Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731521

RESUMEN

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Asunto(s)
Dominio Catalítico , Inhibidores Enzimáticos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Aminoácidos/química , Aminoácidos/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Lactato Deshidrogenasa 5/metabolismo , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/química , Ácido Pirúvico/metabolismo , Ácido Pirúvico/química , Mutagénesis Sitio-Dirigida , Simulación de Dinámica Molecular
2.
Cancer Lett ; 577: 216425, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37805163

RESUMEN

Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Lactato Deshidrogenasa 5 , Neoplasias Pulmonares , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Glucólisis , L-Lactato Deshidrogenasa , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Transducción de Señal
3.
Eur Rev Med Pharmacol Sci ; 27(14): 6605-6617, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37522672

RESUMEN

OBJECTIVE: In 1930, Otto Warburg reported that "aerobic glycolysis" is the intrinsic property of all tumor cells' fermentation of glucose to L-Lactate by lactate dehydrogenase A (LDHA) activity. This only produces per mole of glucose two moles of adenosine triphosphate (ATP), compared with 32 moles of ATP in a normal cell. Thus, tumor cells have to uptake 30 folds more glucose, the resulting accumulated lactate are then transported by a monocarboxylate transporter (MCT) with the participation of a CD147 molecule. Inhibition of MCT1 by RNA interference (RNAi) disrupted the unique metabolism of the tumor and caused tumor cell death. However, the effectiveness of the strategies depends on the targeted delivery of the therapeutics. MATERIALS AND METHODS: In this study, a synergistic approach was used to target LDHA and MCT1 with small molecule inhibitors FX11 and AR-C155858, respectively. Cell cytotoxicity assays (AlamarBlue assay), and Mitochondria Membrane Potential (JC-1) dye assays were performed on human breast cancer cells MCF-7 and colorectal cancer cells HCT116. To achieve this aim, the following objectives were proposed: the effect of metabolic inhibitors on tumor glycolytic metabolite environment, and the efficacy of metabolite inhibitors on human breast and colorectal cancer cells in vitro. Then, gene expression analysis was performed using Qiagen RT2 Profiler PCR array for apoptosis. All these assays were performed on human breast cancer cells MCF-7 and colorectal cancer cells HCT116. Normal human fibroblasts were used as control cells under normal and hypoxic culture conditions. RESULTS: In this study, the use of FX-11 inhibitors under normoxia or hypoxia in two or more cancer and normal cell lines has a direct effect on LDHA, whereby it inhibits its production, and this reduces the growth and cell proliferation of tumors. One of the more significant findings to emerge from this study is that using AR-C155858 inhibitor alone has increased the cell proliferation and showed no significant changes compared with the control. The other major finding was that combination of the two inhibitors, FX-11 and AR-C155858, under normoxia or hypoxia in two different cell lines MCF-7 and HCT-116 measured a decrease in the cells proliferative and red/green ratio. CONCLUSIONS: We successfully demonstrated that a combination of MCT1 inhibitor and LDHA inhibitor led to better outcomes. Indeed, this makes LDHA an ideal metabolic therapeutic target.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Lactato Deshidrogenasa 5 , Transportadores de Ácidos Monocarboxílicos , Femenino , Humanos , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Glucosa/metabolismo , Glucólisis , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Lactatos/farmacología , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo
4.
Pharmacol Res ; 176: 106051, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973467

RESUMEN

Aortic dissection (AD) is a disease with high mortality and lacks effective drug treatment. Recent studies have shown that the development of AD is closely related to glucose metabolism. Lactate dehydrogenase A (LDHA) is a key glycolytic enzyme and plays an important role in cardiovascular disease. However, the role of LDHA in the progression of AD remains to be elucidated. Here, we found that the level of LDHA was significantly elevated in AD patients and the mouse model established by BAPN combined with Ang II. In vitro, the knockdown of LDHA reduced the growth of human aortic vascular smooth muscle cells (HAVSMCs), glucose consumption, and lactate production induced by PDGF-BB. The overexpression of LDHA in HAVSMCs promoted the transformation of HAVSMCs from contractile phenotype to synthetic phenotype, and increased the expression of MMP2/9. Mechanistically, LDHA promoted MMP2/9 expression through the LDHA-NDRG3-ERK1/2-MMP2/9 pathway. In vivo, Oxamate, LDH and lactate inhibitor, reduced the degradation of elastic fibers and collagen deposition, inhibited the phenotypic transformation of HAVSMCs from contractile phenotype to synthetic phenotype, reduced the expression of NDRG3, p-ERK1/2, and MMP2/9, and delayed the progression of AD. To sum up, the increase of LDHA promotes the production of MMP2/9, stimulates the degradation of extracellular matrix (ECM), and promoted the transformation of HAVSMCs from contractile phenotype to synthetic phenotype. Oxamate reduced the progression of AD in mice. LDHA may be a therapeutic target for AD.


Asunto(s)
Disección Aórtica/tratamiento farmacológico , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Ácido Oxámico/uso terapéutico , Adulto , Anciano , Disección Aórtica/metabolismo , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Lactato Deshidrogenasa 5/genética , Lactato Deshidrogenasa 5/metabolismo , Ácido Láctico/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Persona de Mediana Edad , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Ácido Oxámico/farmacología
5.
Nat Commun ; 12(1): 5977, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645816

RESUMEN

Muscle diseases and aging are associated with impaired myogenic stem cell self-renewal and fewer proliferating progenitors (MPs). Importantly, distinct metabolic states induced by glycolysis or oxidative phosphorylation have been connected to MP proliferation and differentiation. However, how these energy-provisioning mechanisms cooperate remain obscure. Herein, we describe a mechanism by which mitochondrial-localized transcriptional co-repressor p107 regulates MP proliferation. We show p107 directly interacts with the mitochondrial DNA, repressing mitochondrial-encoded gene transcription. This reduces ATP production by limiting electron transport chain complex formation. ATP output, controlled by the mitochondrial function of p107, is directly associated with the cell cycle rate. Sirt1 activity, dependent on the cytoplasmic glycolysis product NAD+, directly interacts with p107, impeding its mitochondrial localization. The metabolic control of MP proliferation, driven by p107 mitochondrial function, establishes a cell cycle paradigm that might extend to other dividing cell types.


Asunto(s)
Lactato Deshidrogenasa 5/genética , Mitocondrias/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteína p107 Similar a la del Retinoblastoma/genética , Células Madre/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Ciclo Celular/genética , Línea Celular , Proliferación Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica , Glucólisis , Humanos , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/citología , Mioblastos/citología , Fosforilación Oxidativa , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Células Madre/citología , Transcripción Genética
6.
Nat Struct Mol Biol ; 28(8): 662-670, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34381247

RESUMEN

Aerobic glycolysis in cancer cells, also known as the 'Warburg effect', is driven by hyperactivity of lactate dehydrogenase A (LDHA). LDHA is thought to be a substrate-regulated enzyme, but it is unclear whether a dedicated intracellular protein also regulates its activity. Here, we identify the human tumor suppressor folliculin (FLCN) as a binding partner and uncompetitive inhibitor of LDHA. A flexible loop within the amino terminus of FLCN controls movement of the LDHA active-site loop, tightly regulating its enzyme activity and, consequently, metabolic homeostasis in normal cells. Cancer cells that experience the Warburg effect show FLCN dissociation from LDHA. Treatment of these cells with a decapeptide derived from the FLCN loop region causes cell death. Our data suggest that the glycolytic shift of cancer cells is the result of FLCN inactivation or dissociation from LDHA. Together, FLCN-mediated inhibition of LDHA provides a new paradigm for the regulation of glycolysis.


Asunto(s)
Glucólisis/fisiología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Dominio Catalítico/fisiología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Lactato Deshidrogenasa 5/metabolismo , Transducción de Señal
7.
Nat Metab ; 3(7): 954-968, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34226744

RESUMEN

Pharmacological activation of the glycolytic enzyme PKM2 or expression of the constitutively active PKM1 isoform in cancer cells results in decreased lactate production, a phenomenon known as the PKM2 paradox in the Warburg effect. Here we show that oxaloacetate (OAA) is a competitive inhibitor of human lactate dehydrogenase A (LDHA) and that elevated PKM2 activity increases de novo synthesis of OAA through glutaminolysis, thereby inhibiting LDHA in cancer cells. We also show that replacement of human LDHA with rabbit LDHA, which is relatively resistant to OAA inhibition, eliminated the paradoxical correlation between the elevated PKM2 activity and the decreased lactate concentration in cancer cells treated with a PKM2 activator. Furthermore, rabbit LDHA-expressing tumours, compared to human LDHA-expressing tumours in mice, displayed resistance to the PKM2 activator. These findings describe a mechanistic explanation for the PKM2 paradox by showing that OAA accumulates and inhibits LDHA following PKM2 activation.


Asunto(s)
Ácido Oxaloacético/metabolismo , Piruvato Quinasa/metabolismo , Animales , Línea Celular Tumoral , Citosol/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Glucosa/metabolismo , Glucólisis , Humanos , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Ratones , Piruvato Quinasa/genética , Conejos
8.
NMR Biomed ; 34(8): e4560, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34086382

RESUMEN

In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.


Asunto(s)
Neoplasias de la Mama/enzimología , Eliminación de Gen , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/genética , Neoplasias Pulmonares/enzimología , Espectroscopía de Resonancia Magnética , Ácido Pirúvico/metabolismo , Animales , Proteína BRCA1/metabolismo , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Pulmonares/diagnóstico por imagen , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piridonas/administración & dosificación , Piridonas/farmacología , Simportadores/metabolismo , Tiofenos/administración & dosificación , Tiofenos/farmacología
9.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809377

RESUMEN

Muscle fatigue is induced by an acute or chronic physical performance inability after excessive physical activity often associated with lactate accumulation, the end-product of glycolysis. In this study, the water-extracted roots of Sanguisorba officinalis L., a herbal medicine traditionally used for inflammation and diarrhea, reduced the activities of lactate dehydrogenase A (LDHA) in in vitro enzyme assay myoblast C2C12 cells and murine muscle tissue. Physical performance measured by a treadmill test was improved in the S. officinalis-administrated group. The analysis of mouse serum and tissues showed significant changes in lactate levels. Among the proteins related to energy metabolism-related physical performance, phosphorylated-AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor-coactivator-1 alpha (PGC-1α) levels were enhanced, whereas the amount of LDHA was suppressed. Therefore, S. officinalis might be a candidate for improving physical performance via inhibiting LDHA and glycolysis.


Asunto(s)
Lactato Deshidrogenasa 5/antagonistas & inhibidores , Rendimiento Físico Funcional , Extractos Vegetales/administración & dosificación , Plantas Medicinales/química , Sanguisorba/química , Proteínas Quinasas Activadas por AMP/metabolismo , Administración Oral , Animales , Línea Celular , Prueba de Esfuerzo , Glucólisis/efectos de los fármacos , Ácido Láctico/metabolismo , Masculino , Medicina Tradicional Coreana , Ratones , Ratones Endogámicos C57BL , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Resistencia Física/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/química , Fitoterapia , Extractos Vegetales/química
10.
J Nat Prod ; 84(5): 1469-1477, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33887133

RESUMEN

Cannabis sativa contains >120 phytocannabinoids, but our understanding of these compounds is limited. Determining the molecular modes of action of the phytocannabinoids may assist in their therapeutic development. Ligand-based virtual screening was used to suggest novel protein targets for phytocannabinoids. The similarity ensemble approach, a virtual screening tool, was applied to target identification for the phytocannabinoids as a class and predicted a possible interaction with the lactate dehydrogenase (LDH) family of enzymes. In order to evaluate this in silico prediction, a panel of 18 phytocannabinoids was screened against two LDH isozymes (LDHA and LDHB) in vitro. Cannabichromene (CBC) and Δ9-tetrahydrocannabinolic acid (Δ9-THCA) inhibited LDHA via a noncompetitive mode of inhibition with respect to pyruvate, with Ki values of 8.5 and 6.5 µM, respectively. In silico modeling was then used to predict the binding site for CBC and Δ9-THCA. Both were proposed to bind within the nicotinamide pocket, overlapping the binding site of the cofactor NADH, which is consistent with the noncompetitive modes of inhibition. Stemming from our in silico screen, CBC and Δ9-THCA were identified as inhibitors of LDHA, a novel molecular target that may contribute to their therapeutic effects.


Asunto(s)
Cannabinoides/farmacología , Dronabinol/análogos & derivados , Inhibidores Enzimáticos/farmacología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Cannabis/química , Bases de Datos de Compuestos Químicos , Dronabinol/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular
11.
J Med Chem ; 64(7): 3767-3779, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33765386

RESUMEN

Lactate dehydrogenase 5 (LDH5) is overexpressed in metastatic tumors and is an attractive target for anticancer therapy. Small-molecule drugs have been developed to target the substrate/cofactor sites of LDH5, but none has reached the clinic to date, and alternative strategies remain almost unexplored. Combining rational and computer-based approaches, we identified peptidic sequences with high affinity toward a ß-sheet region that is involved in protein-protein interactions (PPIs) required for the activity of LDH5. To improve stability and potency, these sequences were grafted into a cyclic cell-penetrating ß-hairpin peptide scaffold. The lead grafted peptide, cGmC9, inhibited LDH5 activity in vitro in low micromolar range and more efficiently than the small-molecule inhibitor GNE-140. cGmC9 inhibits LDH5 by targeting an interface unlikely to be inhibited by small-molecule drugs. This lead will guide the development of new LDH5 inhibitors and challenges the landscape of drug discovery programs exclusively dedicated to small molecules.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Péptidos/farmacología , Multimerización de Proteína/efectos de los fármacos , Sitios de Unión , Sangre/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Humanos , Lactato Deshidrogenasa 5/química , Lactato Deshidrogenasa 5/metabolismo , Masculino , Simulación de Dinámica Molecular , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Lámina beta , Estabilidad Proteica
13.
Cells ; 9(4)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316196

RESUMEN

Circadian oscillation is an essential process that influences many physiological and biological mechanisms and a decrease of circadian genes is associated with many diseases such as cancer. Despite many efforts to identify the detailed mechanism for decreasing circadian genes and recovering reduced circadian genes in cancer, it is still largely unknown. We found that BMAL1 was reduced in tumor hypoxia-induced acidosis, and recovered by selectively targeting acidic pH in breast cancer cell lines. Surprisingly, BMAL1 was reduced by decrease of protein stability as well as inhibition of transcription under acidosis. In addition, melatonin significantly prevented acidosis-mediated decrease of BMAL1 by inhibiting lactate dehydrogenase-A during hypoxia. Remarkably, acidosis-mediated metastasis was significantly alleviated by BMAL1 overexpression in breast cancer cells. We therefore suggest that tumor hypoxia-induced acidosis promotes metastatic potency by decreasing BMAL1, and that tumor acidosis could be a target for preventing breast cancer metastasis by sustaining BMAL1.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Acidosis/metabolismo , Neoplasias de la Mama/metabolismo , Relojes Circadianos/genética , Regulación de la Expresión Génica/genética , Factores de Transcripción ARNTL/genética , Acidosis/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Relojes Circadianos/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Melatonina/farmacología , Metástasis de la Neoplasia/genética , ARN Interferente Pequeño , Regulación hacia Arriba
14.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835667

RESUMEN

Based on the potential therapeutic value in targeting metabolism for the treatment of cancer, an organic arsenical PDT-BIPA was fabricated, which exerted selective anti-cancer activity in vitro and in vivo via targeting lactate dehydrogenase A (LDHA) to remodel the metabolic pathway. In details, the precursor PDT-BIPA directly inhibited the function of LDHA and converted the glycolysis to oxidative phosphorylation causing ROS burst and mitochondrial dysfunction. PDT-BIPA also altered several gene expression, such as HIF-1α and C-myc, to support the metabolic remodeling. All these changes lead to caspase family-dependent cell apoptosis in vivo and in vitro without obvious side effect. Our results provided this organic arsenical precursor as a promising anticancer candidate and suggested metabolism as a target for cancer therapies.


Asunto(s)
Arsenicales/farmacología , Progresión de la Enfermedad , Lactato Deshidrogenasa 5/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Compuestos Orgánicos/farmacología , Animales , Arsenicales/síntesis química , Arsenicales/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Femenino , Glutatión/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Compuestos Orgánicos/síntesis química , Compuestos Orgánicos/química , Consumo de Oxígeno/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
PLoS One ; 14(9): e0221472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31483850

RESUMEN

Our previous single-cell based gene expression analysis pointed out significant variations of LDHA level during erythroid differentiation. Deeper investigations highlighted that a metabolic switch occurred along differentiation of erythroid cells. More precisely we showed that self-renewing progenitors relied mostly upon lactate-productive glycolysis, and required LDHA activity, whereas differentiating cells, mainly involved mitochondrial oxidative phosphorylation (OXPHOS). These metabolic rearrangements were coming along with a particular temporary event, occurring within the first 24h of erythroid differentiation. The activity of glycolytic metabolism and OXPHOS rose jointly with oxgene consumption dedicated to ATP production at 12-24h of the differentiation process before lactate-productive glycolysis sharply fall down and energy needs decline. Finally, we demonstrated that the metabolic switch mediated through LDHA drop and OXPHOS upkeep might be necessary for erythroid differentiation. We also discuss the possibility that metabolism, gene expression and epigenetics could act together in a circular manner as a driving force for differentiation.


Asunto(s)
Diferenciación Celular , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Pollos , Metabolismo Energético/efectos de los fármacos , Células Eritroides/citología , Células Eritroides/metabolismo , Glucólisis/efectos de los fármacos , Isocumarinas/farmacología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/genética , Lactato Deshidrogenasa 5/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos
16.
Bioorg Med Chem Lett ; 29(17): 2459-2463, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31345633

RESUMEN

Human lactate dehydrogenase 5 (hLDH5) is an important metabolic enzyme playing critical roles in the anaerobic glycolysis. Herein, we employed an in silico method and biological validation to identify a novel hLDH5 inhibitor with a promising cellular activity under hypoxia condition. The identified compound 9 bound to hLDH5 with a Kd value of 1.02 µM, and inhibited the enzyme with an EC50 value of 0.7 µM. Compound 9 exhibited a weak potency against NCI-H1975 cell proliferation under normal condition (IC50 = 36.5 µM), while dramatically increased to 5.7 µM under hypoxia condition. In line with the observation, hLDH5 expression in NCI-H1975 cell under hypoxia condition is much higher as compared to the normal oxygenated condition, indicating the hLDH5 inhibition may contribute to the cancer cell death.


Asunto(s)
Antineoplásicos/química , Inhibidores Enzimáticos/química , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Dominio Catalítico , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Conformación Molecular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
17.
Respir Res ; 20(1): 87, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31072408

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by aberrant fibroblast activation and progressive fibrotic remodelling of the lungs. Though the exact pathophysiological mechanisms of IPF remain unknown, TGF-ß1 is thought to act as a main driver of the disease by mediating fibroblast-to-myofibroblast transformation (FMT). Recent reports have indicated that a metabolic shift towards aerobic glycolysis takes place during FMT and that metabolic shifts can directly influence aberrant cell function. This has led to the hypothesis that inhibition of lactate dehydrogenase 5 (LDH5), an enzyme responsible for converting pyruvate into lactate, could constitute a therapeutic concept for IPF. METHODS: In this study, we investigated the potential link between aerobic glycolysis and FMT using a potent LDH5 inhibitor (Compound 408, Genentech). Seahorse analysis was performed to determine the effect of Compound 408 on TGF-ß1-driven glycolysis in WI-38 fibroblasts. TGF-ß1-mediated FMT was measured by quantifying α-smooth muscle actin (α-SMA) and fibronectin in primary human lung fibroblasts following treatment with Compound 408. Lactate and pyruvate levels in the cell culture supernatant were assessed by LC-MS/MS. In addition to pharmacological LDH5 inhibition, the effect of siRNA-mediated knockdown of LDHA and LDHB on FMT was examined. RESULTS: We show that treatment of lung fibroblasts with Compound 408 efficiently inhibits LDH5 and attenuates the TGF-ß1-mediated metabolic shift towards aerobic glycolysis. Additionally, we demonstrate that LDH5 inhibition has no significant effect on TGF-ß1-mediated FMT in primary human lung fibroblasts by analysing α-SMA fibre formation and fibronectin expression. CONCLUSIONS: Our data strongly suggest that while LDH5 inhibition can prevent metabolic shifts in fibroblasts, it has no influence on FMT and therefore glycolytic dysregulation is unlikely to be the sole driver of FMT.


Asunto(s)
Fibroblastos/metabolismo , Glucólisis/fisiología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Miofibroblastos/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Miofibroblastos/efectos de los fármacos
18.
Sci Rep ; 9(1): 4686, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886157

RESUMEN

Lactate dehydrogenase A (LDHA) is a critical metabolic enzyme belonging to a family of 2-hydroxy acid oxidoreductases that plays a key role in anaerobic metabolism in the cells. In hypoxia condition, the overexpression of LDHA shifts the metabolic pathway of ATP synthesis from oxidative phosphorylation to aerobic glycolysis and the hypoxia condition is a common phenomenon occurred in the microenvironment of tumor cells; therefore, the inhibition of LDHA is considered to be an excellent strategy for cancer therapy. In this study, we employed in silico methods to design inhibitory peptides for lactate dehydrogenase through the disturbance in tetramerization of the enzyme. Using peptide as an anti-cancer agent is a novel approach for cancer therapy possessing some advantages with respect to the chemotherapeutic drugs such as low toxicity, ease of synthesis, and high target specificity. So peptides can act as appropriate enzyme inhibitor in parallel to chemical compounds. In this study, several computational techniques such as molecular dynamics (MD) simulation, docking and MM-PBSA calculation have been employed to investigate the structural characteristics of the monomer, dimer, and tetramer forms of the enzyme. Analysis of MD simulation and protein-protein interaction showed that the N-terminal arms of each subunit have an important role in enzyme tetramerization to establish active form of the enzyme. Hence, N-terminal arm can be used as a template for peptide design. Then, peptides were designed and evaluated to obtain best binders based on the affinity and physicochemical properties. Finally, the inhibitory effect of the peptides on subunit association was measured by dynamic light scattering (DLS) technique. Our results showed that the designed peptides which mimic the N-terminal arm of the enzyme can successfully target the C-terminal domain and interrupt the bona fide form of the enzyme subunits. The result of this study makes a new avenue to disrupt the assembly process and thereby oppress the function of the LDHA.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hipoxia/metabolismo , Lactato Deshidrogenasa 5/metabolismo , Neoplasias/metabolismo , Glucólisis , Humanos , Hipoxia/patología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/genética , Simulación de Dinámica Molecular , Imitación Molecular , Terapia Molecular Dirigida , Neoplasias/patología , Fosforilación Oxidativa , Péptidos/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Encuestas y Cuestionarios
19.
J Cell Biochem ; 119(10): 8501-8510, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30015359

RESUMEN

Protein kinase CK2 is active in cancer cells. Previously, we reported that increased CK2 activity could induce epithelial mesenchymal transition of cancer cells. CK2 also induced epithelial mesenchymal transition in colon cancer cell lines such as HT29 and SW620, and the transitioned cells (CK2α cells) became more proliferative than the controls. We assumed that CK2 could affect cancer cell growth by modulating their energy metabolism. Here, we examined the molecular effects of CK2 on the glucose metabolism of cancer cells. We found that CK2α cells consumed more glucose and produced more lactate than control cells did. An XF glycolysis stress test showed that aerobic glycolysis was augmented up to the cancer cell's maximal glycolytic capacity in CK2α cells. Molecular analysis revealed that pyruvate kinase M1 was downregulated and pyruvate kinase M2 was nuclear localized in CK2α cells. Consequently, the expression and activity of lactate dehydrogenase A (LDHA) were upregulated. Treatment with FX11-a specific LDHA inhibitor-or clustered regularly interspaced short palindromic repeats (CRISPR)-mediated knockout of LDHA inhibited the CK2-driven proliferation of cancer cells. We conclude that CK2 augments the Warburg effect, resulting in increased proliferation of cancer cells.


Asunto(s)
Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Glucólisis , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Células HEK293 , Células HT29 , Humanos , Isoenzimas/metabolismo , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/genética , Lactato Deshidrogenasa 5/metabolismo , Ácido Láctico/metabolismo , Naftalenos/farmacología , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...