Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 771
Filtrar
1.
J Agric Food Chem ; 72(15): 8285-8303, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588092

RESUMEN

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, ß-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.


Asunto(s)
Caseínas , Leche , Animales , Leche/metabolismo , Caseínas/metabolismo , Lactalbúmina/metabolismo , Lactoglobulinas/metabolismo , Dieta
2.
Compr Rev Food Sci Food Saf ; 23(1): e13288, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38284584

RESUMEN

Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.


Asunto(s)
Neoplasias , Peptidomiméticos , Eliminación de Residuos , Humanos , Proteína de Suero de Leche/metabolismo , Lactalbúmina/metabolismo , Proteínas de la Leche/química , Proteínas de la Leche/metabolismo , Proteínas de la Leche/farmacología , Lactoferrina/metabolismo , Peptonas/metabolismo , Hidrólisis , Emulsiones , Proteómica , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Aminoácidos
3.
Nutrients ; 15(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513560

RESUMEN

The primary control of dysmetabolic patients is extremely challenging worldwide, with inadequate dietary habits and sporadic physical activity among the key risk factors for metabolic syndrome onset. Nowadays, there is no exclusive treatment for this condition, and considering that preventive measures usually fail, new therapeutic approaches need to be proposed and investigated. This present pilot study compared the effects of diet alone and in association with a combination of myo-inositol and d-chiro-inositol in their 40:1 ratio, α-lactalbumin, and Gymnema sylvestre on different metabolic parameters in obese dysmetabolic patients. To this purpose, 37 patients with BMI between 30 and 40 and fasting blood glucose between 100 and 125 mg/dL were divided into two groups: (i) the control group followed a hypocaloric Mediterranean diet, (ii) while the study group was also supplemented with a daily dosage of two sachets, each one containing 1950 mg myo-inositol, 50 mg d-chiro-inositol, 50 mg α-lactalbumin, and 250 mg Gymnema Sylvestre. After a 6-month treatment, all parameters improved in both groups. Nevertheless, the treated group experienced a greater improvement, especially concerning the variation from the baseline of HOMA index, triglycerides, BMI, body weight, and waist circumference. These findings support the supplementation with myo-inositol and d-chiro-inositol in the 40:1 ratio, α-lactalbumin, and Gymnema sylvestre as a therapeutical strategy to potentiate the beneficial effects induced via dietary programs in dysmetabolic patients.


Asunto(s)
Gymnema sylvestre , Síndrome del Ovario Poliquístico , Humanos , Femenino , Lactalbúmina/metabolismo , Inositol/uso terapéutico , Proyectos Piloto , Dieta , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Peso Corporal , Metaboloma
4.
Mol Nutr Food Res ; 67(16): e2200499, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354055

RESUMEN

SCOPE: Dietary intervention has emerged as a promising strategy for the management of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to investigate the ameliorative effects of the α-lactalbumin peptide Asp-Gln-Trp (DQW) against NAFLD and the underlying mechanism. METHODS AND RESULTS: The models of lipid metabolism disorders are established both in HepG2 cells and in C57BL/6J mice. The results demonstrate that DQW activates peroxisome proliferator-activated receptor α (PPARα) and subsequently ameliorates lipid deposition and oxidative stress in vitro. Interestingly, GW6471 markedly attenuates the modulatory effects of DQW on the PPARα pathway in HepG2 cells. Moreover, results of in vivo experiments indicate that DQW alleviates body weight gain, dyslipidemia, hepatic steatosis, and oxidative stress in high-fat-diet (HFD)-induced NAFLD mice. At the molecular level, DQW activates PPARα, subsequently enhances fatty acid ß-oxidation, and reduces lipogenesis, thereby ameliorating hepatic steatosis. Meanwhile, DQW may ameliorate liver injury and oxidative stress via activating the PPARα/nuclear-factor erythroid 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway. CONCLUSION: Those results indicate that α-lactalbumin peptide DQW may be an effective dietary supplement for alleviating NAFLD by alleviating lipid deposition and oxidative stress.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , Ácidos Grasos no Esterificados/farmacología , Lactalbúmina/farmacología , Lactalbúmina/metabolismo , Células Hep G2 , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Hígado/metabolismo , Estrés Oxidativo , Metabolismo de los Lípidos
5.
J Dairy Sci ; 106(4): 2271-2288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36797178

RESUMEN

The objective of this study was to investigate the mechanism by which the α-lactalbumin peptides Gly-Ile-Asn-Tyr (GINY) and Asp-Gln-Trp (DQW) ameliorate free fatty acid-induced lipid deposition in HepG2 cells. The results show that GINY and DQW reduced triglyceride, total cholesterol, and free fatty acid levels significantly in free fatty acid-treated HepG2 cells. Based on proteomic analysis, GINY and DQW alleviated lipid deposition and oxidative stress mainly through the peroxisome proliferator-activated receptor (PPAR) pathway, fatty acid metabolism, oxidative phosphorylation, and response to oxidative stress. In vitro experiments confirmed that GINY and DQW upregulated the mRNA and protein expression of fatty acid ß-oxidation-related and oxidative stress-related genes, and downregulated the mRNA and protein expression of lipogenesis-related genes by activating peroxisome proliferator-activated receptor α (PPARα). Meanwhile, GINY and DQW reduced free fatty acid-induced lipid droplet accumulation and reactive oxygen species generation, and enhanced the mitochondrial membrane potential and ATP levels. Furthermore, GINY and DQW enhanced carnitine palmitoyl-transferase 1a (CPT-1a) and superoxide dismutase activities, and diminished acetyl-coenzyme A carboxylase 1 (ACC1) and fatty acid synthase (FASN) activities in a PPARα-dependent manner. Interestingly, GW6471 (a PPARα inhibitor) weakened the effects of GINY and DQW on the PPARα pathway. Hence, our findings suggest that GINY and DQW have the potential to alleviate nonalcoholic fatty liver disease by activating the PPARα pathway.


Asunto(s)
Lactalbúmina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Células Hep G2 , Lactalbúmina/farmacología , Lactalbúmina/metabolismo , PPAR alfa/genética , Ácidos Grasos no Esterificados/metabolismo , Proteómica , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/veterinaria , Estrés Oxidativo , Metabolismo de los Lípidos , Péptidos/farmacología , Péptidos/metabolismo , ARN Mensajero/metabolismo , Hígado/metabolismo
6.
Biomaterials ; 294: 121995, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36641813

RESUMEN

Nanocarriers have become an effective strategy to overcome epithelial absorption barriers. During the absorption process, the endocytosis mechanisms, cell internalization pathways, and transport efficiency of nanocarriers are greatly impacted by their physical properties. To understand the relationship between physical properties of nanocarriers and their abilities overcoming multiple absorption barriers, nanocarriers with variable physical properties were prepared via self-assembly of hydrolyzed α-lactalbumin peptide fragments. The impacts of size, shape, and rigidity of nanocarriers on epithelial cells endocytosis mechanisms, internalization pathways, transport efficiency, and bioavailability were studied systematically. The results showed that nanospheres were mainly internalized via clathrin-mediated endocytosis, which was then locked in lysosomes and degraded enzymatically in cytoplasm. While macropinocytosis was the primary pathway of nanotubes and transported to the endoplasmic reticulum and Golgi apparatus, resulting in a high drug concentration and sustained release in cytoplasm. Besides, nanotubes can overcome the multi-drug resistance by inhibiting the P-glycoprotein efflux. Furthermore, nanotubes can open intercellular tight-junctions instantaneously and reversibly, which promotes transport into blood circulation. The aqueous solubility of hydrophobic bioactive mangiferin (Mgf) was improved by nanocarriers. Most importantly, the bioavailability of Mgf was the highest for cross-linked short nanotube (CSNT) which outperformed free Mgf and other formulations by in vivo pharmacokinetic studies. Finally, Mgf-loaded CSNT showed an excellent therapeutic efficiency in vivo for the intervention of streptozotocin-induced diabetes. These results indicate that cross-linked α-lactalbumin nanotubes could be an effective nanocarrier delivery system for improving the epithelium cellular absorption and bioavailability of hydrophobic bioactive compounds.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Transporte Biológico , Portadores de Fármacos/química , Células Epiteliales/metabolismo , Lactalbúmina/metabolismo , Nanopartículas/química , Espacio Intracelular/metabolismo , Boca/metabolismo
7.
Mol Nutr Food Res ; 67(1): e2200162, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308034

RESUMEN

SCOPE: This study aims to investigate the anti-hyperuricemic and nephroprotective effects and the potential mechanisms of the separated gastrointestinal hydrolysates of α-lactalbumin on hyperuricemic mice. METHODS AND RESULTS: The gastrointestinal hydrolysate of α-lactalbumin, the hydrolysate fraction with molecular weight (MW) < 3 kDa (LH-3k), and the fragments with smallest MW among LH-3K harvested through dextran gel chromatography (F5) are used. Hyperuricemia mice are induced via daily oral gavage of potassium oxonate and hypoxanthine. F5 displays the highest in vitro xanthine oxidase (XO) inhibition among all the fractions separated from LH-3k. Oral administration of F5 significantly reduces the levels of serum uric acid (UA), creatinine, and urea nitrogen. F5 treatment could ameliorate kidney injury through alleviating oxidative stress and inflammation. F5 alleviates hyperuricemia in mice by inhibiting hepatic XO activity and regulating the expression of renal urate transporters. Gut microbiota analysis illustrates that F5 administration increases the abundance of some SCFAs producers, and inhibits the growth of hyperuricemia and inflammation associated genera. LH-3k exhibits similar effects but does not show significance as those of the F5 fraction. CONCLUSION: The anti-hyperuricemia and nephroprotective functions of F5 are mediated by inhibiting hepatic XO activity, ameliorating oxidative stress and inflammation, regulating renal urate transporters, and modulating the gut microbiota in hyperuricemic mice.


Asunto(s)
Microbioma Gastrointestinal , Hiperuricemia , Ratones , Animales , Ácido Úrico , Lactalbúmina/metabolismo , Hiperuricemia/tratamiento farmacológico , Riñón/metabolismo , Ácido Oxónico/metabolismo , Ácido Oxónico/farmacología , Factores de Transcripción/metabolismo , Inflamación/metabolismo , Hipoxantinas/metabolismo , Hipoxantinas/farmacología
8.
Food Funct ; 13(19): 9878-9892, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36052713

RESUMEN

The progression of nonalcoholic fatty liver disease (NAFLD) is closely related to insulin resistance and gut microbiota. Dietary interventions have emerged as effective palliative strategies for NAFLD. The present study investigated the potential mechanisms by which α-lactalbumin peptide Asp-Gln-Trp (DQW) ameliorated insulin resistance and gut microbiota dysbiosis in high-fat diet (HFD)-induced NAFLD mice. The results demonstrated that DQW treatment alleviated HFD-induced body weight gain, hepatic steatosis, insulin resistance, and dyslipidemia. DQW treatment also increased the ratio of Bacteroides to Firmicutes in the gut, reduced the relative abundance of pathogenic bacteria (such as Bacteroides, Blautia, and Alistipes) and enhanced the relative abundance of short-chain fatty acid (SCFA)-producing bacteria (such as Muribaculaceae, Lachnospiraceae_NK4A136_group, and Rikenellaceae_RC9_gut_group). DQW treatment promoted the production of SCFAs and subsequently improved intestinal barrier integrity and inflammation. Furthermore, the results of real-time quantitative PCR (qRT-PCR) and western blotting further proved that the effects of DQW on the attenuation of hepatic insulin resistance were mediated by the PPARα and IRS1/PI3K/AKT pathways. Taken together, these results indicated that DQW treatment could attenuate HFD-induced NAFLD and insulin resistance by modulating gut microbiota composition, enhancing the SCFA levels, and activating the PPARα and IRS1/PI3K/Akt pathways.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Ácidos Grasos Volátiles/metabolismo , Lactalbúmina/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , Péptidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
9.
J Dairy Sci ; 105(11): 9226-9239, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175236

RESUMEN

We aimed to evaluate the incidence of unstable non-acid milk (UNAM) in cows fed either sugarcane or corn silage. Second, we aimed to evaluate the effect of daily variation (d 1 to 4) and alcohol grades (72, 78, and 80%) on UNAM incidence. The experiment was conducted as a split-plot crossover design, with 2 periods and 2 roughage types (sugarcane or corn silage). Thirteen multiparous Holstein cows with an average of 281 ± 29 d in milk were randomly distributed into 2 diets. Individual blood (analysis of total proteins, albumin, urea, calcium, phosphorus, magnesium, iron, chloride, glucose, and lactate) and milk samples (analysis of protein, fat, lactose and total solids, somatic cell count, and characterization of the protein profile) were collected during the last 4 d of each period. For UNAM identification, the alcohol test was conducted in milk samples at 4°C; specifically, if the sample presented the formation of clots, this would be noted as positive for UNAM. In addition, the Dornic acidity analysis was performed in the same samples to evaluate the true milk acidity. The use of sugarcane and higher degrees of alcohol were associated with increased UNAM. We observed no daily variation in UNAM. Nevertheless, we found no roughage type effect on the variables most commonly associated with UNAM, such as changes in salts in the casein micelle and, consequently, the zeta potential and the κ-casein (CN) fraction. The Pearson correlation analysis showed that the zeta potential and the concentrations of αS2-CN, blood ionic calcium, lactate, and glucose increased as the incidence of UNAM increased, showing a positive correlation among these variables. In contrast, the concentrations of lactose, phosphorus, and potassium decreased as UNAM increased, presenting a negative correlation. This study brought important discoveries to unveil why cows manifest UNAM. For instance, higher alcohol grades and cows fed with sugarcane had increased the incidence of UNAM. Additionally, animals with a higher incidence of UNAM (sugarcane-fed cows) were related to increased ionic calcium and glucose and changes in milk protein profile, with lower levels of BSA, ß-CN, and α-lactalbumin and greater αS1-CN content, all of which were correlated with UNAM. Nonetheless, this trial also provides evidence for the need for further studies to better understand the physiological mechanisms that directly affect the stability of milk protein.


Asunto(s)
Saccharum , Ensilaje , Femenino , Bovinos , Animales , Ensilaje/análisis , Zea mays/metabolismo , Saccharum/metabolismo , Caseínas/metabolismo , Lactosa/metabolismo , Lactancia/fisiología , Lactalbúmina/metabolismo , Micelas , Incidencia , Magnesio/metabolismo , Calcio/metabolismo , Sales (Química)/metabolismo , Cloruros/metabolismo , Grano Comestible/química , Proteínas de la Leche/análisis , Fósforo/metabolismo , Glucosa/metabolismo , Urea/metabolismo , Lactatos/análisis , Potasio/metabolismo , Hierro , Rumen/metabolismo
10.
Plant Cell Rep ; 41(10): 2023-2035, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35918456

RESUMEN

KEY MESSAGE: This study demonstrated high expression and accumulation of human α-lactalbumin in transgenic maize, and significant improvement of lysine content in maize endosperm. As a high-yield crop, lack of lysine in endosperm storage protein is a major defect of maize (Zea mays L.). Specifically expression of foreign proteins is a potential way to improve lysine content in maize endosperm. Human α-lactalbumin is such a protein with high lysine content and high nutritional value. In this study, the codon-optimized human lactalbumin alpha (LALBA) gene was driven by maize endosperm-specific 27 kD γ-zein promoter, and transformed into maize. Five independent transgenic lines were obtained, and LALBA was highly expressed in endosperm in all these lines. Protein assay indicated that human α-lactalbumin was highly accumulated in maize endosperm. Immuno-localization assay indicated that human α-lactalbumin was mainly deposited into the protein body (PB). Protein interaction assay showed that human α-lactalbumin interacted with 16 kD γ-zein, which might lead to its deposition to the PBs. Amino acid analysis of two independent transgenic lines showed significant increase of lysine contents in transgenic endosperm, with 47.26% and 45.15% increase to their non-transgenic seeds, respectively. We obtained transgenic maize with endosperm-specific accumulation of human α-lactalbumin at high level and increased the lysine content in maize endosperm. This study demonstrated an effective way to improve the nutritional value of maize seeds.


Asunto(s)
Endospermo , Zeína , Aminoácidos/metabolismo , Codón , Endospermo/genética , Endospermo/metabolismo , Humanos , Lactalbúmina/genética , Lactalbúmina/metabolismo , Lisina/metabolismo , Plantas Modificadas Genéticamente/genética , Semillas/metabolismo , Factores de Transcripción/genética , Zea mays/genética , Zea mays/metabolismo , Zeína/análisis , Zeína/genética , Zeína/metabolismo
11.
Biomaterials ; 286: 121600, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35660822

RESUMEN

The amphiphilic proteins can be used as building blocks (BBs) forming various self-assemblies. Understanding their self-assembly mechanism is important for designing novel nanomaterials. Herein, the BBs dimers were first prepared from carboxyl-abundant enzymolyzed α-lactalbumin (α-lac) at 50 °C. Then the unidentate coordination of Ca2+ between the BBs caused a ß-sheet stacking to further self-assemble into nanotubes (NTs). Compared with the traditional "one-pot" method, a step-wise new method was applied to study hydrolysis, aggregation and self-assembly processes separately. The α-lac was hydrolyzed into 11 kDa amphiphilic peptides independent of temperature while a BBs dimer was formed at 50 °C by hydrophobic interaction. Ca2+ induced a conformational change of BBs and promoted these BBs gradually aggregate into 10 strands of filaments, which twisted into helical ribbons by electrostatic repulsion. Ca2+ further induced the twisted helical ribbons closed into NTs driven by the reduction of line tension energy. Besides, the carboxyl-Ca2+ coordination dominated NTs elongation in the longitudinal direction and filaments aggregation in the lateral direction with the same binding stoichiometry of 1:1 respectively. Finally, NTs successfully encapsulated curcumin and improved the viscosity of liquid food. α-Lac NTs show a high potential as a delivery system for food applications.


Asunto(s)
Nanotubos , Cationes , Interacciones Hidrofóbicas e Hidrofílicas , Lactalbúmina/química , Lactalbúmina/metabolismo , Nanotubos/química , Péptidos/química
12.
ACS Chem Neurosci ; 13(8): 1263-1272, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385250

RESUMEN

Parkinson's disease (PD) is the second most common devastating neurodegenerative disorder. Presently used therapies for PD have severe side effects and are limited to only temporary improvement. Therefore, a new therapeutic approach to treat PD urgently needs to be developed. α-Lactalbumin, the most abundant milk protein in camel milk, has been attributed to various medicinal properties. This study intended to investigate the neuroprotective efficacy of the camel α-lactalbumin and oleic acid (CLOA) complex. One mechanism postulated to underlie neuroprotection by the CLOA complex is the induction of silent information regulatory protein (SIRT1). SIRT1 is known to be involved in several pathological and physiological processes, and it has been suggested that SIRT1 plays a protective role in PD. Oxidative stress, inflammation, mitochondrial dysfunction, and apoptosis are involved in PD pathogenesis. Our results revealed that SIRT1 inhibits oxidative stress by maintaining HIF-1α in a deacetylated state. SIRT1 upregulates the expression of FOXO3a and HSF-1, thus inhibiting apoptosis and maintaining the homeostasis of cellular proteins. Increased SIRT1 expression reduces the levels of TNF-α, IL-6, and IL-8, which in turn inhibits neuroinflammation. In addition to SIRT1, the CLOA complex also enhances the expression of survivin and leptin and promotes the survival of neuroblastoma cells. Altogether, our results suggest that the CLOA complex might be a novel therapeutic molecule that could ameliorate neuronal cell damage in PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Camelus/metabolismo , Lactalbúmina/metabolismo , Lactalbúmina/farmacología , Lactalbúmina/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ácido Oléico/farmacología , Ácido Oléico/uso terapéutico , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Rotenona , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Sirtuina 1/uso terapéutico
13.
Biofactors ; 48(5): 1145-1159, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35388547

RESUMEN

Complexes formed by the alpha1 N-terminal peptide of alpha-lactalbumin and oleic acid (alpha1-oleate) interact with lipid bilayers. Plasma membrane perturbations trigger tumor cell death but normal differentiated cells are more resistant, and their plasma membranes are less strongly affected. This study examined membrane lipid composition as a determinant of tumor cell reactivity. Bladder cancer tissue showed a higher abundance of unsaturated lipids enriched in phosphatidylcholine, PC (36:4) and PC (38:4), and sphingomyelin, SM (36:1) than healthy bladder tissue, where saturated lipids predominated and the lipid extracts from bladder cancer tissue inhibited the tumoricidal effect of the complex more effectively than healthy tissue extracts. Furthermore, unsaturated PC in solution inhibited tumor cell death, and the complex interacted with giant unilamellar vesicles formed by PC, confirming the affinity of alpha1-oleate for fluid membranes enriched in PC. Quartz Crystal Microbalance with dissipation monitoring (QCM-D) detected a preference of the complex for the liquid-disordered phase, suggesting that the insertion into PC-based membranes and the resulting membrane perturbations are influenced by membrane lipid saturation. The results suggest that the membrane lipid composition is functionally important and that specific unsaturated membrane lipids may serve as "recognition motifs" for broad-spectrum tumoricidal molecules such as alpha1-oleate.


Asunto(s)
Membrana Dobles de Lípidos , Neoplasias de la Vejiga Urinaria , Humanos , Lactalbúmina/química , Lactalbúmina/metabolismo , Lactalbúmina/farmacología , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Ácido Oléico/química , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Fosfatidilcolinas/química , Esfingomielinas/química , Extractos de Tejidos , Liposomas Unilamelares
14.
J Agric Food Chem ; 70(8): 2664-2672, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35148078

RESUMEN

Alpha-lactalbumin (α-LA; the most abundant whey protein in human milk) contributes to infant development, providing bioactive peptides and essential amino acids. Here, Komagataella phaffii (K. phaffii) was selected as the production host. We found that the K. phaffii host X33 was suitable for expressing the target protein, yielding 5.2 mg·L-1 α-LA. Thereafter, several secretory signal peptides were applied to obtain a higher titer of α-LA. The strain with α-factor secretory signal peptide secreted the highest extracellular titer. Additionally, promoters AOX1, GAP, and GAP(m) were compared and applied. The strain with the promoter AOX1 produced the highest extracellular titer. In addition, coexpressing human protein disulfide isomerase A3 (hPDIA3) increased the titer by 27%. Human α-LA production by the strain X33-pPICZαA-hLALBA-hPDIA3 reached 56.3 mg·L-1 in a 3 L bioreactor. This is the first report of successful secretory human α-LA expression in K. phaffii and lays foundations for the simulation of human milk for infant formulas and further development of bioengineered milk.


Asunto(s)
Lactalbúmina , Saccharomycetales , Niño , Humanos , Lactalbúmina/genética , Lactalbúmina/metabolismo , Leche Humana , Pichia/metabolismo , Saccharomycetales/metabolismo
15.
Biochim Biophys Acta Gen Subj ; 1866(1): 130012, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34536507

RESUMEN

BACKGROUND: The carbohydrate fraction of mammalian milk is constituted of lactose and oligosaccharides, most of which contain a lactose unit at their reducing ends. Although lactose is the predominant saccharide in the milk of most eutherians, oligosaccharides significantly predominate over lactose in the milk of monotremes and marsupials. SCOPE OF REVIEW: This review describes the most likely process by which lactose and milk oligosaccharides were acquired during the evolution of mammals and the mechanisms by which these saccharides are digested and absorbed by the suckling neonates. MAJOR CONCLUSIONS: During the evolution of mammals, c-type lysozyme evolved to α-lactalbumin. This permitted the biosynthesis of lactose by modulating the substrate specificity of ß4galactosyltransferase 1, thus enabling the concomitant biosynthesis of milk oligosaccharides through the activities of several glycosyltransferases using lactose as an acceptor. In most eutherian mammals the digestion of lactose to glucose and galactose is achieved through the action of intestinal lactase (ß-galactosidase), which is located within the small intestinal brush border. This enzyme, however, is absent in neonatal monotremes and macropod marsupials. It has therefore been proposed that in these species the absorption of milk oligosaccharides is achieved by pinocytosis or endocytosis, after which digestion occurs through the actions of several lysosomal acid glycosidases. This process would enable the milk oligosaccharides of monotremes and marsupials to be utilized as a significant energy source for the suckling neonates. GENERAL SIGNIFICANCE: The evolution and significance of milk oligosaccharides is discussed in relation to the evolution of mammals.


Asunto(s)
Lactosa/metabolismo , Leche/metabolismo , Oligosacáridos/metabolismo , Animales , Animales Lactantes/metabolismo , Evolución Biológica , Evolución Molecular , Galactosa/metabolismo , Galactosiltransferasas/metabolismo , Glucosa/metabolismo , Lactalbúmina/metabolismo , Lactosa/genética , Mamíferos/metabolismo , Leche/química , Oligosacáridos/genética
16.
Food Funct ; 13(1): 344-355, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34904610

RESUMEN

Ready-to-feed liquid infant formulas (IF) were subjected to direct (D) or indirect (ID) ultra-high-temperature (UHT) treatment and then stored at 40 °C under aseptic conditions for 60-120 days simulating global transportation which accelerates the Maillard reaction. Low pasteurized and unstored IF (LP) was included as a control for the UHT treatments. Simulated infant in vitro digestion was conducted. SDS-PAGE indicated that protein aggregate formation correlated with thermal treatment, being greatest after 60 days of storage. Limited protein digestion was observed after pepsin treatment for 2 h. Beta-lactoglobulin (ß-Lg), alpha-lactalbumin (α-La) and protein aggregates remained undigested after 2 h of pepsin digestion in LP and D, but less ß-Lg and α-La remained in ID. The digestion of ß-Lg and α-La was enhanced in D and ID stored for 60 days, but aggregates remained undigested. After pepsin and pancreatin digestion, large amounts of ß-Lg remained undigested in the LP, but digestion increased after UHT treatment (ID > D) and increased further after storage for 60 and 120 days, indicating that heat treatment and storage facilitate the digestion of unaggregated proteins. No aggregates remained after pancreatin digestion of LP, D, ID and D stored for 60 days, but were present in ID stored for 60 days. Aggregates were mainly disulphide-linked, but dityrosine linkages were detected in D and ID stored for 120 days. LC-MS/MS indicated limited proteolysis arising from endogenous milk proteases prior to in vitro digestion, being highest in D. Peptide numbers increased following pepsin and further during pancreatin digestion (ß-casein > ß-Lg > ß-La), and released ß-Lg peptides, typically 5-8 amino acids in length, contained several bioactivities, e.g., dipeptidyl-peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) inhibition.


Asunto(s)
Almacenamiento de Alimentos/métodos , Calor , Fórmulas Infantiles , Péptidos , Digestión , Humanos , Lactante , Fórmulas Infantiles/análisis , Fórmulas Infantiles/química , Lactalbúmina/química , Lactalbúmina/metabolismo , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Modelos Biológicos , Péptidos/análisis , Péptidos/química , Péptidos/metabolismo , Proteolisis
17.
Methods Mol Biol ; 2376: 89-101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34845604

RESUMEN

GroEL is an important model molecular chaperone. Despite being extensively studied, several critical aspects of its functionality are still in dispute due partly to difficulties in obtaining protein samples of consistent purity. Here I describe an easy-to-carry-out purification protocol that can reliably produce highly purified and fully functional GroEL protein in large quantities. The method takes advantage of the remarkable stability of the GroEL tetradecamer in 45% acetone which efficiently extracts and removes tightly bound substrate proteins that cannot be separated from GroEL by the usual chromatographic methods. The efficiency of the purification method can be assessed by the amount of residual tryptophan fluorescence associated with the purified GroEL sample. The functionality of the thus obtained GroEL sample is demonstrated by measuring its ATPase turnover both in the presence and absence of the GroEL model substrate protein α-lactalbumin.


Asunto(s)
Chaperonas Moleculares , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina 60/metabolismo , Lactalbúmina/metabolismo , Unión Proteica , Pliegue de Proteína
18.
Artículo en Inglés | MEDLINE | ID: mdl-34536835

RESUMEN

In complex food matrices, non-directed reactions between food proteins and secondary plant metabolites (SPM) are conceivable. In this study, the interaction between the bioactive metabolite from garden cress (Lepidium sativum) and selected Brassicaceae - benzyl isothiocyanate (BITC) - and the dairy protein α-lactalbumin (α-LA) was investigated. It was focused on monitoring the proteolytic degradation behaviour of unmodified and BITC-modified α-LA with two-dimensional high-performance thin-layer chromatography (2D-HPTLC). The two-dimensional approach of HPTLC offers high resolution in the separation of complex peptide mixtures and might enable differentiation of protein modifications. Based on the specific peptide patterns of native and modified peptides, conclusions can be drawn about differences in protein/peptide polarity, location of a modification, and digestibility. The aim was to characterize tryptically hydrolyzed unmodified and BITC-modified peptides using the 2D method and to investigate the influence of BITC modification of α-LA on polarity and digestibility. To determine the repeatability of peptide separation by 2D-HPTLC, the unmodified and BITC-modified protein hydrolyzates were separated six times. The absolute standard deviations between the retardation factors of the individual peptide spots varied between 0.52 and 4.79 mm for the x-coordinates and between 0.41 and 6.47 mm for the y-coordinates for all three samples. Here, the mean relative standard deviations ranged from 5.80 to 10.4% for the x-coordinates and from 5.91 to 18.3% for the y-coordinates. The results of the tryptic hydrolysis indicated that, depending on the concentration of BITC used, the modification sterically hinders the cleavage sites for the enzyme, resulting in a reduced digestibility. Covalent binding of the hydrophobic BITC altered the digestibility and polarity of the protein, leading to a difference in peptide patterns between the unmodified and modified α-LA. It was concluded that the reaction was undirected, resulting in a mixture of unmodified and modified peptides, and that elongated modified peptides were formed by BITC blocking of trypsin cleavage sites.


Asunto(s)
Cromatografía en Capa Delgada/métodos , Isotiocianatos , Lactalbúmina , Cromatografía Líquida de Alta Presión/métodos , Isotiocianatos/análisis , Isotiocianatos/química , Lactalbúmina/análisis , Lactalbúmina/química , Lactalbúmina/metabolismo , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Tripsina/metabolismo
19.
Protein Sci ; 30(9): 1919-1934, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107116

RESUMEN

Amyloid fibrils are ordered aggregates that may be formed from disordered, partially unfolded, and fragments of proteins and peptides. There are several diseases, which are due to the formation and deposition of insoluble ß-sheet protein aggregates in various tissue, collectively known as amyloidosis. Here, we have used bovine α-lactalbumin as a model protein to understand the mechanism of amyloid fibril formation at pH 1.6 and 65°C under non-reducing conditions. Amyloid fibril formation is confirmed by Thioflavin T fluorescence and atomic force microscopy (AFM). Our finding demonstrates that hydrolysis of peptide bonds occurs under these conditions, which results in nicking and fragmentation. The nicking and fragmentation have been confirmed on non-reducing and reducing gel. We have identified the fragments by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The fragmentation may initiate nucleation as it coincides with AFM images. Conformational changes associated with monomer resulting in fibrillation are shown by circular dichroism and Raman spectroscopy. The current study highlights the importance of nicking and fragmentation in amyloid fibril formation, which may help understand the role of acidic pH and proteolysis under in vivo conditions in the initiation of amyloid fibril formation.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Lactalbúmina/química , Secuencia de Aminoácidos , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Animales , Benzotiazoles/química , Bovinos , Calor , Concentración de Iones de Hidrógeno , Lactalbúmina/metabolismo , Microscopía de Fuerza Atómica , Modelos Químicos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteolisis , Espectrometría de Fluorescencia
20.
Food Chem Toxicol ; 153: 112265, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34004225

RESUMEN

As a dietary polyphenol, kaempferol exhibits numerous biological activities such as antioxidant and anticancer properties. However, its application is limited because of its poor solubility and low permeability. This work aims to investigate the interaction of kaempferol with α-lactalbumin. Multiple-spectroscopic techniques were used to prove the interaction between kaempferol and α-lactalbumin. UV-vis absorption spectra suggested that the conformation of α-lactalbumin could be changed via binding with kaempferol. The fluorescence quenching test showed that kaempferol significantly quenched the intrinsic fluorescence of α-lactalbumin. Circular dichroism spectroscopy showed that the percent helicity of α-lactalbumin secondary structure increased when combined with kaempferol. In addition, the α-lactalbumin-kaempferol complex showed stronger inhibition ability on the growth of HeLa cells compared with kaempferol alone. The complex also showed higher antioxidant capacity than kaempferol alone. Molecular docking provided three predicted binding sites of α-lactalbumin for kaempferol, as well as five predicted binding poses of kaempferol. The weak intermolecular interactions were the main forces to stabilize the α-lactalbumin-kaempferol complex. Besides, the binding stability between α-lactalbumin and kaempferol was explored by molecular dynamics simulation. In conclusion, this work provides a basis for the potential application of α-lactalbumin as a delivery carrier for kaempferol owing to its nontoxic and biocompatible properties.


Asunto(s)
Antioxidantes/farmacología , Quempferoles/farmacología , Lactalbúmina/metabolismo , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Bovinos , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Células HeLa , Humanos , Quempferoles/metabolismo , Lactalbúmina/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...