Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(8): 4723-4738, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587192

RESUMEN

Bacterial reverse transcriptases (RTs) are a large and diverse enzyme family. AbiA, AbiK and Abi-P2 are abortive infection system (Abi) RTs that mediate defense against bacteriophages. What sets Abi RTs apart from other RT enzymes is their ability to synthesize long DNA products of random sequences in a template- and primer-independent manner. Structures of AbiK and Abi-P2 representatives have recently been determined, but there are no structural data available for AbiA. Here, we report the crystal structure of Lactococcus AbiA polymerase in complex with a single-stranded polymerization product. AbiA comprises three domains: an RT-like domain, a helical domain that is typical for Abi polymerases, and a higher eukaryotes and prokaryotes nucleotide-binding (HEPN) domain that is common for many antiviral proteins. AbiA forms a dimer that distinguishes it from AbiK and Abi-P2, which form trimers/hexamers. We show the DNA polymerase activity of AbiA in an in vitro assay and demonstrate that it requires the presence of the HEPN domain which is enzymatically inactive. We validate our biochemical and structural results in vivo through bacteriophage infection assays. Finally, our in vivo results suggest that AbiA-mediated phage defense may not rely on AbiA-mediated cell death.


Asunto(s)
Bacteriófagos , Lactococcus , Modelos Moleculares , Bacteriófagos/genética , Lactococcus/virología , Lactococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Dominios Proteicos , ADN Polimerasa Dirigida por ARN/metabolismo , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Multimerización de Proteína , Relación Estructura-Actividad
2.
J Biol Chem ; 300(1): 105578, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110036

RESUMEN

In Gram-positive bacteria, cell wall polysaccharides (CWPS) play critical roles in bacterial cell wall homeostasis and bacterial interactions with their immediate surroundings. In lactococci, CWPS consist of two components: a conserved rhamnan embedded in the peptidoglycan layer and a surface-exposed polysaccharide pellicle (PSP), which are linked together to form a large rhamnose-rich CWPS (Rha-CWPS). PSP, whose structure varies from strain to strain, is a receptor for many bacteriophages infecting lactococci. Here, we examined the first two steps of PSP biosynthesis, using in vitro enzymatic tests with lipid acceptor substrates combined with LC-MS analysis, AlfaFold2 modeling of protein 3D-structure, complementation experiments, and phage assays. We show that the PSP repeat unit is assembled on an undecaprenyl-monophosphate (C55P) lipid intermediate. Synthesis is initiated by the WpsA/WpsB complex with GlcNAc-P-C55 synthase activity and the PSP precursor GlcNAc-P-C55 is then elongated by specific glycosyltransferases that vary among lactococcal strains, resulting in PSPs with diverse structures. Also, we engineered the PSP biosynthesis pathway in lactococci to obtain a chimeric PSP structure, confirming the predicted glycosyltransferase specificities. This enabled us to highlight the importance of a single sugar residue of the PSP repeat unit in phage recognition. In conclusion, our results support a novel pathway for PSP biosynthesis on a lipid-monophosphate intermediate as an extracellular modification of rhamnan, unveiling an assembly machinery for complex Rha-CWPS with structural diversity in lactococci.


Asunto(s)
Pared Celular , Lactococcus , Polisacáridos Bacterianos , Ramnosa , Proteínas Bacterianas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Lactococcus/clasificación , Lactococcus/citología , Lactococcus/metabolismo , Lactococcus/virología , Lípidos , Peptidoglicano/metabolismo , Polisacáridos Bacterianos/metabolismo , Conformación Proteica , Ramnosa/metabolismo , Especificidad por Sustrato , Bacteriófagos/fisiología
3.
J Integr Plant Biol ; 63(8): 1505-1520, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34051041

RESUMEN

Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Lactococcus/virología , Nicotiana/genética , Vacunas Combinadas/inmunología , Animales , Antígenos Virales/inmunología , Pollos/inmunología , Retículo Endoplásmico/metabolismo , Hemaglutininas/química , Hemaglutininas/metabolismo , Inmunidad/efectos de los fármacos , Inmunización , Ratones , Extractos Vegetales/aislamiento & purificación , Plantas Modificadas Genéticamente , Dominios Proteicos , Multimerización de Proteína
4.
Gut ; 70(6): 1162-1173, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32998876

RESUMEN

OBJECTIVE: Altered bacterial composition is associated with disease progression in cirrhosis but the role of virome, especially phages, is unclear. DESIGN: Cross-sectional and pre/post rifaximin cohorts were enrolled. Cross-sectional: controls and cirrhotic outpatients (compensated, on lactulose (Cirr-L), on rifaximin (Cirr-LR)) were included and followed for 90-day hospitalisations. Pre/post: compensated cirrhotics underwent stool collection pre/post 8 weeks of rifaximin. Stool metagenomics for bacteria and phages and their correlation networks were analysed in controls versus cirrhosis, within cirrhotics, hospitalised/not and pre/post rifaximin. RESULTS: Cross-sectional: 40 controls and 163 cirrhotics (63 compensated, 43 Cirr-L, 57 Cirr-LR) were enrolled. Cirr-L/LR groups were similar on model for end-stage liver disease (MELD) score but Cirr-L developed greater hospitalisations versus Cirr-LR (56% vs 30%, p=0.008). Bacterial alpha/beta diversity worsened from controls through Cirr-LR. While phage alpha diversity was similar, beta diversity was different between groups. Autochthonous bacteria linked negatively, pathobionts linked positively with MELD but only modest phage-MELD correlations were seen. Phage-bacterial correlation network complexity was highest in controls, lowest in Cirr-L and increased in Cirr-LR. Microviridae and Faecalibacterium phages were linked with autochthonous bacteria in Cirr-LR, but not Cirr-L hospitalised patients had greater pathobionts, lower commensal bacteria and phages focused on Streptococcus, Lactococcus and Myoviridae. Pre/post: No changes in alpha/beta diversity of phages or bacteria were seen postrifaximin. Phage-bacterial linkages centred around urease-producing Streptococcus species collapsed postrifaximin. CONCLUSION: Unlike bacteria, faecal phages are sparsely linked with cirrhosis characteristics and 90-day outcomes. Phage and bacterial linkages centred on urease-producing, ammonia-generating Streptococcus species were affected by disease progression and rifaximin therapy and were altered in patients who experienced 90-day hospitalisations.


Asunto(s)
Antibacterianos/uso terapéutico , Enfermedad Hepática en Estado Terminal/microbiología , Firmicutes/virología , Encefalopatía Hepática/microbiología , Cirrosis Hepática/microbiología , Rifaximina/uso terapéutico , Anciano , Antibacterianos/farmacología , Estudios Transversales , Progresión de la Enfermedad , Enfermedad Hepática en Estado Terminal/etiología , Faecalibacterium/genética , Faecalibacterium/virología , Heces/microbiología , Femenino , Firmicutes/genética , Fármacos Gastrointestinales/uso terapéutico , Hospitalización , Humanos , Lactococcus/genética , Lactococcus/virología , Lactulosa/uso terapéutico , Cirrosis Hepática/complicaciones , Cirrosis Hepática/tratamiento farmacológico , Masculino , Metagenoma/efectos de los fármacos , Metagenómica , Interacciones Microbianas , Microviridae/genética , Persona de Mediana Edad , Myoviridae/genética , Gravedad del Paciente , Rifaximina/farmacología , Streptococcus/genética , Streptococcus/virología , Viroma/efectos de los fármacos
5.
FEMS Microbiol Rev ; 44(6): 909-932, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33016324

RESUMEN

Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Lactococcus/virología , Fagos de Streptococcus/fisiología , Industria Lechera , Fagos de Streptococcus/patogenicidad
6.
Viruses ; 12(3)2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138347

RESUMEN

LactococcusCeduovirus (formerly c2virus) bacteriophages are among the three most prevalent phage types reported in dairy environments. Phages from this group conduct a strictly lytic lifestyle and cause substantial losses during milk fermentation processes, by infecting lactococcal host starter strains. Despite their deleterious activity, there are limited research data concerning Ceduovirus phages. To advance our knowledge on this specific phage group, we sequenced and performed a comparative analysis of 10 new LactococcuslactisCeduovirus phages isolated from distinct dairy environments. Host range studies allowed us to distinguish the differential patterns of infection of L. lactis cells for each phage, and revealed a broad host spectrum for most of them. We showed that 40% of the studied Ceduovirus phages can infect both cremoris and lactis strains. A preference to lyse strains with the C-type cell wall polysaccharide genotype was observed. Phage whole-genome sequencing revealed an average nucleotide identity above 80%, with distinct regions of divergence mapped to several locations. The comparative approach for analyzing genomic data and the phage lytic spectrum suggested that the amino acid sequence of the orf8-encoded putative tape measure protein correlates with host range. Phylogenetic studies revealed separation of the sequenced phages into two subgroups. Finally, we identified three types of phage origin of replication regions, and showed they are able to support plasmid replication without additional phage proteins.


Asunto(s)
Bacteriófagos/fisiología , Lactococcus/virología , Plantas Comestibles/microbiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Clonación Molecular , Genoma Viral , Genómica , Especificidad del Huésped , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Fenómenos Fisiológicos de los Virus
7.
Mar Genomics ; 48: 100696, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31301990

RESUMEN

To date, a number of bacteriophages that infect Lactococcus garvieae isolated from marine fish have been identified. However, the evolutionary insight between L. garvieae phages and other viral community have not yet been immersedly investigated. In this study, completed genomic sequence of phage PLgY-30 was obtained, a comparative analysis of three lytic phages, which have been using for phage typing and treatment of L. garvieae infecting marine fish, is conducted. The results revealed that the genomes of lytic phages specific for L. garvieae isolated from diseased marine fish share a high level of homology and almost all proteins are conserved. At genome level, no similarity was detected for either PLgY-30 or PLgY-16, while PLgW-1 shares only very limited homology (1%) with other sequences in Genbank database. In addition, the function of only 35% of ORFs in the PLgY-30 phage genomes could be predicted, demonstrating that it is novel phage. At protein level, lytic phage proteins shared a significant similarity to various proteins of global phage species isolated from dairy fermentation facilities that utilize L. lactis as a primary starter culture, called the 936 phage group. Genome organization and architecture of three lytic phages are also similar to that of the 936 phage group. To our knowledge, this is the first time lytic bacteriophages infecting L. garvieae from marine fish were characterized to genome level.


Asunto(s)
Bacteriófagos/clasificación , Genoma Viral , Genómica , Lactococcus/virología , Secuencia de Aminoácidos , Evolución Biológica , Mutación INDEL , Lactococcus lactis/virología , Sistemas de Lectura Abierta , Filogenia
8.
Dis Aquat Organ ; 128(1): 81-86, 2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565256

RESUMEN

Three lytic phages (PLgW-1, PLgY-16, and PLgY-30) were previously used for phage-typing Lactococcus garvieae, a bacterial pathogen of various marine fish species, and were demonstrated to be potential therapeutants for infections caused by L. garvieae. The morphology, host range, and efficacy of these phages have not been investigated in detail, however. The current study examined the lysis spectrum of these 3 phages against 16 different genotypes of L. garvieae and the influence of a bacterial capsule on phage efficacy, to aid in developing an effective treatment for lactococcosis in fish. Morphological analysis by transmission electron microscopy revealed that all 3 phages belonged to the family Siphoviridae and had a minor difference in morphology. These phages lysed a high proportion of their bacterial host (93.7% of the different L. garvieae genotypes). In addition, the efficacy of the plating assays was affected by both the phages and their bacterial host, in which phage efficacy was clearly affected by a bacterial capsule. The results of this study may be useful for developing appropriate strategies to use these phages to control various genotypes of L. garvieae causing disease in marine fish.


Asunto(s)
Cápsulas Bacterianas/fisiología , Lactococcus/virología , Siphoviridae/fisiología , Especificidad del Huésped , Siphoviridae/clasificación
9.
Sci Rep ; 7(1): 1856, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28500301

RESUMEN

This report describes the morphological characterization and genome analysis of an induced prophage (PLg-TB25) from a dairy strain of Lactococcus garvieae. The phage belongs to the Siphoviridae family and its morphology is typical of other lactococcal phages. A general analysis of its genome did not reveal similarities with other lactococcal phage genomes, confirming its novelty. However, similarities were found between genes of its morphogenesis cluster and genes of Gram-positive bacteria, suggesting that this phage genome resulted from recombination events that took place in a heterogeneous microbial environment. An in silico search for other prophages in 16 L. garvieae genomes available in public databases, uncovered eight seemingly complete prophages in strains isolated from dairy and fish niches. Genome analyses of these prophages revealed three novel L. garvieae phages. The remaining prophages had homology to phages of Lactococcus lactis (P335 group) suggesting a close relationship between these lactococcal species. The similarity in GC content of L. garvieae prophages to the genomes of L. lactis phages further supports the hypothesis that these phages likely originated from the same ancestor.


Asunto(s)
Lactococcus/virología , Profagos/fisiología , Composición de Base , Genoma Viral , Genómica/métodos , Sistemas de Lectura Abierta , Profagos/ultraestructura
10.
Viruses ; 9(3)2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300778

RESUMEN

Dairy fermentations constitute a perfect "breeding ground" for bacteriophages infecting starter cultures, particularly strains of Lactococcus lactis. In modern fermentations, these phages typically belong to one of three groups, i.e., the 936, P335, and c2 phage groups. Traditional production methods present fewer chemical and physical barriers to phage proliferation compared to modern production systems, while the starter cultures used are typically complex, variable, and undefined. In the current study, a variety of cheese whey, animal-derived rennet, and vat swab samples from artisanal cheeses produced in Sicily were analysed for the presence of lactococcal phages to assess phage diversity in such environments. The complete genomes of 18 representative phage isolates were sequenced, allowing the identification of 10 lactococcal 949 group phages, six P087 group phages, and two members of the 936 group phages. The genetic diversity of these isolates was examined using phylogenetic analysis as well as a focused analysis of the receptor binding proteins, which dictate specific interactions with the host-encoded receptor. Thermal treatments at 63 °C and 83 °C indicate that the 949 phages are particularly sensitive to thermal treatments, followed by the P087 and 936 isolates, which were shown to be much less sensitive to such treatments. This difference may explain the relatively low frequency of isolation of the so-called "rare" 949 and P087 group phages in modern fermentations.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Biodiversidad , Queso/virología , Lactococcus/virología , Suero Lácteo/virología , Animales , Bacteriófagos/genética , Bacteriófagos/ultraestructura , Fermentación , Variación Genética , Genoma Bacteriano , Calor , Viabilidad Microbiana/efectos de la radiación , Filogenia , Análisis de Secuencia de ADN , Sicilia
11.
Sci Rep ; 6: 36667, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27824135

RESUMEN

The tail tape measure protein (TMP) of tailed bacteriophages (also called phages) dictates the tail length and facilitates DNA transit to the cell cytoplasm during infection. Here, a thorough mutational analysis of the TMP from lactococcal phage TP901-1 (TMPTP901-1) was undertaken. We generated 56 mutants aimed at defining TMPTP901-1 domains that are essential for tail assembly and successful infection. Through analysis of the derived mutants, we determined that TP901-1 infectivity requires the N-terminal 154 aa residues, the C-terminal 60 residues and the first predicted hydrophobic region of TMPTP901-1 as a minimum. Furthermore, the role of TMPTP901-1 in tail length determination was visualized by electron microscopic imaging of TMP-deletion mutants. The inverse linear correlation between the extent of TMPTP901-1-encoding gene deletions and tail length of the corresponding virion provides an estimate of TMPTP901-1 regions interacting with the connector or involved in initiator complex formation. This study represents the most thorough characterisation of a TMP from a Gram-positive host-infecting phage and provides essential advances to understanding its role in virion assembly, morphology and infection.


Asunto(s)
Lactococcus/virología , Siphoviridae/química , Proteínas Virales/química , Siphoviridae/metabolismo , Relación Estructura-Actividad , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
12.
PLoS One ; 11(6): e0155233, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27258092

RESUMEN

We report a method for obtaining turbid plaques of the lactococcal bacteriophage TP901-1 and its derivative TP901-BC1034. We have further used the method to isolate clear plaque mutants of this phage. Analysis of 8 such mutants that were unable to lysogenize the host included whole genome resequencing. Four of the mutants had different mutations in structural genes with no relation to the genetic switch. However all 8 mutants had a mutation in the cI repressor gene region. Three of these were located in the promoter and Shine-Dalgarno sequences and five in the N-terminal part of the encoded CI protein involved in the DNA binding. The conclusion is that cI is the only gene involved in clear plaque formation i.e. the CI protein is the determining factor for the lysogenic pathway and its maintenance in the lactococcal phage TP901-1.


Asunto(s)
Bacteriófagos/genética , ADN Viral , Lactococcus/virología , Mutación , Proteínas Virales/genética , Regiones Promotoras Genéticas
13.
Virus Res ; 222: 13-23, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27234995

RESUMEN

The lysogenic phage PLgT-1 is highly prevalent in Lactococcus garvieae, which is a serious bacterial pathogen in marine fish. Therefore, information regarding this phage is one of the key factors to predict the evolution of this bacterium. However, many properties of this phage, its complete genome sequence, and its relationship with other viral communities has not been investigated to date. Here, we demonstrated that the phage PLgT-1 was not only induced by an induction agent (Mitomycin C), but could be released frequently during cell division in a nutrient-rich environment or in natural seawater. Integration of PLgT-1 into non-lysogenic bacteria via transduction changed the genotype, resulting in the diversification of L. garvieae. The complete DNA sequence of PLgT-1 was also determined. This phage has a dsDNA genome of 40,273bp with 66 open reading frames (ORFs). Of these, the biological functions of 24 ORFs could be predicted but those of 42 ORFs are unknown. Thus, PLgT-1 is a novel phage with several novel proteins encoded in its genome. The strict MegaBLAST search program for the PLgT-1 genome revealed that this phage had no similarities with other previously investigated phages specific to L. garvieae (WP-2 and GE1). Notably, PLgT-1 was relatively homologous with several phages of Lactococcus lactis and 17 of the 24 predicted proteins encoded in PLgT-1 were homologous with the deduced proteins of various phages from these dairy bacteria. Comparative genome analysis revealed that the L. garvieae phage PLgT-1 was most closely related to the L. lactis phage TP712. However, they differed from each other in genome size and gene arrangement. The results obtained in this study suggest that the lysogenic phage PLgT-1 is a new member of the family Siphoviridae and has been involved in horizontal gene exchange with microbial communities, especially with L. lactis and its phages.


Asunto(s)
Genoma Viral , Genómica , Lactococcus/virología , Siphoviridae/fisiología , Bacteriólisis , Evolución Biológica , Orden Génico , Reordenamiento Génico , Genómica/métodos , Genotipo , Lactococcus lactis/virología , Filogenia , Proteómica/métodos , Homología de Secuencia de Ácido Nucleico , Siphoviridae/clasificación , Siphoviridae/aislamiento & purificación , Siphoviridae/ultraestructura , Transducción Genética
14.
J Fish Dis ; 39(7): 799-808, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26471724

RESUMEN

This study investigated the presence of prophages in Lactococcus garvieae isolated from several marine fish species in Japan. Representative strains of 16 bacterial genotypes (S1-S16) selected from more than 400 L. garvieae isolates were used to induce lysogenic bacteriophages. These strains were treated with 500 ng mL(-1) freshly prepared mitomycin C. A cross-spotting assay was performed to validate the lysogenic and indicator strains. The lysogenic strains were selected for isolation and concentration of the phages. Phage DNA was digested with EcoRI for biased sinusoidal field gel electrophoresis analysis. Polymerase chain reaction (PCR) was used to detect integrated prophage DNA. Of the 16 representative bacterial genotypes, 12 strains integrated prophages as indicated by the PCR assay, and 10 phages were detected and isolated using two indicator bacterial strains. Analysis of genomic DNA showed that these phages were homologous and named as PLgT-1. Transmission electron microscopy revealed that the morphology of PLgT-1 was consistent with the virus family Siphoviridae. PCR analysis of the prophage DNA revealed that all of the S1 genotype strains were lysogenic (30/30), but none of the S16 genotype strains were lysogenic (0/30). This is the first study to investigate lysogenic bacteriophages from L. garvieae.


Asunto(s)
ADN Viral/genética , Lactococcus/virología , Lisogenia , Profagos/fisiología , Siphoviridae/fisiología , Animales , Enfermedades de los Peces/microbiología , Peces , Japón , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa/veterinaria , Profagos/clasificación , Profagos/aislamiento & purificación , Profagos/ultraestructura , Siphoviridae/clasificación , Siphoviridae/aislamiento & purificación , Siphoviridae/ultraestructura , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/veterinaria
15.
Int J Food Microbiol ; 201: 47-51, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25744695

RESUMEN

Calcium is widely used in the study and successful propagation of virulent bacteriophages infecting lactic acid bacteria; however, it has not been assessed if and why this divalent cation is required for the infection process. Lactococcal phages are a persistent problem in the calcium-rich dairy environment and therefore were used as the model for this study. Using representative members of nine of the currently recognized ten lactococcal phage groups, encompassing phages of the Podoviridae and Siphoviridae families, we present data to suggest that calcium is not an explicit requirement for many of these phages. However, calcium expedited the pace of the lytic cycle for certain phages. Additionally, for calcium-dependent phages belonging to the 936 siphogroup, we could substitute this cation with magnesium or manganese, indicating that these phages are more adaptable than lactococcal phages of other groups. We postulate that the ability of phages to adapt to their environment and to harness the available mineral content may ultimately decide the success of a given phage infection. This may explain, in part, why 936 phages are one of the most frequently isolated phages in the dairy industry.


Asunto(s)
Bacteriófagos/metabolismo , Calcio/metabolismo , Lactococcus/virología , Adaptación Fisiológica , Bacteriófagos/aislamiento & purificación , Industria Lechera , Magnesio/metabolismo , Manganeso/metabolismo
16.
Gene ; 551(2): 222-9, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25178524

RESUMEN

To date, a few numbers of bacteriophages that infect Lactococcus garvieae have been identified, but their complete genome sequences have not yet been investigated. For the first time, herein, the complete DNA sequence of a new phage of L. garvieae (phage WP-2) is reported and analyzed. The morphological characteristics indicated that the phage had a small isometric head along with a short and non-contractile tail, suggesting that WP-2 belongs to the family Podoviridae. Bioinformatic analysis revealed that phage WP-2 can be classified as a new member of Ahjdlikevirus in the Picovirinae subfamily because it had a small dsDNA of 18,899 bp with 24 open reading frames and a protein-primed DNA polymerase. The phage nucleotide sequence and predicted protein products have been identified to share very limited evidence of homology with complete genome and proteome of other phages. To our knowledge, this is the first Ahjdlikevirus bacteriophage which can infect a member of the Lactococcus genus.


Asunto(s)
Bacteriófagos/genética , Genómica/métodos , Lactococcus/virología , Podoviridae/genética , Bacteriófagos/clasificación , Bacteriófagos/ultraestructura , Mapeo Cromosómico , ADN/genética , ADN Viral/química , ADN Viral/genética , Orden Génico , Genoma Viral/genética , Microscopía Electrónica , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Podoviridae/clasificación , Análisis de Secuencia de ADN , Proteínas Virales/genética
17.
Arch Virol ; 159(11): 2909-15, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24928734

RESUMEN

Lactococcus garvieae is an emerging pathogen responsible for lactococcosis, a serious disease in trout aquaculture. The identification of new bacteriophages against L. garvieae strains may be an effective way to fight this disease and to study the pathogen's biology. Three L. garvieae phages, termed WP-1, WWP-2 and SP-2, were isolated from different environments, and their morphological features, genome restriction profiles and structural protein patterns were studied. Random cloning of HindIII-cut fragments was performed, and the fragments were partially sequenced for each phage. Although slight differences were observed by transmission electron microscopy, all of the phages had hexagonal heads and short non-contractile tails and were classified as members of the family Podoviridae. Restriction digestion analysis of the nucleic acids of the different phages revealed that the HindIII and AseI digests produced similar DNA fragment patterns. Additionally, SDS-PAGE analysis indicated that the isolated phages have similar structural proteins. The sequence BLAST results did not show any significant similarity with other previously identified phages. To the best of our knowledge, this study provides the first molecular characterization of L. garvieae phages.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Lactococcus/virología , Podoviridae/clasificación , Podoviridae/aislamiento & purificación , Bacteriófagos/genética , Datos de Secuencia Molecular , Filogenia , Podoviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
18.
mBio ; 5(3): e00880-14, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24803515

RESUMEN

ABSTRACT Analysis of the genetic locus encompassing a cell wall polysaccharide (CWPS) biosynthesis operon of eight strains of Lactococcus lactis, identified as belonging to the same CWPS type C genotype, revealed the presence of a variable region among the strains examined. The results allowed the identification of five subgroups of the C type named subtypes C1 to C5. This variable region contains genes encoding glycosyltransferases that display low or no sequence homology between the subgroups. In this study, we purified an acidic polysaccharide from the cell wall of L. lactis 3107 (subtype C2) and confirmed that it is structurally different from the previously established CWPS of subtype C1 L. lactis MG1363. The CWPS of L. lactis 3107 is composed of pentasaccharide repeating units linked by phosphodiester bonds with the structure 6-α-Glc-3-ß-Galf-3-ß-GlcNAc-2-ß-Galf-6-α-GlcNAc-1-P. Combinations of genes from the variable region of subtype C2 were introduced into a mutant of subtype C1 L. lactis NZ9000 deficient in CWPS biosynthesis. The resulting recombinant mutant synthesized a polysaccharide with a composition characteristic of that of subtype C2 L. lactis 3107 and not wild-type C1 L. lactis NZ9000. By challenging the recombinant mutant with various lactococcal phages, we demonstrated that CWPS is the host cell surface receptor of tested bacteriophages of both the P335 and 936 groups and that differences between the CWPS structures play a crucial role in determining phage host range. IMPORTANCE Despite the efforts of nearly 80 years of lactococcal phage research, the precise nature of the cell surface receptors of the P335 and 936 phage group receptors has remained elusive. This work demonstrates the molecular nature of a P335 group receptor while bolstering the evidence of its role in host recognition by phages of the 936 group and at least partially explains why such phages have a very narrow host range. The information generated will be instrumental in understanding the molecular mechanisms of how phages recognize specific saccharidic receptors located on the surface of their bacterial host.


Asunto(s)
Bacteriófagos/fisiología , Pared Celular/metabolismo , Interacciones Huésped-Patógeno , Lactococcus/metabolismo , Lactococcus/virología , Polisacáridos Bacterianos/metabolismo , Genes Bacterianos , Genotipo , Especificidad del Huésped , Lactococcus/genética , Datos de Secuencia Molecular , Familia de Multigenes , Receptores Virales
19.
Biochemistry ; 52(39): 6892-904, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24047404

RESUMEN

In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix-turn-helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator sites). Here the crystal structure of the NTD of the CI repressor from phage TP901-1 has been determined at 1.6 Å resolution, and at 2.6 Å resolution in complex with a 9 bp double-stranded DNA fragment that constitutes a half-site of the OL operator. This N-terminal construct, comprising residues 2-74 of the CI repressor, is monomeric in solution as shown by nuclear magnetic resonance (NMR), small angle X-ray scattering, and gel filtration and is monomeric in the crystal structures. The binding interface between the NTD and the half-site in the crystal is very similar to the interface that can be mapped by NMR in solution with a full palindromic site. The interactions seen in the complexes (in the crystal and in solution) explain the observed affinity for the OR site that is lower than that for the OL site and the specificity for the recognized DNA sequence in comparison to that for other repressors. Compared with many well-studied phage repressor systems, the NTD from TP901-1 CI has a longer extended scaffolding helix that, interestingly, is strongly conserved in putative repressors of Gram-positive pathogens. On the basis of sequence comparisons, we suggest that these bacteria also possess repressor/antirepressor systems similar to that found in phage TP901-1.


Asunto(s)
Bacteriófagos/química , ADN/metabolismo , Lactococcus/virología , Resonancia Magnética Nuclear Biomolecular , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Sitios de Unión , ADN/química , Modelos Moleculares , Dispersión del Ángulo Pequeño , Difracción de Rayos X
20.
J Dairy Sci ; 96(8): 4945-57, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23769356

RESUMEN

This study reports on the identification and characterization of bacteriophages isolated from cheese-production facilities that use undefined, mixed starter cultures. Phage screening was carried out on whey samples isolated from 3 factories, 2 utilizing one particular undefined starter mixture and 1 utilizing another undefined starter mixture. Phage screening was carried out using 40 strains isolated from the 2 mixed starter cultures, and phages were profiled using host range, electron microscopy, multiplex PCR, and DNA restriction analysis. Twenty distinct lactococcal phages were identified based on host range and DNA restriction profiles, all belonging to the 936-type phage species. Nineteen of these phages were found to be able to infect both recognized subspecies of Lactococcus lactis. Restriction of phage DNA isolated using a newly developed guanidinium thiocyanate disruption method showed that the genomes of the 20 isolated phages were between 26 and 31 kb in size. It is evident from this study that the use of mixed starters creates an ideal environment for the proliferation of different phages with slightly varying host ranges. Furthermore, in this environment, members of the 936-type phage species clearly dominated the phage population.


Asunto(s)
Bacteriófagos/metabolismo , Queso/virología , Lactococcus/virología , Bacteriófagos/aislamiento & purificación , Biodiversidad , Queso/microbiología , Tecnología de Alimentos , Microscopía Electrónica , Reacción en Cadena de la Polimerasa Multiplex
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...