Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Intervalo de año de publicación
1.
PLoS One ; 19(8): e0308714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39146299

RESUMEN

Fossil identification practices have a profound effect on our interpretation of the past because these identifications form the basis for downstream analyses. Therefore, well-supported fossil identifications are necessary for examining the impact of past environmental changes on populations and communities. Here we apply an apomorphic identification framework in a case study identifying fossil lizard remains from Hall's Cave, a late Quaternary fossil site located in Central Texas, USA. We present images and descriptions of a broad comparative sample of North American lizard cranial elements and compile new and previously reported apomorphic characters for identifying fossil lizards. Our fossil identifications from Hall's Cave resulted in a minimum of 11 lizard taxa, including five lizard taxa previously unknown from the site. Most of the identified fossil lizard taxa inhabit the area around Hall's Cave today, but we reinforce the presence of an extirpated species complex of horned lizard. A main goal of this work is to establish a procedure for making well-supported fossil lizard identifications across North America. The data from this study will assist researchers endeavoring to identify fossil lizards, increasing the potential for novel discoveries related to North American lizards and facilitating more holistic views of ancient faunal assemblages.


Asunto(s)
Fósiles , Lagartos , Cráneo , Animales , Fósiles/anatomía & histología , Lagartos/anatomía & histología , Cráneo/anatomía & histología , Texas , Cuevas
2.
Sci Rep ; 14(1): 15662, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977836

RESUMEN

Scincidae is one of the most species-rich and cosmopolitan clades of squamate reptiles. Abundant disarticulated fossil material has also been attributed to this group, however, no complete pre-Cenozoic crown-scincid specimens have been found. A specimen in Burmite (99 MYA) is the first fossil that can be unambiguously referred to this clade. Our analyses place it as nested within extant skinks, supported by the presence of compound osteoderms formed by articulated small ostedermites. The specimen has a combination of dorsal and ventral compound osteoderms and overlapping cycloid scales that is limited to skinks. We propose that this type of osteoderm evolved as a response to an increased overlap of scales, and to reduced stiffness of the dermal armour. Compound osteoderms could be a key innovation that facilitated diversification in this megadiverse family.


Asunto(s)
Ámbar , Fósiles , Animales , Fósiles/anatomía & histología , Lagartos/anatomía & histología , Filogenia , Evolución Biológica
3.
Biol Lett ; 20(7): 20240171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38955224

RESUMEN

Arboreality has evolved in all major vertebrate lineages and is often associated with morphological adaptations and increased diversification concomitant with accessing novel niche space. In squamate reptiles, foot, claw, and tail morphology are well-studied adaptations shown to be associated with transitions to arboreality. Here, we examined a less well understood trait-the keeled scale-in relation to microhabitat, climate, and diversification dynamics across a diverse lizard radiation, Agamidae. We found that the ancestral agamid had keeled dorsal but not ventral scales; further, dorsal and ventral keels are evolutionarily decoupled. Ventral keeled scales evolved repeatedly in association with arboreality and may be advantageous in reducing wear or by promoting interlocking when climbing. We did not find an association between keeled scales and diversification, suggesting keels do not allow finer-scale microhabitat partitioning observed in other arboreal-associated traits. We additionally found a relationship between keeled ventral scales and precipitation in terrestrial species where we posit that the keels may function to reduce scale degradation. Our results suggest that keeled ventral scales facilitated transitions to arboreality across agamid lizards, and highlight a need for future studies that explore their biomechanical function in relation to microhabitat and climate.


Asunto(s)
Evolución Biológica , Ecosistema , Lagartos , Animales , Lagartos/fisiología , Lagartos/anatomía & histología , Escamas de Animales/anatomía & histología , Escamas de Animales/fisiología , Filogenia , Clima
4.
An Acad Bras Cienc ; 96(3): e20220650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922253

RESUMEN

The study aimed to characterize the digestive tract of Uranoscodon superciliosus and its associations to the diet and foraging behavior already described for the species. Five lizards were captured in forest areas near the city of Manaus, Amazonas, Brazil. Tongue, oesophagus, stomach, small and large intestines fragments were collected, fixed, and processed for light microscopy. Hyaline cartilage was present in the center of the tongue, and the papillae from the apex and glands from the radix showed positive reaction to Alcian blue. The oesophagus presented a folded mucosa, covered by an epithelium with mucous and goblet cells positive to PAS and Alcian blue. There was presence of gastric glands in the cardic and fundic stomach regions, plus all the regions reacted positively to PAS. Fold and villi variations in both small and large intestine were noted, as well as the number and arrangement of goblet cells. Mucous and goblet cells from the small intestine were positively stained in PAS, while only the goblet cells were Alcian blue positive. These findings indicate that the Amazonian Diving Lizard's digestive tract organs, mainly the tongue and stomach, present morphologies associated to ambush-type foraging and a specific diet largely based on small invertebrates.


Asunto(s)
Conducta Alimentaria , Tracto Gastrointestinal , Lagartos , Animales , Lagartos/anatomía & histología , Lagartos/clasificación , Conducta Alimentaria/fisiología , Tracto Gastrointestinal/anatomía & histología , Brasil , Dieta , Masculino
5.
Evolution ; 78(8): 1511-1512, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38887895

RESUMEN

What shapes the differences in body size between males and females in miniature species? One potential key factor is reproduction, which could constrain body size evolution because females of miniature species need to remain large enough to lay viable eggs. Glynne and Adams (2024) tested this hypothesis in two gecko families, the Sphaerodactylidae and Phyllodactylidae. Their findings support this hypothesis, indicating that female-biased size differences in miniature species are shaped by selection for reproductive success.


Asunto(s)
Tamaño Corporal , Lagartos , Animales , Lagartos/fisiología , Lagartos/anatomía & histología , Lagartos/genética , Femenino , Masculino , Reproducción , Evolución Biológica , Caracteres Sexuales
6.
J Morphol ; 285(5): e21702, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693678

RESUMEN

The skull anatomy of amphisbaenians directly influences their capacity to burrow and is crucial for the study of their systematics, which ultimately contributes to our comprehension of their evolution and ecology. In this study, we employed three-dimensional X-ray computed tomography to provide a detailed description and comprehensive comparison of the skull anatomy of two amphisbaenian species with similar external morphology, Amphisbaena arda and Amphisbaena vermicularis. Our findings revealed some differences between the species, especially in the sagittal crest of the parietal bone, the ascendant process, and the transverse occipital crest of the occipital complex. We also found intraspecific variation within A. vermicularis, with some specimens displaying morphology that differed from their conspecifics but not from A. arda. The observed intraspecific variation within A. vermicularis cannot be attributed to soil features because all specimens came from the same locality. Specimen size and soil type may play a role in the observed differences between A. arda and A. vermicularis, as the single A. arda specimen is the largest of our sample and soil type and texture differ between the collection sites of the two species.


Asunto(s)
Lagartos , Cráneo , Animales , Cráneo/anatomía & histología , Lagartos/anatomía & histología , Tomografía Computarizada por Rayos X , Especificidad de la Especie , Osteología
7.
PeerJ ; 12: e17277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708352

RESUMEN

Background: Squamata (lizards, snakes, and amphisbaenians) is a Triassic lineage with an extensive and complex biogeographic history, yet no large-scale study has reconstructed the ancestral range of early squamate lineages. The fossil record indicates a broadly Pangaean distribution by the end- Cretaceous, though many lineages (e.g., Paramacellodidae, Mosasauria, Polyglyphanodontia) subsequently went extinct. Thus, the origin and occupancy of extant radiations is unclear and may have been localized within Pangaea to specific plates, with potential regionalization to distinct Laurasian and Gondwanan landmasses during the Mesozoic in some groups. Methods: We used recent tectonic models to code extant and fossil squamate distributions occurring on nine discrete plates for 9,755 species, with Jurassic and Cretaceous fossil constraints from three extinct lineages. We modeled ancestral ranges for crown Squamata from an extant-only molecular phylogeny using a suite of biogeographic models accommodating different evolutionary processes and fossil-based node constraints from known Jurassic and Cretaceous localities. We hypothesized that the best-fit models would not support a full Pangaean distribution (i.e., including all areas) for the origin of crown Squamata, but would instead show regionalization to specific areas within the fragmenting supercontinent, likely in the Northern Hemisphere where most early squamate fossils have been found. Results: Incorporating fossil data reconstructs a localized origin within Pangaea, with early regionalization of extant lineages to Eurasia and Laurasia, while Gondwanan regionalization did not occur until the middle Cretaceous for Alethinophidia, Scolecophidia, and some crown Gekkotan lineages. While the Mesozoic history of extant squamate biogeography can be summarized as a Eurasian origin with dispersal out of Laurasia into Gondwana, their Cenozoic history is complex with multiple events (including secondary and tertiary recolonizations) in several directions. As noted by previous authors, squamates have likely utilized over-land range expansion, land-bridge colonization, and trans-oceanic dispersal. Tropical Gondwana and Eurasia hold more ancient lineages than the Holarctic (Rhineuridae being a major exception), and some asymmetries in colonization (e.g., to North America from Eurasia during the Cenozoic through Beringia) deserve additional study. Future studies that incorporate fossil branches, rather than as node constraints, into the reconstruction can be used to explore this history further.


Asunto(s)
Fósiles , Animales , Filogenia , Evolución Biológica , Serpientes/anatomía & histología , Serpientes/clasificación , Serpientes/genética , Lagartos/anatomía & histología , Lagartos/genética , Lagartos/clasificación , Filogeografía , Europa (Continente) , Asia
8.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791320

RESUMEN

Nuclear speckles are compartments enriched in splicing factors present in the nucleoplasm of eucaryote cells. Speckles have been studied in mammalian culture and tissue cells, as well as in some non-mammalian vertebrate cells and invertebrate oocytes. In mammals, their morphology is linked to the transcriptional and splicing activities of the cell through a recruitment mechanism. In rats, speckle morphology depends on the hormonal cycle. In the present work, we explore whether a similar situation is also present in non-mammalian cells during the reproductive cycle. We studied the speckled pattern in several tissues of a viviparous reptile, the lizard Sceloporus torquatus, during two different stages of reproduction. We used immunofluorescence staining against splicing factors in hepatocytes and oviduct epithelium cells and fluorescence and confocal microscopy, as well as ultrastructural immunolocalization and EDTA contrast in Transmission Electron Microscopy. The distribution of splicing factors in the nucleoplasm of oviductal cells and hepatocytes coincides with the nuclear-speckled pattern described in mammals. Ultrastructurally, those cell types display Interchromatin Granule Clusters and Perichromatin Fibers. In addition, the morphology of speckles varies in oviduct cells at the two stages of the reproductive cycle analyzed, paralleling the phenomenon observed in the rat. The results show that the morphology of speckles in reptile cells depends upon the reproductive stage as it occurs in mammals.


Asunto(s)
Núcleo Celular , Hepatocitos , Lagartos , Animales , Femenino , Lagartos/anatomía & histología , Lagartos/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Hepatocitos/citología , Viviparidad de Animales no Mamíferos/fisiología , Oviductos/metabolismo , Oviductos/ultraestructura , Oviductos/citología
9.
An Acad Bras Cienc ; 96(2): e20230240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747786

RESUMEN

There are few studies related to the biological and ecological aspects of the glass snake, a limbless lizard and with a wide geographic distribution. The aim of this study was to analyze the locomotion mode of specimens of Ophiodes cf. fragilis in different substrates and to investigate the morphological adaptations associated with this type of behavior. We observed that the analyzed specimens presented slide-push locomotion modes and lateral undulation in different substrates, using their hind limbs to aid locomotion in three of the four substrates analyzed. The bones of the hind limbs (proximal - femur - and distal - tibia and fibula) were present and highly reduced and the femur is connected to a thin pelvic girdle. Our data support that hind limbs observed in species of this genus are reduced rather than vestigial. The costocutaneous musculature was macroscopically absent. This is the first study of locomotor behavior and morphology associated with locomotion in Ophiodes, providing important information for studies on morphological evolution in the genus.


Asunto(s)
Adaptación Fisiológica , Lagartos , Locomoción , Animales , Lagartos/anatomía & histología , Lagartos/fisiología , Lagartos/clasificación , Locomoción/fisiología , Adaptación Fisiológica/fisiología , Miembro Posterior/anatomía & histología , Miembro Posterior/fisiología
10.
Anat Histol Embryol ; 53(3): e13052, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38735035

RESUMEN

One crucial component of the optical system is the ciliary body (CB). This body secretes the aqueous humour, which is essential to maintain the internal eye pressure as well as the clearness of the lens and cornea. The histological study was designed to provide the morphological differences of CB and iris in the anterior eye chambers of the following vertebrate classes: fish (grass carp), amphibians (Arabian toad), reptiles (semiaquatic turtle, fan-footed gecko, ocellated skink, Egyptian spiny-tailed lizard, Arabian horned viper), birds (common pigeon, common quail, common kestrel), and mammals (BALB/c mouse, rabbit, golden hamster, desert hedgehog, lesser Egyptian jerboa, Egyptian fruit bat). The results showed distinct morphological appearances of the CB and iris in each species, ranging from fish to mammals. The present comparative study concluded that the morphological structure of the CB and iris is the adaptation of species to either their lifestyle or survival in specific habitats.


Asunto(s)
Cuerpo Ciliar , Iris , Animales , Cuerpo Ciliar/anatomía & histología , Iris/anatomía & histología , Conejos/anatomía & histología , Ratones/anatomía & histología , Lagartos/anatomía & histología , Vertebrados/anatomía & histología , Reptiles/anatomía & histología , Peces/anatomía & histología , Aves/anatomía & histología , Cámara Anterior/anatomía & histología , Tortugas/anatomía & histología , Carpas/anatomía & histología , Ratones Endogámicos BALB C , Anfibios/anatomía & histología , Cricetinae , Codorniz/anatomía & histología , Erizos/anatomía & histología , Columbidae/anatomía & histología , Mesocricetus/anatomía & histología
11.
Biol Reprod ; 110(6): 1077-1085, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38641547

RESUMEN

Volumetric data provide unprecedented structural insight to the reproductive tract and add vital anatomical context to the relationships between organs. The morphology of the female reproductive tract in non-avian reptiles varies between species, corresponding to a broad range of reproductive modes and providing valuable insight to comparative investigations of reproductive anatomy. However, reproductive studies in reptilian models, such as the brown anole studied here, have historically relied on histological methods to understand the anatomy. While these methods are highly effective for characterizing the cell types present in each organ, histological methods lose the 3D relationships between images and leave the architecture of the organ system poorly understood. We present the first comprehensive volumetric analyses of the female brown anole reproductive tract using two non-invasive, non-destructive imaging modalities: micro-computed tomography (microCT) and optical coherence tomography (OCT). Both are specialized imaging technologies that facilitate high-throughput imaging and preserve three-dimensional information. This study represents the first time that microCT has been used to study all reproductive organs in this species and the very first time that OCT has been applied to this species. We show how the non-destructive volumetric imaging provided by each modality reveals anatomical context including orientation and relationships between reproductive organs of the anole lizard. In addition to broad patterns of morphology, both imaging modalities provide the high resolution necessary to capture details and key anatomical features of each organ. We demonstrate that classic histological features can be appreciated within whole-organ architecture in volumetric imaging using microCT and OCT, providing the complementary information necessary to understand the relationships between tissues and organs in the reproductive system. This side-by-side imaging analysis using microCT and OCT allows us to evaluate the specific advantages and limitations of these two methods for the female reptile reproductive system.


Asunto(s)
Genitales Femeninos , Lagartos , Tomografía de Coherencia Óptica , Microtomografía por Rayos X , Animales , Femenino , Microtomografía por Rayos X/métodos , Microtomografía por Rayos X/veterinaria , Tomografía de Coherencia Óptica/métodos , Tomografía de Coherencia Óptica/veterinaria , Lagartos/anatomía & histología , Genitales Femeninos/diagnóstico por imagen , Genitales Femeninos/anatomía & histología , Imagenología Tridimensional/métodos , Imagenología Tridimensional/veterinaria
12.
Zoology (Jena) ; 164: 126160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574691

RESUMEN

Squamates exhibit evident diversity in their limb morphology. Gekkotans are a particularly diverse group in this respect. The appearance of toepads in gekkotans usually cooccurs with the reduction or loss of claws. The gecko Tarentola (Phyllodactylidae) shows a unique combination of features among geckos, with toepads, hyperphalangy, and dimorphism of claw expression (claws are retained on digits III and IV, but lost (manus) or strongly reduced (pes) on the remaining digits). Despite being a candidate model for studying embryonic skeletal development of the autopodium, no studies have investigated the autopodial development of the gecko Tarentola in detail. Here, we aim to follow up the development of the autopodial skeleton in T. annularis and T. mauritanica using acid-free double staining. The results indicate that the terminal phalanges of claw-bearing digits III and IV ossify earlier than in the remaining digits. This confirms the differential ossification as a result of claw regression in Tarentola. The strongly reduced second phalanges of digits IV in both the fore- and hindlimbs are the last ossifying phalanges. Such late ossification may precede the evolutionary loss of this phalanx. If this is correct, the autopodia of Tarentola would be an interesting example of both the hyperphalangy in digit I and the process of phalanx loss in digit IV. Delay in ossification of the miniaturised phalanx probably represents an example of paedomorphosis.


Asunto(s)
Lagartos , Animales , Lagartos/anatomía & histología , Lagartos/embriología , Extremidades/anatomía & histología , Osteogénesis
13.
J Anat ; 245(2): 303-323, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38581181

RESUMEN

This study investigated the pancreas differentiation of two species of gekkotan families-the mourning gecko Lepidodactylus lugubris (Gekkonidae) and the leopard gecko Eublepharis macularius (Eublepharidae)-based on two-dimensional (2D) histological samples and three-dimensional (3D) reconstructions of the position of the pancreatic buds and the surrounding organs. The results showed that at the moment of egg laying, the pancreas of L. lugubris is composed of three distinct primordia: one dorsal and two ventral. The dorsal primordium differentiates earlier than either ventral primordium. The right ventral primordium is more prominent and distinctive, starting to form earlier than the left one. Moreover, at this time, the pancreas of the leopard gecko is composed of the dorsal and right ventral primordium and the duct of the left ventral primordium. It means that the leopard gecko's left primordium is a transitional structure. These results indicate that the early development of the gekkotan pancreas is species specific. The pancreatic buds of the leopard and mourning gecko initially enter the duodenum by separate outlets, similar to the pancreas of other vertebrates. The pancreatic buds (3 of the mourning gecko and 2 of the leopard gecko) fuse quickly and form an embryonic pancreas. After that, the structure of this organ changes. After fusion, the pancreas of both gekkotans comprises four parts: the head of the pancreas (central region) and three lobes: upper, splenic, and lower. This organ develops gradually and is very well distinguished at hatching time. In both gekkotan species, cystic, hepatic, and pancreatic ducts enter the duodenum within the papilla. During gekkotan pancreas differentiation, the connection between the common bile duct and the dorsal pancreatic duct is associated with intestinal rotation, similar to other vertebrates.


Asunto(s)
Lagartos , Páncreas , Animales , Lagartos/embriología , Lagartos/anatomía & histología , Páncreas/embriología , Páncreas/anatomía & histología , Imagenología Tridimensional
14.
Mol Ecol ; 33(9): e17338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572696

RESUMEN

The maintenance of polymorphisms often depends on multiple selective forces, but less is known on the role of stochastic or historical processes in maintaining variation. The common wall lizard (Podarcis muralis) is a colour polymorphic species in which local colour morph frequencies are thought to be modulated by natural and sexual selection. Here, we used genome-wide single-nucleotide polymorphism data to investigate the relationships between morph composition and population biogeography at a regional scale, by comparing morph composition with patterns of genetic variation of 54 populations sampled across the Pyrenees. We found that genetic divergence was explained by geographic distance but not by environmental features. Differences in morph composition were associated with genetic and environmental differentiation, as well as differences in sex ratio. Thus, variation in colour morph frequencies could have arisen via historical events and/or differences in the permeability to gene flow, possibly shaped by the complex topography and environment. In agreement with this hypothesis, colour morph diversity was positively correlated with genetic diversity and rates of gene flow and inversely correlated with the likelihood of the occurrence of bottlenecks. Concurrently, we did not find conclusive evidence for selection in the two colour loci. As an illustration of these effects, we observed that populations with higher proportions of the rarer yellow and yellow-orange morphs had higher genetic diversity. Our results suggest that processes involving a decay in overall genetic diversity, such as reduced gene flow and/or bottleneck events have an important role in shaping population-specific morph composition via non-selective processes.


Asunto(s)
Flujo Génico , Genética de Población , Lagartos , Polimorfismo de Nucleótido Simple , Lagartos/genética , Lagartos/anatomía & histología , Lagartos/clasificación , Animales , Pigmentación/genética , Selección Genética , Variación Genética , Filogeografía , Masculino
15.
Evolution ; 78(7): 1275-1286, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38577944

RESUMEN

The evolution of miniaturization can result in dramatic alterations of morphology, physiology, and behavior; however, the effects of miniaturization on sexual dimorphism remain largely unknown. Here we investigate how miniaturization influences patterns of sexual size dimorphism (SSD) in geckos. Measuring 1,875 individuals from 131 species, we characterized patterns of SSD relative to body size across two families. We found that miniaturized species were more female biased than non-miniaturized species. Additionally, one family that contained many miniaturized species (Sphaerodactylidae) displayed allometric patterns in SSD with body size, where larger species were male biased and smaller species were more female biased. Smaller species in this lineage also produced proportionally larger eggs. By contrast, another family containing few miniaturized species (Phyllodactylidae) displayed a more isometric trend. Together, these observations are consistent with the hypothesis that selection for increased reproductive success in small species of Sphaerodactylidae results in female-biased SSD in these taxa, which in turn drives the positive SSD allometry observed in this lineage. Thus, selection for increased miniaturization in the clade may be offset by selection on maintaining a female size in smaller taxa that ensures reproductive success.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Lagartos , Caracteres Sexuales , Animales , Lagartos/anatomía & histología , Lagartos/fisiología , Femenino , Masculino
16.
Brain Struct Funct ; 229(6): 1349-1364, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546870

RESUMEN

The study of the brain by magnetic resonance imaging (MRI) allows to obtain detailed anatomical images, useful to describe specific encephalic structures and to analyze possible variabilities. It is widely used in clinical practice and is becoming increasingly used in veterinary medicine, even in exotic animals; however, despite its potential, its use in comparative neuroanatomy studies is still incipient. It is a technology that in recent years has significantly improved anatomical resolution, together with the fact that it is non-invasive and allows for systematic comparative analysis. All this makes it particularly interesting and useful in evolutionary neuroscience studies, since it allows for the analysis and comparison of brains of rare or otherwise inaccessible species. In the present study, we have analyzed the prosencephalon of three representative sauropsid species, the turtle Trachemys scripta (order Testudine), the lizard Pogona vitticeps (order Squamata) and the snake Python regius (order Squamata) by MRI. In addition, we used MRI sections to analyze the total brain volume and ventricular system of these species, employing volumetric and chemometric analyses together. The raw MRI data of the sauropsida models analyzed in the present study are available for viewing and downloading and have allowed us to produce an atlas of the forebrain of each of the species analyzed, with the main brain regions. In addition, our volumetric data showed that the three groups presented clear differences in terms of total and ventricular brain volumes, particularly the turtles, which in all cases presented distinctive characteristics compared to the lizards and snakes.


Asunto(s)
Lagartos , Imagen por Resonancia Magnética , Prosencéfalo , Serpientes , Tortugas , Tortugas/anatomía & histología , Lagartos/anatomía & histología , Serpientes/anatomía & histología , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Prosencéfalo/diagnóstico por imagen , Ventrículos Cerebrales/anatomía & histología , Ventrículos Cerebrales/diagnóstico por imagen , Tamaño de los Órganos , Animales
17.
Evolution ; 78(5): 987-994, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38386965

RESUMEN

Color and pattern are often critical to survival and fitness, but we know little about their genetic architecture and heritability in groups like reptiles. We investigated the genetic architecture for the pattern of the dewlap-an extensible throat fan important for communication-in anole lizards. We studied the Hispaniolan bark anole (Anolis distichus)-a species that exhibits impressive intraspecific dewlap polymorphism across its range-by conducting multigenerational experimental crosses with 2 populations, one with a solid pale yellow dewlap and another with an orange dewlap surrounded by a yellow margin. Upon rejecting the hypothesis that the extent of the orange pattern is a quantitative trait resulting from many loci of minor effect, we used a maximum likelihood model-fitting framework to show that it is better explained as a simple Mendelian trait, with the solid yellow morph being dominant over the blush orange. The relatively simple genetic architecture underlying this important trait helps explain the complex distribution of dewlap color variation across the range of A. distichus and suggests that changes in dewlap color and pattern may evolve rapidly in response to natural selection.


Asunto(s)
Lagartos , Pigmentación , Animales , Lagartos/genética , Lagartos/anatomía & histología , Pigmentación/genética , Masculino , Femenino
18.
Anat Rec (Hoboken) ; 307(4): 713-721, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38344876

RESUMEN

The Triassic period stands as a crucial moment for understanding tetrapod evolution, marking the emergence and early diversification of numerous lineages that persist in today's ecosystems. Birds, crocodiles, testudines, lizards, and mammals can all trace their origins to the Triassic, which is distinguished by several adaptive radiation events that fostered unparalleled diversity in body plans and lifestyles. Beyond this macroevolutionary significance, the Triassic period serves as fertile ground for scientific inquiry, especially in tetrapod studies. The aim of this Special Issue is to assemble a diverse array of new contributions focused on continental Triassic tetrapods globally, encouraging collaboration among researchers across generations, pooling their efforts to comprehend this pivotal moment in tetrapod evolutionary history. This issue encompasses almost 40 varied contributions, spanning topics from comparative and functional anatomy, including descriptions of novel taxa, comprehensive anatomical reviews, systematic investigations, phylogenetic analyses, paleoneurological studies, biomechanical assessments, and detailed examinations of histology and ontogeny. Collectively, this Special Issue offers an extensive exploration of Triassic tetrapods from anatomical, ecological, and evolutionary perspectives, unveiling fresh insights into this intriguing moment in vertebrate evolutionary history.


Asunto(s)
Evolución Biológica , Lagartos , Animales , Filogenia , Ecosistema , Fósiles , Lagartos/anatomía & histología , Mamíferos
19.
PLoS One ; 19(2): e0297637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38354167

RESUMEN

Fossil deposits with exceptional preservation ("lagerstätten") provide important details not typically preserved in the fossil record, such that they hold an outsized influence on our understanding of biodiversity and evolution. In particular, the potential bias imparted by this so-called "lagerstätten effect" remains a critical, but underexplored aspect of reconstructing evolutionary relationships. Here, we quantify the amount of phylogenetic information available in the global fossil records of 1,327 species of non-avian theropod dinosaurs, Mesozoic birds, and fossil squamates (e.g., lizards, snakes, mosasaurs), and then compare the influence of lagerstätten deposits on phylogenetic information content and taxon selection in phylogenetic analyses to other fossil-bearing deposits. We find that groups that preserve a high amount of phylogenetic information in their global fossil record (e.g., non-avian theropods) are less vulnerable to a "lagerstätten effect" that leads to disproportionate representation of fossil taxa from one geologic unit in an evolutionary tree. Additionally, for each taxonomic group, we find comparable amounts of phylogenetic information in lagerstätten deposits, even though corresponding morphological character datasets vary greatly. Finally, we unexpectedly find that ancient sand dune deposits of the Late Cretaceous Gobi Desert of Mongolia and China exert an anomalously large influence on the phylogenetic information available in the squamate fossil record, suggesting a "lagerstätten effect" can be present in units not traditionally considered lagerstätten. These results offer a phylogenetics-based lens through which to examine the effects of exceptional fossil preservation on biological patterns through time and space, and invites further quantification of evolutionary information in the rock record.


Asunto(s)
Dinosaurios , Lagartos , Animales , Filogenia , Fósiles , Evolución Biológica , Lagartos/genética , Lagartos/anatomía & histología , Dinosaurios/genética , Dinosaurios/anatomía & histología , Aves
20.
PLoS One ; 19(2): e0295002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324523

RESUMEN

Dental developmental and replacement patterns in extinct amniotes have attracted a lot of attention. Notable among these are Paleozoic predatory synapsids, but also Mesozoic theropod dinosaurs, well known for having true ziphodonty, strongly serrated carinae with dentine cores within an enamel cap. The Komodo dragon, Varanus komodoensis, is the only extant terrestrial vertebrate to exhibit true ziphodonty, making it an ideal model organism for gaining new insights into the life history and feeding behaviours of theropod dinosaurs and early synapsids. We undertook a comparative dental histological analysis of this extant apex predator in combination with computed tomography of intact skulls. This study allowed us to reconstruct the dental morphology, ontogeny, and replacement patterns in the largest living lizard with known feeding behaviour, and apply our findings to extinct taxa where the behaviour is largely unknown. We discovered through computed tomography that V. komodoensis maintains up to five replacement teeth per tooth position, while histological analysis showed an exceptionally rapid formation of new teeth, every 40 days. Additionally, a dramatic ontogenetic shift in the dental morphology of V. komodoensis was also discovered, likely related to changes in feeding preferences and habitat. The juveniles have fewer dental specializations, lack true ziphodonty, are arboreal and feed mostly on insects, whereas the adults have strongly developed ziphodonty and are terrestrial apex predators with defleshing feeding behaviour. In addition, we found evidence that the ziphodont teeth of V. komodoensis have true ampullae (interdental folds for strengthening the serrations), similar to those found only in theropod dinosaurs. Comparisons with other species of Varanus and successive outgroup taxa reveal a complex pattern of dental features and adaptations, including the evolution of snake-like tongue flicking used for foraging for prey. However, only the Komodo dragon exhibits this remarkable set of dental innovations and specializations among squamates.


Asunto(s)
Animales Ponzoñosos , Lagartos , Diente , Animales , Lagartos/anatomía & histología , Cráneo/anatomía & histología , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA