Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
Food Microbiol ; 122: 104565, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839213

RESUMEN

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Asunto(s)
Ácido Acético , Diospyros , Fermentación , Microbiota , Ácido Acético/metabolismo , Diospyros/microbiología , Diospyros/metabolismo , Saccharomycetales/metabolismo , Gusto , Aromatizantes/metabolismo , Lactobacillus plantarum/metabolismo , Microbiología de Alimentos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
2.
Microb Biotechnol ; 17(5): e14484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801349

RESUMEN

The human gut hosts numerous ecological niches for microbe-microbe and host-microbe interactions. Gut lactate homeostasis in humans is crucial and relies on various bacteria. Veillonella spp., gut lactate-utilizing bacteria, and lactate-producing bacteria were frequently co-isolated. A recent clinical trial has revealed that lactate-producing bacteria in humans cross-feed lactate to Veillonella spp.; however, their interspecies interaction mechanisms remain unclear. Veillonella dispar, an obligate anaerobe commonly found in the human gut and oral cavity, ferments lactate into acetate and propionate. In our study, we investigated the interaction between V. dispar ATCC 17748T and three representative phylogenetically distant strains of lactic acid bacteria, Lactobacillus acidophilus ATCC 4356T, Lacticaseibacillus paracasei subsp. paracasei ATCC 27216T, and Lactiplantibacillus plantarum ATCC 10241. Bacterial growth, viability, metabolism and gene level adaptations during bacterial interaction were examined. V. dispar exhibited the highest degree of mutualism with L. acidophilus. During co-culture of V. dispar with L. acidophilus, both bacteria exhibited enhanced growth and increased viability. V. dispar demonstrated an upregulation of amino acid biosynthesis pathways and the aspartate catabolic pathway. L. acidophilus also showed a considerable number of upregulated genes related to growth and lactate fermentation. Our results support that V. dispar is able to enhance the fermentative capability of L. acidophilus by presumably consuming the produced lactate, and that L. acidophilus cross-feed not only lactate, but also glutamate, to V. dispar during co-culture. The cross-fed glutamate enters the central carbon metabolism in V. dispar. These findings highlight an intricate metabolic relationship characterized by cross-feeding of lactate and glutamate in parallel with considerable gene regulation within both L. acidophilus (lactate-producing) and V. dispar (lactate-utilizing). The mechanisms of mutualistic interactions between a traditional probiotic bacterium and a potential next-generation probiotic bacterium were elucidated in the production of short-chain fatty acids.


Asunto(s)
Ácidos Grasos Volátiles , Ácido Glutámico , Ácido Láctico , Veillonella , Ácido Láctico/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácido Glutámico/metabolismo , Veillonella/metabolismo , Veillonella/crecimiento & desarrollo , Veillonella/genética , Simbiosis , Interacciones Microbianas , Humanos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/genética , Lactobacillus/metabolismo , Lactobacillus/genética , Lactobacillus/crecimiento & desarrollo , Viabilidad Microbiana , Fermentación
3.
Food Chem ; 453: 139644, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761735

RESUMEN

This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.


Asunto(s)
Gelatina , Hidrogeles , Pectinas , Probióticos , Pectinas/química , Gelatina/química , Probióticos/química , Hidrogeles/química , Viabilidad Microbiana/efectos de los fármacos , Lactobacillus acidophilus/química , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/metabolismo , Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/metabolismo , Concentración de Iones de Hidrógeno , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología
4.
Int J Food Microbiol ; 417: 110696, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38615426

RESUMEN

The probiotic beverage was developed using germinated and ungerminated pearl millet flour and green gram milk. The germinated and ungerminated pearl millet flour was added to green gram milk at different concentrations (0.5-2.5 %) along with sugar and cardamom. The mixtures were then inoculated with probiotic bacteria Lactobacillus acidophilus incubated at 37 °C for 6 h. Characterization of probiotic beverages was carried out during storage at (4 ± 1)°C for 21 days. The germinated flour beverage had high acidity as compared to the ungerminated flour beverage. The probiotic count in germinated and ungerminated flour beverages ranged from 8.19 to 8.77 × 107 and 8.04 to 8.52 × 107 log CFU/mL, respectively. Antioxidant activity, polyphenol content increased with an increase in the concentration of flour in the beverage. The LC-MS analysis found the existence of vitexin and isovitexin as the main polyphenolic compounds in the probiotic beverage. Non-dairy probiotic beverage prepared with 0.5 % germinated millet flour gave the best taste, color, texture, and rheological properties.


Asunto(s)
Harina , Lactobacillus acidophilus , Pennisetum , Probióticos , Probióticos/análisis , Harina/análisis , Lactobacillus acidophilus/crecimiento & desarrollo , Bebidas/análisis , Bebidas/microbiología , Leche/química , Leche/microbiología , Antioxidantes/análisis , Animales , Polifenoles/análisis , Germinación , Microbiología de Alimentos , Gusto
5.
J Sci Food Agric ; 104(10): 5982-5990, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38427028

RESUMEN

BACKGROUND: One of the greatest challenges in using Lactobacillus acidophilus as a probiotic is acid stress. The current research aimed to identify substances that help L. acidophilus resist acid stress; this was achieved through assessing its nutrient consumption patterns under various pH conditions. RESULTS: The consumption rates of alanine, uracil, adenine, guanine, niacin, and manganese were consistently higher than 60% for L. acidophilus LA-5 cultured at pH 5.8, 4.9, and 4.4. The consumption rates of glutamic acid + glutamine and thiamine increased with decreasing pH and were higher than 60% at pH 4.9 and 4.4. The viable counts of L. acidophilus LA-5 were significantly increased under the corresponding acidic stress conditions (pH 4.9 and 4.4) through the appropriate addition of either alanine (3.37 and 2.81 mmol L-1), glutamic acid + glutamine (4.77 mmol L-1), guanine (0.13 and 0.17 mmol L-1), niacin (0.02 mmol L-1), thiamine (0.009 mmol L-1), or manganese (0.73 and 0.64 mmol L-1) (P < 0.05). The viable counts of L. acidophilus LA-5 cultured in a medium supplemented with combined nutritional factors was 1.02-1.03-fold of the counts observed in control medium under all acid conditions (P < 0.05). CONCLUSION: Alanine, glutamic acid + glutamine, guanine, niacin, thiamine, and manganese can improve the growth of L. acidophilus LA-5 in an acidic environment in the present study. The results will contribute to optimizing strategies to enhance the acid resistance of L. acidophilus and expand its application in the fermentation industry. © 2024 Society of Chemical Industry.


Asunto(s)
Lactobacillus acidophilus , Probióticos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Nutrientes/metabolismo , Fermentación
6.
Microbiol Spectr ; 10(1): e0100621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080431

RESUMEN

Lactobacillus is a genus of Gram-positive bacteria and comprises a major part of the lactic acid bacteria group that converts sugars to lactic acid. Lactobacillus species found in the gut microbiota are considered beneficial to human health and commonly used in probiotic formulations, but their molecular functions remain poorly defined. Microbes require metal ions for growth and function and must acquire them from the surrounding environment. Therefore, lactobacilli need to compete with other gut microbes for these nutrients, although their metal requirements are not well-understood. Indeed, the abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like zinc, manganese, and iron, but few studies have investigated the role of metals, especially zinc, in the physiology and metabolism of Lactobacillus species. Here, we investigated metal uptake by quantifying total cellular metal contents and compared how transition metals affect the growth of two distinct Lactobacillus species, Lactobacillus plantarum ATCC 14917 and Lactobacillus acidophilus ATCC 4356. When grown in rich or metal-limited medium, both species took up more manganese, zinc, and iron compared with other transition metals measured. Distinct zinc-, manganese- and iron-dependent patterns were observed in the growth kinetics for these species and while certain levels of each metal promoted the growth kinetics of both Lactobacillus species, the effects depend significantly on the culture medium and growth conditions. IMPORTANCE The gastrointestinal tract contains trillions of microorganisms, which are central to human health. Lactobacilli are considered beneficial microbiota members and are often used in probiotics, but their molecular functions, and especially those which are metal-dependent, remain poorly defined. Abundance of lactobacilli in the microbiota is frequently affected by dietary intake of essential metals like manganese, zinc, and iron, but results are complex, sometimes contradictory, and poorly predictable. There is a significant need to understand how host diet and metabolism will affect the microbiota, given that changes in microbiota composition are linked with disease and infection. The significance of our research is in gaining insight to how metals distinctly affect individual Lactobacillus species, which could lead to novel therapeutics and improved medical treatment. Growth kinetics and quantification of metal contents highlights how distinct species can respond differently to varied metal availability and provide a foundation for future molecular and mechanistic studies.


Asunto(s)
Hierro/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/metabolismo , Manganeso/metabolismo , Zinc/metabolismo , Cinética , Lactobacillus acidophilus/química , Lactobacillus plantarum/química
7.
Front Immunol ; 12: 694344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211480

RESUMEN

Immunodeficiency is a very common condition in suboptimal health status and during the development or treatment of many diseases. Recently, probiotics have become an important means for immune regulation. The present study aimed to investigate the mechanism of the immunomodulatory effect of a combination of live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus (CBLEB), which is a drug used by approximately 10 million patients every year, on cyclophosphamide-immunosuppressed rats. Cyclophosphamide (40 mg/kg) was intraperitoneally injected to induce immunosuppression in a rat model on days 1, 2, 3, and 10. Starting from day 4, the rats were continuously gavaged with CBLEB solution for 15 days. The samples were collected to determine routine blood test parameters, liver and kidney functions, serum cytokine levels, gut microbiota, fecal and serum metabolomes, transcriptomes, and histopathological features. The results indicated that CBLEB treatment reduced cyclophosphamide-induced death, weight loss, and damage to the gut, liver, spleen, and lungs and eliminated a cyclophosphamide-induced increase in the mean hemoglobin content and GGT, M-CSF, and MIP-3α levels and a decrease in the red blood cell distribution width and total protein and creatinine levels in the blood. Additionally, CBLEB corrected cyclophosphamide-induced dysbiosis of the gut microbiota and eliminated all cyclophosphamide-induced alterations at the phylum level in rat feces, including the enrichment in Proteobacteria, Fusobacteriota, and Actinobacteriota and depletion of Spirochaetota and Cyanobacteria. Furthermore, CBLEB treatment alleviated cyclophosphamide-induced alterations in the whole fecal metabolome profile, including enrichment in 1-heptadecanol, succinic acid, hexadecane-1,2-diol, nonadecanoic acid, and pentadecanoic acid and depletion of benzenepropanoic acid and hexane. CBLEB treatment also alleviated cyclophosphamide-induced enrichment in serum D-lyxose and depletion of serum succinic acid, D-galactose, L-5-oxoproline, L-alanine, and malic acid. The results of transcriptome analysis indicated that the mechanism of the effect of CBLEB was related to the induction of recovery of cyclophosphamide-altered carbohydrate metabolism and signal transduction. In conclusion, the present study provides an experimental basis and comprehensive analysis of application of CBLEB for the treatment of immunodeficiency.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Bifidobacterium longum subspecies infantis/crecimiento & desarrollo , Enterococcus faecalis/crecimiento & desarrollo , Microbioma Gastrointestinal , Huésped Inmunocomprometido , Síndromes de Inmunodeficiencia/terapia , Lactobacillus acidophilus/crecimiento & desarrollo , Probióticos , Animales , Bacillus cereus/inmunología , Bacillus cereus/metabolismo , Bifidobacterium longum subspecies infantis/inmunología , Bifidobacterium longum subspecies infantis/metabolismo , Ciclofosfamida , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Metabolismo Energético , Enterococcus faecalis/inmunología , Enterococcus faecalis/metabolismo , Síndromes de Inmunodeficiencia/inducido químicamente , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/microbiología , Lactobacillus acidophilus/inmunología , Lactobacillus acidophilus/metabolismo , Masculino , Metaboloma , Ratas Sprague-Dawley , Transducción de Señal , Transcriptoma
8.
J Food Sci ; 86(5): 1629-1641, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33822381

RESUMEN

Chocolates can be formulated as a functional food via enrichment with probiotics. However, the added probiotics must overcome the challenges of processing and storage conditions and the harsh gastrointestinal environment. The study aimed to overcome these challenges using two different formulations of cocoa powder as alternative encapsulants along with Na-alginate (A1 ) and Na-alginate and fructooligosaccharides (A2 ). Seven different probiotic strains were encapsulated individually using the new formulations and viabilities of these encapsulated probiotics were assessed prior to and after they were added to chocolates. The highest achieved encapsulation efficiencies were 93.40% for formulation A1 (with Lactobacillus casei) and 95.36% for formulation A2 (with Lactobacillus acidophilus La5). The encapsulated probiotics with the new formulations maintained higher viability than the recommended therapeutic level (107 colony forming unit [CFU]/g) for up to 180 and 120 days of storage at 4 and 25 °C, respectively. The tested encapsulants improved probiotics survival when subjected to thermal stress and maintained about 9.0 Logs CFU/g at 60 °C. Additionally, the viable numbers of probiotics in fortified chocolates showed higher than 7 Logs CFU/g after 90 days of storage at 25 °C. Both formulations exhibited significantly (P < 0.05) high survivability of probiotics (8.0 Logs CFU/g) during the in vitro gastrointestinal digestion. This study demonstrated that cocoa powder along with Na-alginate and FOS has the potential to be used as a probiotic encapsulating material, and chocolates could be an excellent carrier for the development of healthy probiotic chocolate products. PRACTICAL APPLICATION: The introduction of cocoa powder as an effective encapsulating agent to deliver probiotics could help the chocolate industry to develop healthy and attractive functional snacks for health-conscious consumers.


Asunto(s)
Alginatos/análisis , Cacao/microbiología , Chocolate/microbiología , Digestión , Oligosacáridos/análisis , Probióticos/química , Cápsulas , Manipulación de Alimentos , Tracto Gastrointestinal/microbiología , Humanos , Lactobacillus acidophilus/crecimiento & desarrollo , Lacticaseibacillus casei/crecimiento & desarrollo , Viabilidad Microbiana
9.
J Dairy Sci ; 104(2): 1484-1493, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33309375

RESUMEN

Camel milk, similar to cow milk, contains all of the essential nutrients as well as potentially health-beneficial compounds with anticarcinogenic, antihypertensive, and antioxidant properties. Camel milk has been used for the treatment of allergies to cow milk, diabetes, and autism. Camel milk helps decrease cholesterol levels in blood and improves metabolism. One of the most desirable food tastes is sweetness. However, the excessive ingestion of sugar negatively affects human health. Monk fruit sweetener is a natural, 0-calorie sweetener with many health-beneficial functions. Monk fruit sweetener helps decrease symptoms of asthma and diabetes, prevents oxidation and cancer, protects the liver, regulates immune function, and lowers glucose levels. Monk fruit sweetener is 100 to 250 times sweeter than sucrose. The objective of this study was to examine the influence of different concentrations of monk fruit sweetener on the physicochemical properties and microbiological counts of drinking yogurt made from camel milk. Camel milk drinking yogurt was produced with 0, 0.42, 1.27, and 2.54 g/L of monk fruit sweetener and stored for 42 d. The physicochemical characteristics and microbiological counts of yogurts were measured at d 1, 7, 14, 21, 28, 35, and 42. For the physicochemical characteristics, pH, titratable acidity, viscosity, and color [lightness-darkness (L*), red-green axis (a*), yellow-blue axis (b*), chroma (C*), and hue angle (h*)] values were evaluated. The counts of Streptococcus thermophilus, Lactobacillus bulgaricus, Lactobacillus acidophilus, coliforms, and yeast and mold were determined. Three replications were conducted. The sweetener addition significantly influenced pH, viscosity, and color (a*, b*, C*, and h*) values. Control samples had significantly higher pH values, lower viscosity, lower b* and C* values, and higher h* values than the samples with 1.27 and 2.54 g/L of monk fruit sweetener. Growth of S. thermophilus, L. bulgaricus, and probiotic culture L. acidophilus was not affected by the incorporation of monk fruit sweetener. Monk fruit sweetener can be added in camel milk yogurts as a health-beneficial 0-calorie sweetener.


Asunto(s)
Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus delbrueckii/crecimiento & desarrollo , Leche/química , Probióticos , Streptococcus thermophilus/crecimiento & desarrollo , Edulcorantes/química , Yogur/microbiología , Animales , Antioxidantes/análisis , Camelus , Fenómenos Químicos , Femenino , Fermentación , Frutas/química , Yogur/análisis
10.
J Dairy Sci ; 104(1): 138-150, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33131816

RESUMEN

Lactobacillus acidophilus LA-5 is a suitable probiotic for food application, but because of its slow growth in milk, an increase in its efficiency is desired. To shorten the time required for fermentation, the nutrient requirements of L. acidophilus LA-5 were analyzed, including the patterns of consumption of amino acids, purines, pyrimidines, vitamins, and metal ions. The nutrients required by L. acidophilus LA-5 were Asn, Asp, Cys, Leu, Met, riboflavin, guanine, uracil, and Mn2+, and when they were added to milk, the fermentation time of fermented milk prepared by L. acidophilus LA-5 alone was shortened by 9 h, with high viable cell counts that were maintained during storage of nutrient-supplemented fermented milk compared with the control. For fermented milk prepared by fermentation with Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, and L. acidophilus LA-5, viable cell counts of L. acidophilus LA-5 increased 1.3-fold and were maintained during storage of nutrient-supplemented fermented milk compared with the control. Adding nutrients had no negative effect on the quality of the fermented milk. The results indicated that suitable nutrients enhanced the growth of L. acidophilus LA-5 and increased its viable cell counts in fermented milk prepared by L. acidophilus LA-5 alone and mixed starter culture, respectively.


Asunto(s)
Lactobacillus acidophilus/crecimiento & desarrollo , Leche/metabolismo , Animales , Reactores Biológicos , Fermentación , Lactobacillus acidophilus/metabolismo , Leche/química , Nutrientes , Probióticos , Streptococcus thermophilus/metabolismo
11.
J Appl Microbiol ; 130(4): 1323-1336, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32808408

RESUMEN

AIMS: This study evaluated whether by-products from industrial processing of acerola (Malpighia glabra L.; AB) and guava (Psidium guajava L.; GB) fruit may stimulate the growth and metabolism of probiotic Lactobacillus and Bifidobacterium and induce changes in human colonic microbiota. METHODS AND RESULTS: The ability of non-digested and digested AB or GB to stimulate the growth ad metabolism of Lactobacillus acidophilus LA-05, Lactobacillus casei L-26 and Bifidobacterium animalis subsp. lactis BB-12 was evaluated. Changes in populations of distinct bacterial groups of human colonic microbiota induced by digested AB and GB were evaluated using an in vitro colonic fermentation system. Non-digested and digested AB and GB favoured probiotic growth. No difference among counts of probiotics in media with glucose, fructooligosaccharides and non-digested and digested AB and GB was found during a 48-h cultivation. Cultivation of probiotics in media with non-digested and digested AB and GB resulted in decreased pH, increased organic acid production and sugar consumption over time. Digested AB and GB caused overall beneficial changes in abundance of Bifidobacterium spp., Lactobacillus-Enterococcus, Eubacterium rectall-Clostridium coccoides and Bacteroides-Provotella populations, besides to decrease the pH and increase the short-chain fatty acid production during a 24-h in vitro colonic fermentation. CONCLUSION: AB and GB could be novel prebiotic ingredients because they can stimulate the growth and metabolism of probiotics and induce overall beneficial changes in human colonic microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY: AB and GB stimulated the growth and metabolism of probiotics, in addition to induce beneficial alterations in human colonic microbiota composition and increase short-chain fatty acid production. These results characterize AB and GB as potential prebiotic ingredients and fruit processing by-products as sources of added-value compounds.


Asunto(s)
Bifidobacterium animalis/crecimiento & desarrollo , Colon/microbiología , Lactobacillus/crecimiento & desarrollo , Malpighiaceae/metabolismo , Prebióticos/análisis , Probióticos/análisis , Psidium/metabolismo , Residuos/análisis , Bifidobacterium animalis/metabolismo , Clostridiales , Ácidos Grasos Volátiles/metabolismo , Fermentación , Frutas/química , Frutas/metabolismo , Microbioma Gastrointestinal , Humanos , Lactobacillus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Malpighiaceae/química , Oligosacáridos/análisis , Oligosacáridos/metabolismo , Probióticos/metabolismo , Psidium/química
12.
Bioprocess Biosyst Eng ; 44(1): 39-45, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32734358

RESUMEN

Probiotics, in particular, lactic acid bacteria (LAB) are widely used as starter cultures in food and pharmaceutical industries. Presence of LAB supports the production and preservation of a diverse range of food products, provides a positive effect on the human gastrointestinal tract, and prevents the progression of many diseases. However, the main limiting factor in the application of LAB is that they hardly survive in acidic conditions, including the human digestive system. This factor inhibits LAB to maintain their functionality and deliver their health benefits to the host. For this purpose, magnetic immobilisation of LAB with iron oxide nanoparticles (IONs) was conducted to evaluate the effect of IONs on bacterial growth and their viability at low pH. Gram-positive Lactobacillus acidophilus, a well-known species of LAB, was selected for this study. The IONs were successfully synthesised with the average size of 7 nm and used for decoration of L. acidophilus cells at low pH. Based on the results, a 1.8-fold increase in bacterial viability was observed by decorating cells with 360 µg/mL IONs.


Asunto(s)
Lactobacillus acidophilus/crecimiento & desarrollo , Nanopartículas Magnéticas de Óxido de Hierro/química , Concentración de Iones de Hidrógeno , Viabilidad Microbiana
13.
Afr Health Sci ; 20(2): 641-648, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33163025

RESUMEN

BACKGROUND: In this study, it was aimed to investigate the effects of bacterial cells and cell-free filtrates of Lactobacillus acidophilus 8MR7 and Lactobacillus paracasei subspecies paracasei 10MR8 on the biofilm formation of 3 Candida tropicalis, 3 C. glabrata and 12 C. albicans isolated from the vagina and identified their virulence factors. METHODS: Haemolytic activities esterase activities, and phospholipase activities as virulence factors of Candida strains were determined. Biofilm formations of these isolates were determined by Congo Red agar and microtitration plate method. Antibiofilm activities of bacterial cells and cell-free filtrates of L. acidophilus 8MR7 and L. paracasei subspecies paracasei 10MR8 on Candida isolates were determined by the microtitration plate method. RESULT: Bacterial cells of L. acidophilus 8MR7 and L. paracasei subspecies paracasei 10MR8 were not very effective in the inhibition of biofilm, whereas it has been observed that the cell-free filtrates of these bacteria inhibit the formation of biofilms of Candida strains. Although the main mechanism for inhibiting the formation of Candida spp. biofilm is the competition for adhesion, it is concluded that the substances contained in the cell-free filtrates of lactic acid bacteria are also important. CONCLUSION: These isolates promise hope as potential bacteria that can be used for anti-adhesion purposes in health-care materials.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida/patogenicidad , Candidiasis/prevención & control , Lactobacillales/fisiología , Lactobacillus acidophilus/crecimiento & desarrollo , Vagina/microbiología , Candida/clasificación , Candida/aislamiento & purificación , Femenino , Humanos
14.
Benef Microbes ; 11(6): 547-559, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33032472

RESUMEN

Hyperoxaluria is a pathological condition which affects long-term health of kidneys. The present study evaluates the impact of the combination of Lactobacillus amylovorus SGL 14 and the plant extract Phyllantus niruri (namely Phyllantin 14™) on dietary hyperoxaluria. Safety and efficacy of Phyllantin 14 have been evaluated in vivo. Mice C57BL6 fed a high-oxalate diet were compared to mice fed the same diet administered with Phyllantin 14 by gavage for 6 weeks. Control mice were fed a standard diet without oxalate. No adverse effects were associated to Phyllantin 14 supplementation, supporting its safety. Mice fed a high-oxalate diet developed significant hyperoxaluria and those administered with Phyllantin 14 showed a reduced level of urinary oxalate and a lower oxalate-to-creatinine ratio. Soluble and insoluble caecal oxalate were significantly lower in treated group, a finding in agreement with the colonisation study, i.e. mice were colonised with SGL 14 after 3 weeks. Microbiota analysis demonstrated that both oxalate diet and Phyllantin 14 can differently modulate the microbiota. In conclusion, our findings suggest that Phyllantin 14 supplementation represents a potential supportive approach for reducing urinary oxalate and/or for enhancing the efficacy of existing treatments.


Asunto(s)
Dieta , Hiperoxaluria/terapia , Lactobacillus acidophilus , Oxalatos/administración & dosificación , Phyllanthus , Extractos Vegetales/uso terapéutico , Animales , Adhesión Bacteriana , Ciego/química , Modelos Animales de Enfermedad , Heces/química , Microbioma Gastrointestinal , Células HT29 , Humanos , Hiperoxaluria/tratamiento farmacológico , Hiperoxaluria/patología , Riñón/patología , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxalatos/análisis , Oxalatos/orina , Fitoterapia , Probióticos
15.
PLoS One ; 15(9): e0239392, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970721

RESUMEN

The purpose of the present study was to evaluate yellow mombin (Spondias mombin L.) juice as a vehicle for the Lactobacillus acidophilus NRRL B-4495 probiotic. The initial pH and fermentation temperature conditions were optimized by central composite rotational design. The beverage was evaluated for its chemical composition, bioactive properties, microbiological stability, survival in simulated gastrointestinal conditions and sensory analysis. The ideal conditions for probiotic juice production were an initial pH of 6.4 and 16 h of fermentation, with maximum viability of 12.9 ± 0.4 Log CFU/mL. The fermented juice showed a total phenolic concentration of 94.90 ± 7.12 GAE/mL and antioxidant activity, as measured by DPPH (0.31 ± 0.00 µmol TE/mL) and ABTS sequestration (2.59 ± 0.30 µmol TE/mL). Antibacterial activity could also be observed against S. aureus, E. coli and K. pneumoniae. The obtained formulation showed good microbiological stability when stored at 4ºC for 28 days. In addition, there was no significant change in viability after exposure to simulated gastrointestinal conditions. The sensory analysis showed that the probiotic beverage was not well accepted. However, the Just-About-Right (JAR) ideal scale test enabled identifying the specific attributes which need to be improved from the tasters' point of view so that it is possible to improve product acceptance.


Asunto(s)
Anacardiaceae/química , Jugos de Frutas y Vegetales/análisis , Lactobacillus acidophilus/crecimiento & desarrollo , Anacardiaceae/metabolismo , Antioxidantes/química , Técnicas de Cultivo Celular por Lotes , Escherichia coli/efectos de los fármacos , Almacenamiento de Alimentos , Concentración de Iones de Hidrógeno , Lactobacillus acidophilus/fisiología , Pruebas de Sensibilidad Microbiana , Fenoles/química , Fenoles/metabolismo , Fenoles/farmacología , Staphylococcus aureus/efectos de los fármacos , Temperatura
16.
J Food Sci ; 85(10): 3450-3458, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32901954

RESUMEN

A plain symbiotic almond yogurt-like product was formulated and developed using a plant-based starter YF-L02 (Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus supplemented with Lactobacillus acidophilus, Lactobacillus paracasei, and Bifidobacterium animalis) and inulin; 0.6% polymerized whey protein (PWP), 0.3% pectin, and 0.05% xanthan gum were optimized for the formula of the almond yogurt alternative. Two groups with/without calcium citrate and vitamin D2 were prepared and analyzed for chemical composition, changes in pH, viscosity, and probiotic survivability during storage at 4 °C for 10 weeks. The results showed that (1) over 10 weeks storage, the differences in the pH, viscosity, and probiotic survivability between the control and the fortified samples were not significant (P > 0.05); (2) the pH of both yogurt samples decreased 0.2 units while their viscosity slightly increased during storage; (3) the populations of L. paracasei and B. animalis remained above 106 cfu/g during the storage, whereas the population of L. acidophilus decreased dramatically during the first 4 weeks, especially the control group; (4) the microstructure was examined by scanning electron microscopy, revealing a compact and denser gel structure formed by 0.6% PWP with the presence of 0.3% pectin and 0.05% xanthan gum. In conclusion, PWP might be a proper gelation agent for the formulation of symbiotic almond yogurt alternative. PRACTICAL APPLICATION: In this study, polymerized whey protein was used as a gelation agent to formulate symbiotic almond yogurt alternatives with comparable physical texture and probiotic survivability to dairy yogurt during storage. This technology may be used for the development of plant-based fermented foods.


Asunto(s)
Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus delbrueckii/crecimiento & desarrollo , Probióticos/química , Prunus dulcis/química , Streptococcus thermophilus/crecimiento & desarrollo , Proteína de Suero de Leche/química , Yogur/análisis , Fermentación , Geles/química , Geles/metabolismo , Inulina/química , Inulina/metabolismo , Lactobacillus acidophilus/metabolismo , Lactobacillus delbrueckii/metabolismo , Viabilidad Microbiana , Pectinas/química , Pectinas/metabolismo , Polimerizacion , Prunus dulcis/metabolismo , Prunus dulcis/microbiología , Streptococcus thermophilus/metabolismo , Viscosidad , Proteína de Suero de Leche/metabolismo , Yogur/microbiología
17.
Pharmacol Res ; 159: 104978, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32485282

RESUMEN

Emerging evidence implicates gut microbiota have an important role in ulcerative colitis (UC). Previous study indicated that Evodiamine (EVO) can alleviate colitis through downregulating inflammatory pathways. However, specific relationship between EVO-treated colitis relief and regulation of gut microbiota is still unclear. Here, our goal was to determine the potential role of gut microbiota in the relief of UC by EVO. By using pathology-related indicators, 16S rRNA sequencing and metabolomics profiling, we assessed the pharmacological effect of EVO on dextran sulfate sodium (DSS)-induced colitis rats as well as on the change of gut microbiota and metabolism. Fecal derived from EVO-treated rats was transplanted into colitis rats to verify the effect of EVO on gut microbiota, and 'driver bacteria' was found and validated by 16S rRNA sequencing, metagenome and qRT-PCR. The effect of Lactobacillus acidophilus (L. acidophilus) was investigated by vivo experiment, microbiota analysis, Short-chain fatty acids (SCFAs) quantification and colon transcriptomics. EVO reduced the susceptibility to DSS-induced destruction of epithelial integrity and severe inflammatory response, and regulated the gut microbiota and metabolites. Fecal Microbiota Transplantation (FMT) alleviated DSS-induced colitis, increased the abundance of L. acidophilus and the level of acetate. Furthermore, gavaged with L. acidophilus reduced pro-inflammatory cytokines, promoted the increase of goblet cells and the secretion of antimicrobial peptides, regulated the ratio of Firmicutes/Bacteroidetes and increased the level of acetate. Our results indicated that EVO mitigation of DSS-induced colitis is associated with increased in L. acidophilus and protective acetate production, which may be a promising strategy for treating UC.


Asunto(s)
Acetatos/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Colon/microbiología , Fármacos Gastrointestinales/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus acidophilus/efectos de los fármacos , Quinazolinas/farmacología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Heces/microbiología , Mediadores de Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/metabolismo , Masculino , Metabolómica , Ratas Sprague-Dawley , Ribotipificación
18.
Braz J Microbiol ; 51(3): 1309-1316, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32468399

RESUMEN

Pyroligneous acid (PA) was evaluated as a potential alternative to therapeutic antibiotics in poultry. Antimicrobial activity of PA was studied at acidic pH (2.0) and neutral pH (7.0) of the liquid against Salmonella enterica and Lactobacillus acidophilus. Acidic PA gave a MIC value of 0.8% (v/v) and 1.6% (v/v), and neutralized PA gave a MIC value of 1.6% (v/v) and 3.2% (v/v) against S. enterica and L. acidophilus respectively. Acidic PA was evaluated at different concentrations in a simulated poultry digestive tract and cecal fermentation to study its effect on the cecal microflora and fermentation profile. PA at a concentration of 1.6% (v/v) completely inhibited S. enterica and was also found to have a similar effect on lactobacilli count as compared with the control (p = 0.17). Additionally, PA at this concentration was found not to have a significant effect on acetic acid production after 24 h of cecal fermentation (p = 0.20). Graphical abstract.


Asunto(s)
Antibacterianos/farmacología , Tracto Gastrointestinal/microbiología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Salmonelosis Animal/tratamiento farmacológico , Salmonella enterica/efectos de los fármacos , Terpenos/farmacología , Animales , Tracto Gastrointestinal/efectos de los fármacos , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus acidophilus/crecimiento & desarrollo , Aves de Corral , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología , Salmonella enterica/crecimiento & desarrollo
19.
Nutrients ; 12(4)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326187

RESUMEN

The impact of acrylamide (AA) on microorganisms is still not clearly understood as AA has not induced mutations in bacteria, but its epoxide analog has been reported to be mutagenic in Salmonella strains. The aim of the study was to evaluate whether AA could influence the growth and viability of beneficial intestinal bacteria. The impact of AA at concentrations of 0-100 µg/mL on lactic acid bacteria (LAB) was examined. Bacterial growth was evaluated by the culture method, while the percentage of alive, injured, and dead bacteria was assessed by flow cytometry after 24 h and 48 h of incubation. We demonstrated that acrylamide could influence the viability of the LAB, but its impact depended on both the AA concentration and the bacterial species. The viability of probiotic strain Lactobacillus acidophilus LA-5 increased while that of Lactobacillus plantarum decreased; Lactobacillus brevis was less sensitive. Moreover, AA influenced the morphology of L. plantarum, probably by blocking cell separation during division. We concluded that acrylamide present in food could modulate the viability of LAB and, therefore, could influence their activity in food products or, after colonization, in the human intestine.


Asunto(s)
Acrilamida/efectos adversos , Acrilamida/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus acidophilus/efectos de los fármacos , Lactobacillus plantarum/efectos de los fármacos , Levilactobacillus brevis/efectos de los fármacos , Acrilamida/análisis , Análisis de los Alimentos , Manipulación de Alimentos , Productos Finales de Glicación Avanzada , Humanos , Lactobacillus acidophilus/crecimiento & desarrollo , Levilactobacillus brevis/crecimiento & desarrollo , Lactobacillus plantarum/crecimiento & desarrollo
20.
J Dairy Sci ; 103(6): 5030-5042, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32307174

RESUMEN

In this study, we modified reinforced clostridial medium (RCM) to selectively enumerate and isolate Lactobacillus delbrueckii ssp. bulgaricus, a probiotic and important starter culture in the dairy industry. The disparity in the reported carbohydrate fermentation pattern of L. delbrueckii ssp. bulgaricus was used to develop a growth medium not only selective for L. delbrueckii ssp. bulgaricus but significantly inhibitory to the growth of other lactic acid bacteria. A recently modified RCM (mRCM) was optimized for this study by the addition of 0.5% fructose, 0.5% dextrose, 1% maltose, and 0.25% sodium pyruvate while replacing lactose as a carbohydrate source. The cell recovery and bacterial counts of L. delbrueckii ssp. bulgaricus in tested products (pure L. delbrueckii ssp. bulgaricus strains, starter culture, probiotic supplements, and yogurt) using our mRCM with sodium pyruvate (mRCM-PYR) were significantly higher than in the recently modified RCM and the common de Man, Rogosa, and Sharpe (MRS) culture medium. The growth of other lactic acid bacteria (Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus reuteri) and Bifidobacteria was retarded in this modified medium compared with their growth in MRS and mRCM. This result is a significant improvement in the enumeration and differentiation of L. delbrueckii ssp. bulgaricus in mRCM-PYR compared with the results in MRS and mRCM where the high background growth of similar species interferes with the accuracy of bacterial population counts. Our results thus suggest that mRCM-PYR could be recommended as a reliable alternative growth medium for the selective enumeration and isolation of L. delbrueckii ssp. bulgaricus in a mixed culture.


Asunto(s)
Clostridium , Medios de Cultivo , Lactobacillus delbrueckii/aislamiento & purificación , Animales , Bifidobacterium/crecimiento & desarrollo , Fermentación , Lactobacillales/crecimiento & desarrollo , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus delbrueckii/crecimiento & desarrollo , Limosilactobacillus reuteri/crecimiento & desarrollo , Lacticaseibacillus rhamnosus/crecimiento & desarrollo , Probióticos , Streptococcus thermophilus/crecimiento & desarrollo , Yogur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...