which all human tissues derive. The pathway involves a PI3Kß non-catalytic action that controls nuclear/active RAC1 levels, activation of JNK (Jun N-terminal kinase) and nuclear ß-catenin accumulation. ß-Catenin deposition at promoters triggers release of the EZH2 repressor, permitting stemness maintenance (through control of NODAL) and correct differentiation by allowing primitive streak master gene expression. PI3Kß epigenetic control of EZH2/ß-catenin might be modulated to direct stem cell differentiation.


Asunto(s)
Células Madre Embrionarias , Proteína Potenciadora del Homólogo Zeste 2 , Fosfatidilinositol 3-Quinasas , Línea Primitiva , beta Catenina , Diferenciación Celular/genética , Células Madre Embrionarias/citología , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Expresión Génica , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36102628

RESUMEN

The cellular microenvironment, together with intrinsic regulators, shapes stem cell identity and differentiation capacity. Mammalian early embryos are exposed to hypoxia in vivo and appear to benefit from hypoxic culture in vitro. Yet, how hypoxia influences stem cell transcriptional networks and lineage choices remain poorly understood. Here, we investigated the molecular effects of acute and prolonged hypoxia on embryonic and extra-embryonic stem cells as well as the functional impact on differentiation potential. We find a temporal and cell type-specific transcriptional response including an early primitive streak signature in hypoxic embryonic stem cells mediated by HIF1α. Using a 3D gastruloid differentiation model, we show that hypoxia-induced T expression enables symmetry breaking and axial elongation in the absence of exogenous WNT activation. When combined with exogenous WNT activation, hypoxia enhances lineage representation in gastruloids, as demonstrated by highly enriched signatures of gut endoderm, notochord, neuromesodermal progenitors and somites. Our findings directly link the microenvironment to stem cell function and provide a rationale supportive of applying physiological conditions in models of embryo development.


Asunto(s)
Endodermo , Línea Primitiva , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias , Endodermo/metabolismo , Hipoxia/metabolismo , Mamíferos
16.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35723262

RESUMEN

Classical studies have established that the marginal zone, a ring of extra-embryonic epiblast immediately surrounding the embryonic epiblast (area pellucida) of the chick embryo, is important in setting embryonic polarity by positioning the primitive streak, the site of gastrulation. The more external extra-embryonic region (area opaca) was thought to have only nutritive and support functions. Using experimental embryology approaches, this study reveals three separable functions for this outer region. First, juxtaposition of the area opaca directly onto the area pellucida induces a new marginal zone from the latter; this induced domain is entirely posterior in character. Second, ablation and grafting experiments using an isolated anterior half of the blastoderm and pieces of area opaca suggest that the area opaca can influence the polarity of the adjacent marginal zone. Finally, we show that the loss of the ability of such isolated anterior half-embryos to regulate (re-establish polarity spontaneously) at the early primitive streak stage can be rescued by replacing the area opaca by one from a younger stage. These results uncover new roles of chick extra-embryonic tissues in early development.


Asunto(s)
Blastodermo , Línea Primitiva , Animales , Embrión de Pollo , Gástrula/fisiología
17.
Metab Eng ; 73: 70-81, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35724832

RESUMEN

CRISPR-based systems have fundamentally transformed our ability to study and manipulate stem cells. We explored the possibility of using catalytically dead Cas9 (dCas9) from S. pyogenes as a platform for targeted epigenetic editing in stem cells to enhance the expression of the eomesodermin gene (EOMES) during differentiation. We observed, however, that the dCas9 protein itself exerts a potential non-specific effect in hiPSCs, affecting the cell's phenotype and gene expression patterns during subsequent directed differentiation. We show that this effect is specific to the condition when cells are cultured in medium that does not actively maintain the pluripotency network, and that the sgRNA-free apo-dCas9 protein itself influences endogenous gene expression. Transcriptomics analysis revealed that a significant number of genes involved in developmental processes and various other genes with non-overlapping biological functions are affected by dCas9 overexpression. This suggests a potential adverse phenotypic effect of dCas9 itself in hiPSCs, which could have implications for when and how CRISPR/Cas9-based tools can be used reliably and safely in pluripotent stem cells.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes Inducidas , Expresión Génica , Humanos , Línea Primitiva
18.
Stem Cell Reports ; 17(7): 1757-1771, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35714597

RESUMEN

Embryo studies have established that the patterning of the mouse gastrula depends on a regulatory network in which the WNT, BMP, and NODAL signaling pathways cooperate, but aspects of their respective contributions remain unclear. Studying their impact on the spatial organization and developmental trajectories of micropatterned epiblast-like cell (EpiLC) colonies, we show that NODAL is required prior to BMP action to establish the mesoderm and endoderm lineages. The presence of BMP then forces NODAL and WNT to support the formation of posterior primitive streak (PS) derivatives, while its absence allows them to promote that of anterior PS derivatives. Also, a Nodal mutation elicits more severe patterning defects in vitro than in the embryo, suggesting that ligands of extra-embryonic origin can rescue them. These results support the implication of a combinatorial process in PS patterning and illustrate how the study of micropatterned EpiLC colonies can complement that of embryos.


Asunto(s)
Tipificación del Cuerpo , Línea Primitiva , Animales , Tipificación del Cuerpo/genética , Endodermo , Gástrula/metabolismo , Estratos Germinativos , Mesodermo , Ratones , Factor de Crecimiento Transformador beta/metabolismo
19.
Nat Commun ; 13(1): 941, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177595

RESUMEN

During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Epitelio/crecimiento & desarrollo , Morfogénesis , Proteínas Supresoras de Tumor/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Células CACO-2 , Polaridad Celular , Perros , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Epitelio/metabolismo , Femenino , Gastrulación , Estratos Germinativos , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Transgénicos , Mutación , Línea Primitiva , Receptores de Neuropéptido Y/metabolismo , Estrés Mecánico , Uniones Estrechas/metabolismo , Proteínas Supresoras de Tumor/genética
20.
Stem Cell Reports ; 17(2): 231-244, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063128

RESUMEN

The formation of the primitive streak (PS) and the subsequent induction of neuroectoderm are hallmarks of gastrulation. Combining an in vitro reconstitution of this process based on mouse embryonic stem cells (mESCs) with a collection of knockouts in reporter mESC lines, we identified retinoic acid (RA) as a critical mediator of early neural induction triggered by TGFß or Wnt signaling inhibition. Single-cell RNA sequencing analysis captured the temporal unfolding of cell type diversification, up to the emergence of somite and neural fates. In the absence of the RA-synthesizing enzyme Aldh1a2, a sensitive RA reporter revealed a hitherto unidentified residual RA signaling that specified neural fate. Genetic evidence showed that the RA-degrading enzyme Cyp26a1 protected PS-like cells from neural induction, even in the absence of TGFß and Wnt antagonists. Overall, we characterized a multi-layered control of RA levels that regulates early neural differentiation in an in vitro PS-like system.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas/metabolismo , Tretinoina/farmacología , Familia de Aldehído Deshidrogenasa 1/deficiencia , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Benzamidas/farmacología , Dioxoles/farmacología , Ectodermo/citología , Ectodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Neuronas/citología , Línea Primitiva/citología , Línea Primitiva/metabolismo , Retinal-Deshidrogenasa/deficiencia , Retinal-Deshidrogenasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...