Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Mol Ecol ; 33(16): e17469, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39016177

RESUMEN

Functional connectivity, the extent to which a landscape facilitates or impedes the dispersal of individuals across the landscape, is a key factor for the survival of species. Anthropogenic activities, such as urbanization, agriculture and roads, negatively impact functional connectivity of most species, particularly low-vagility species like lizards. Here, we examine how a landscape modified by anthropogenic activities affects the functional connectivity, at both broad and fine scales, of a widely distributed generalist lizard Sceloporus grammicus in the eastern Trans-Mexican Volcanic Belt, Mexico. We estimated for the first time the species' genetic structure, gene flow and functional connectivity in agricultural and forest zones using genomic data, a comprehensive landscape characterization and novel methods including gravity models. Our results showed not only marked genetic differentiation across the study region but also that functional connectivity is maintained for tens of kilometres despite S. grammicus low vagility. Specifically, we found that substrate and air temperature facilitated connectivity over broad and fine scales, respectively, while agricultural cover, relative humidity and slope were important for connectivity and gene flow. Contrastingly, forest cover and roads favoured (broad-scale) and limited (fine-scale) connectivity, likely associated with movement facilitated by small forest patches and with thermoregulation. Altogether, these results support that S. grammicus alternates its thermoregulatory behaviour depending on the distance travelled and the habitat environmental conditions, and that it can disperse through relatively modified landscapes, mainly using agricultural zones. The information obtained is crucial to understanding the response of lizards to current anthropogenic pressures and their potential to adapt.


Asunto(s)
Efectos Antropogénicos , Flujo Génico , Lagartos , México , Animales , Fenómenos Geológicos , Lagartos/genética , Lagartos/fisiología , Migración Animal , Agricultura , Genética de Población
2.
Heredity (Edinb) ; 132(6): 284-295, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38575800

RESUMEN

One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations) have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the genetic structure and differentiation in the lizard species Norops brasiliensis (Squamata: Dactyloidae). To achieve our goal, we used a genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network; CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models. We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The results of the CNN showed that geographic distance is the sole predictor of genetic variation in N. brasiliensis, and that slope, rivers, and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies, representing promising avenues for future research with increasingly accessible genomic datasets.


Asunto(s)
Flujo Génico , Variación Genética , Genética de Población , Lagartos , Animales , Lagartos/genética , Brasil , Modelos Genéticos , Aprendizaje Automático
3.
Evolution ; 78(5): 1018-1019, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38465471

RESUMEN

Recent perspectives on speciation genomics emphasize the pivotal role of hybridization in driving rapid radiations. The Liolaemus lizard genus displays impressive species richness with around 290 species widely distributed across southern South America. Sánchez et al. conducted a comprehensive study on the 5-million-year-old Liolaemus kingii group, which includes 14 species. The research provides new key insights to enhance our understanding of this rapid radiation, including its diversification in space and time and the consequences of hybridization in its morphological evolution and taxonomy.


Asunto(s)
Especiación Genética , Hibridación Genética , Lagartos , Animales , Lagartos/genética , Lagartos/clasificación , América del Sur
4.
Syst Biol ; 73(2): 323-342, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-38190300

RESUMEN

The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.


Asunto(s)
Flujo Génico , Lagartos , Animales , Lagartos/genética , Lagartos/clasificación , Clima Desértico , Filogenia , México , Genómica
5.
Evolution ; 78(4): 716-733, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38262697

RESUMEN

Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.


Asunto(s)
Flujo Génico , Lagartos , Humanos , Animales , Filogenia , Lagartos/genética , Filogeografía , América del Sur , ADN Mitocondrial/genética , Variación Genética
6.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056449

RESUMEN

Urosaurus nigricaudus is a phrynosomatid lizard endemic to the Baja California Peninsula in Mexico. This work presents a chromosome-level genome assembly and annotation from a male individual. We used PacBio long reads and HiRise scaffolding to generate a high-quality genomic assembly of 1.87 Gb distributed in 327 scaffolds, with an N50 of 279 Mb and an L50 of 3. Approximately 98.4% of the genome is contained in 14 scaffolds, with 6 large scaffolds (334-127 Mb) representing macrochromosomes and 8 small scaffolds (63-22 Mb) representing microchromosomes. Using standard gene modeling and transcriptomic data, we predicted 17,902 protein-coding genes on the genome. The repeat content is characterized by a large proportion of long interspersed nuclear elements that are relatively old. Synteny analysis revealed some microchromosomes with high repeat content are more prone to rearrangements but that both macro- and microchromosomes are well conserved across reptiles. We identified scaffold 14 as the X chromosome. This microchromosome presents perfect dosage compensation where the single X of males has the same expression levels as two X chromosomes in females. Finally, we estimated the effective population size for U. nigricaudus was extremely low, which may reflect a reduction in polymorphism related to it becoming a peninsular endemic.


Asunto(s)
Lagartos , Animales , Femenino , Masculino , Lagartos/genética , México , Cromosomas , Genoma , Sintenía
7.
Sci Rep ; 13(1): 18465, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891335

RESUMEN

Small species with high home fidelity, high ecological specialization or low vagility are particularly prone to suffer from habitat modification and fragmentation. The Lima leaf-toed gecko (Phyllodactylus sentosus) is a critically endangered Peruvian species that shelters mostly in pre-Incan archeological areas called huacas, where the original environmental conditions are maintained. We used genotyping by sequencing to understand the population genomic history of P. sentosus. We found low genetic diversity (He 0.0406-0.134 and nucleotide diversity 0.0812-0.145) and deviations of the observed heterozygosity relative to the expected heterozygosity in some populations (Fis - 0.0202 to 0.0187). In all analyses, a clear population structuring was observed that cannot be explained by isolation by distance alone. Also, low levels of historical gene flow were observed between most populations, which decreased as shown in contemporary migration rate analysis. Demographic inference suggests these populations experienced bottleneck events during the last 5 ka. These results indicate that habitat modification since pre-Incan civilizations severely affected these populations, which currently face even more drastic urbanization threats. Finally, our predictions show that this species could become extinct in a decade without further intervention, which calls for urgent conservation actions being undertaken.


Asunto(s)
Lagartos , Metagenómica , Masculino , Humanos , Animales , Ecosistema , Heterocigoto , Lagartos/genética , Perú , Variación Genética , Especies en Peligro de Extinción
8.
Evolution ; 77(12): 2672-2686, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-37756495

RESUMEN

Mountains are among the most biodiverse regions on the planet, and how these landforms shape diversification through the interaction of biological traits and geo-climatic dynamics is integral to understanding global biodiversity. In this study, we investigate the dual roles of climate change and mountain uplift on the evolution of a hyper-diverse radiation, Liolaemus lizards, with a spatially explicit model of diversification using a reconstruction of uplift and paleotemperature in central and southern South America. The diversification model captures a hotspot for Liolaemus around 40°S in lineages with low-dispersal ability and narrow niche breadths. Under the model, speciation rates are highest in low latitudes (<35°S) and mid elevations (~1,000 m), while extinction rates are highest at higher latitudes (>35°S) and higher elevations (>2,000 m). Temperature change through the Cenozoic explained variation in speciation and extinction rates through time and across different elevational bands. Our results point to the conditions of mid elevations being optimal for diversification (i.e., Goldilocks Zone), driven by the combination of (1) a complex topography that facilitates speciation during periods of climatic change, and (2) a relatively moderate climate that enables the persistence of ectothermic lineages and buffers species from extinction.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Biodiversidad , América del Sur , Cambio Climático , Filogenia
9.
BMC Genomics ; 24(1): 444, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550606

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are defined as transcribed molecules longer than 200 nucleotides with little to no protein-coding potential. LncRNAs can regulate gene expression of nearby genes (cis-acting) or genes located on other chromosomes (trans-acting). Several methodologies have been developed to capture lncRNAs associated with chromatin at a genome-wide level. Analysis of RNA-DNA contacts can be combined with epigenetic and RNA-seq data to define potential lncRNAs involved in the regulation of gene expression. RESULTS: We performed Chromatin Associated RNA sequencing (ChAR-seq) in Anolis carolinensis to obtain the genome-wide map of the associations that RNA molecules have with chromatin. We analyzed the frequency of DNA contacts for different classes of RNAs and were able to define cis- and trans-acting lncRNAs. We integrated the ChAR-seq map of RNA-DNA contacts with epigenetic data for the acetylation of lysine 16 on histone H4 (H4K16ac), a mark connected to actively transcribed chromatin in lizards. We successfully identified three trans-acting lncRNAs significantly associated with the H4K16ac signal, which are likely involved in the regulation of gene expression in A. carolinensis. CONCLUSIONS: We show that the ChAR-seq method is a powerful tool to explore the RNA-DNA map of interactions. Moreover, in combination with epigenetic data, ChAR-seq can be applied in non-model species to establish potential roles for predicted lncRNAs that lack functional annotations.


Asunto(s)
Lagartos , ARN Largo no Codificante , Animales , Cromatina/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Lagartos/genética , Lagartos/metabolismo , ADN/genética , Genoma
10.
J Hered ; 114(5): 521-528, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37335574

RESUMEN

Spiny lizards (genus Sceloporus) have long served as important systems for studies of behavior, thermal physiology, dietary ecology, vector biology, speciation, and biogeography. The western fence lizard, Sceloporus occidentalis, is found across most of the major biogeographical regions in the western United States and northern Baja California, Mexico, inhabiting a wide range of habitats, from grassland to chaparral to open woodlands. As small ectotherms, Sceloporus lizards are particularly vulnerable to climate change, and S. occidentalis has also become an important system for studying the impacts of land use change and urbanization on small vertebrates. Here, we report a new reference genome assembly for S. occidentalis, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomics strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 608 scaffolds spanning 2,856 Mb, has a contig N50 of 18.9 Mb, a scaffold N50 of 98.4 Mb, and BUSCO completeness score of 98.1% based on the tetrapod gene set. This reference genome will be valuable for understanding ecological and evolutionary dynamics in S. occidentalis, the species status of the California endemic island fence lizard (S. becki), and the spectacular radiation of Sceloporus lizards.


Asunto(s)
Genoma , Lagartos , Animales , México , Ecosistema , Genómica , Lagartos/genética
11.
Syst Biol ; 72(4): 874-884, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37186031

RESUMEN

Interspecific hybridization may act as a major force contributing to the evolution of biodiversity. Although generally thought to reduce or constrain divergence between 2 species, hybridization can, paradoxically, promote divergence by increasing genetic variation or providing novel combinations of alleles that selection can act upon to move lineages toward new adaptive peaks. Hybridization may, then, play a key role in adaptive radiation by allowing lineages to diversify into new ecological space. Here, we test for signatures of historical hybridization in the Anolis lizards of Puerto Rico and evaluate 2 hypotheses for the role of hybridization in facilitating adaptive radiation-the hybrid swarm origins hypothesis and the syngameon hypothesis. Using whole genome sequences from all 10 species of Puerto Rican anoles, we calculated D and f-statistics (from ABBA-BABA tests) to test for introgression across the radiation and employed multispecies network coalescent methods to reconstruct phylogenetic networks that allow for hybridization. We then analyzed morphological data for these species to test for patterns consistent with transgressive evolution, a phenomenon in which the trait of a hybrid lineage is found outside of the range of its 2 parents. Our analyses uncovered strong evidence for introgression at multiple stages of the radiation, including support for an ancient hybrid origin of a clade comprising half of the extant Puerto Rican anole species. Moreover, we detected significant signals of transgressive evolution for 2 ecologically important traits, head length and toepad width, the latter of which has been described as a key innovation in Anolis. [Adaptive radiation; introgression; multispecies network coalescent; phenotypic evolution; phylogenetic network; reticulation; syngameon; transgressive segregation.].


Asunto(s)
Lagartos , Animales , Filogenia , Lagartos/genética , Hibridación Genética , Biodiversidad , Puerto Rico , Evolución Biológica
12.
Syst Biol ; 72(4): 739-752, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37097104

RESUMEN

In this study we detangled the evolutionary history of the Patagonian lizard clade Liolaemus kingii, coupling dense geographic sampling and novel computational analytical approaches. We analyzed nuclear and mitochondrial data (restriction site-associated DNA sequencing and cytochrome b) to hypothesize and evaluate species limits, phylogenetic relationships, and demographic histories. We complemented these analyses with posterior predictive simulations to assess the fit of the genomic data to the multispecies coalescent model. We also employed a novel approach to time-calibrate a phylogenetic network. Our results show several instances of mito-nuclear discordance and consistent support for a reticulated history, supporting the view that the complex evolutionary history of the kingii clade is characterized by extensive gene flow and rapid diversification events. We discuss our findings in the contexts of the "gray zone" of speciation, phylogeographic patterns in the Patagonian region, and taxonomic outcomes. [Model adequacy; multispecies coalescent; multispecies network coalescent; phylogenomics; species delimitation.].


Asunto(s)
Lagartos , Animales , Filogenia , Lagartos/genética , ADN Mitocondrial/genética , Filogeografía , Evolución Biológica
13.
Am Nat ; 201(4): 537-556, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958004

RESUMEN

AbstractDetermining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pressures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictability of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme-associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and habitat use, whereas genetic change was unpredictable and not measurably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Ecosistema , Bahamas , Fenotipo , Dieta
14.
BMC Ecol Evol ; 22(1): 129, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333669

RESUMEN

BACKGROUND: Detecting genomic variants and their accumulation processes during species diversification and adaptive radiation is important for understanding the molecular and genetic basis of evolution. Anolis lizards in the West Indies are good models for studying evolutionary mechanisms because of the repeated evolution of their morphology and the ecology. We performed de novo genome assembly of six Cuban Anolis lizards with different ecomorphs and thermal habitats (Anolis isolepis, Anolis allisoni, Anolis porcatus, Anolis allogus, Anolis homolechis, and Anolis sagrei). We carried out a comparative analysis of these genome assemblies to investigate the genetic changes that occurred during their diversification. RESULTS: We reconstructed novel draft genomes with relatively long scaffolds and high gene completeness, with the scaffold N50 ranging from 5.56 to 39.79 Mb and vertebrate Benchmarking Universal Single-Copy Orthologs completeness ranging from 77.5% to 86.9%. Comparing the repeat element compositions and landscapes revealed differences in the accumulation process between Cuban trunk-crown and trunk-ground species and separate expansions of several families of LINE in each Cuban trunk-ground species. Duplicated gene analysis suggested that the proportional differences in duplicated gene numbers among Cuban Anolis lizards may be associated with differences in their habitat ranges. Additionally, Pairwise Sequentially Markovian Coalescent analysis suggested that the effective population sizes of each species may have been affected by Cuba's geohistory. CONCLUSIONS: We provide draft genomes of six Cuban Anolis lizards and detected species and lineage-specific transposon accumulation and gene copy number changes that may be involved in adaptive evolution. The change processes in the past effective population size was also estimated, and the factors involved were inferred. These results provide new insights into the genetic basis of Anolis lizard diversification and are expected to serve as a stepping stone for the further elucidation of their diversification mechanisms.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Ecosistema , Ecología , Genómica , Indias Occidentales
15.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36226801

RESUMEN

Many lizard species face extinction due to worldwide climate change. The Guatemalan Beaded Lizard, Heloderma charlesbogerti, is a member of the Family Helodermatidae that may be particularly imperiled; fewer than 600 mature individuals are believed to persist in the wild. In addition, H. charlesbogerti lizards are phenotypically remarkable. They are large in size, charismatically patterned, and possess a venomous bite. Here, we report the draft genome of the Guatemalan Beaded Lizard using DNA from a wild-caught individual. The assembled genome totals 2.31 Gb in length, similar in size to the genomes of related species. Single-copy orthologs were used to produce a novel molecular phylogeny, revealing that the Guatemalan Beaded Lizard falls into a clade with the Asian Glass Lizard (Anguidae) and in close association with the Komodo Dragon (Varanidae) and the Chinese Crocodile Lizard (Shinisauridae). In addition, we identified 31,411 protein-coding genes within the genome. Of the genes identified, we found 504 that evolved with a differential constraint on the branch leading to the Guatemalan Beaded Lizard. Lastly, we identified a decline in the effective population size of the Guatemalan Beaded Lizard approximately 400,000 years ago, followed by a stabilization before starting to dwindle again 60,000 years ago. The results presented here provide important information regarding a highly endangered, venomous reptile that can be used in future conservation, functional genetic, and phylogenetic analyses.


Asunto(s)
Lagartos , Humanos , Animales , Lagartos/genética , Filogenia , Densidad de Población , Ponzoñas/genética , Genoma
16.
Genetica ; 150(6): 367-377, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36229707

RESUMEN

The Brazilian Cerrado is considered a biodiversity hotspot highly threatened by human activities. Recently, many studies have demonstrated how underestimated is Cerrado's biodiversity considering squamate species, and the identification of divergent and cryptic lineages is essential for the formulation of effective conservation strategies. The transition areas between the Cerrado and the Atlantic Forest are even less known and, consequently, often dismissed in conservation policies. As previous studies suggested the presence of cryptic diversity within E. capetinga, we investigated patterns and processes in the geographic distribution of its genealogical lineages. We used DNA sequences from individuals collected in six localities and sequences publicly available from three mitochondrial markers (CYT-B, 16S and ND4) and one nuclear marker (C-Mos). We tested if the core and ecotone regions of the Cerrado show differences in biotic and abiotic characteristics that could promote genetic structure and divergence among lineages within E. capetinga. We found evidence for divergent lineages within the species, but not congruent with our hypothesis. Similar divergent patterns were observed in other Cerrado lizards, including interspecific divergences within the Enyalius genus. Molecular characterization of field-collected individuals (previously identified as E. bilineatus), allowed us to update the geographic distribution of the species to include the ecotone between the Cerrado and the Atlantic Forest, an area where species distribution overlap.


Asunto(s)
Lagartos , Humanos , Animales , Lagartos/genética , Bosques , Biodiversidad , Estructuras Genéticas , Brasil , Filogenia
17.
Ecol Lett ; 25(11): 2384-2396, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36192673

RESUMEN

Ecological community structure ultimately depends on the production of community members by speciation. To understand how macroevolution shapes communities, we surveyed Anolis lizard assemblages across elevations on Jamaica and Hispaniola, neighbouring Caribbean islands similar in environment, but contrasting in the richness of their endemic evolutionary radiations. The impact of diversification on local communities depends on available spatial opportunities for speciation within or between ecologically distinct sub-regions. In the spatially expansive lowlands of both islands, communities converge in species richness and average morphology. But communities diverge in the highlands. On Jamaica, where limited highland area restricted diversification, communities remain depauperate and consist largely of elevational generalists. In contrast, a unique fauna of high-elevation specialists evolved in the vast Hispaniolan highlands, augmenting highland richness and driving islandwide turnover in community composition. Accounting for disparate evolutionary opportunities may illuminate when regional diversity will enhance local diversity and help predict when communities should converge in structure.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Evolución Biológica , Biota , Indias Occidentales , Filogenia
18.
Zootaxa ; 5134(2): 286-296, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36101064

RESUMEN

We describe Sceloporus huichol sp. nov., a new species of spiny lizard of the genus Sceloporus, that is found in the mountainous regions of Jalisco and Nayarit in western Mexico. The new species belongs to the torquatus species group and has previously been confused with Sceloporus melanogaster, from which it differs by its smaller size, head color and nuchal collar. Additionally, Sceloporus huichol sp. nov. is different from the rest of its congeners by relevant genetic and morphologicall data. Despite having a complete nuchal collar, characteristic of Sceloporus torquatus, S. huichol sp. nov. is more closely related phylogenetically to S. melanogaster. Recognition of this new species brings the number of species in the torquatus group to nine.


Asunto(s)
Lagartos , Animales , Lagartos/genética , México
19.
Mol Phylogenet Evol ; 174: 107548, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35690377

RESUMEN

The genus Cyclura includes nine extant species and six subspecies of West Indian Rock Iguanas and is one of the most imperiled genera of squamate reptiles globally. An understanding of species diversity, evolutionary relationships, diversification, and historical biogeography in this group is crucial for implementing sound long-term conservation strategies. We collected DNA samples from 1 to 10 individuals per taxon from all Cyclura taxa (n = 70 ingroup individuals), focusing where possible on incorporating individuals from different populations of each species. We also collected 1-2 individuals from each of seven outgroup species of iguanas (Iguana delicatissima; five Ctenosaura species) and Anolis sagrei (n = 12 total outgroup individuals). We used targeted genomic sequence capture to isolate and to sequence 1,872 loci comprising of 687,308 base pairs (bp) from each of the 82 individuals from across the nuclear genome. We extracted mitochondrial reads and assembled and annotated mitogenomes for all Cyclura taxa plus outgroup species. We present well-supported phylogenomic gene tree/species tree analyses for all extant species of Cyclura using ASTRAL-III, SVDQuartets, and StarBEAST2 methods, and discuss the taxonomic, biogeographic, and conservation implications of these data. We find a most recent common ancestor of the genus 9.91 million years ago. The earliest divergence within Cyclura separates C. pinguis from a clade comprising all other Cyclura. Within the latter group, a clade comprising C. carinata from the southern Lucayan Islands and C. ricordii from Hispaniola is the sister taxon to a clade comprising the other Cyclura. Among the other Cyclura, the species C. cornuta and C. stejnegeri (from Hispaniola and Isla Mona) form the sister taxon to a clade of species from Jamaica (C. collei), Cuba and Cayman Islands (C. nubila and C. lewisi), and the eastern (C. rileyi) and western (C. cychlura) Lucayan Islands. Cyclura cychlura and C. rileyi form a clade whose sister taxa are C. nubila and C. lewisi. Cyclura collei is the sister taxon to these four species combined.


Asunto(s)
Iguanas , Lagartos , Animales , Cuba , Humanos , Iguanas/genética , Lagartos/genética , Filogenia , Análisis de Secuencia de ADN , Indias Occidentales
20.
Mol Phylogenet Evol ; 173: 107518, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577297

RESUMEN

The archipelago of Fernando de Noronha (FN) is located in the Equatorial South Atlantic Ocean, at 375 km off the northeastern coast of Brazil. Its endemic vertebrate land fauna is restricted to only six species, and three main hypotheses have been proposed to explain their presence in the archipelago. These hypotheses suggest FN had alternative biogeographic connections with: 1) the West Indies; 2) the South America mainland; or 3) Africa. Here, we evaluate for the first time the phylogenetic position of Amphisbaena ridleyi within the diversity of Amphisbaenia, and we infer the biogeographic processes that explain its presence in FN and its relationship with amphisbaenids from the West Indies. We analyzed a comprehensive multilocus dataset for Amphisbaenidae using maximum likelihood and time-calibrated Bayesian phylogenetic approaches. Based on our time-calibrated tree, we tested different biogeographic scenarios through historical biogeographic analyses. Our phylogenetic results for the high-level relationships of Amphisbaenia can be parenthetically summarized as (Rhineuridae, (Blanidae, (Bipedidae, (Cadeidae, (Trogonophidae, (Amphisbaenidae))))). Nine highly supported groups of species were recovered among the mainland South American amphisbaenids (SAA), whereas two phylogenetically distant groups of species were inferred for the West Indies: 1) WIC01, an Oligocene lineage present in Cuba and Hispaniola, which is the sister group of all other SAA groups; and 2) WIC02, a Miocene lineage that is restricted to southern Hispaniola and is closely related to Am. ridleyi. We estimated two events of transatlantic dispersal of amphisbaenians from Africa to West Indies: the dispersal of Cadeidae during the Middle Eocene, and the dispersal of the ancestor of Amphisbaena during the transition Eocene/Oligocene. These events were likely affected by the North Equatorial and South Equatorial currents, respectively, which have been flowing westwards since the Paleocene. The ancestral cladogenesis of Amphisbaena during the Late Oligocene is likely related to overwater dispersal events, or alternatively can be associated with the fragmentation of GAARlandia, when WIC01 was isolated in the West Indies, while the remaining groups of Amphisbaena diversified throughout the South American continent. During the Late Miocene, the ancestor of WIC02 dispersed from northern South America to the West Indies, while Am. ridleyi dispersed from the same region to FN. The overwater dispersal of WIC02 was driven by the North Brazilian Current and the dispersal of Am. ridleyi was likely influenced by the periodic shifts in direction and strength estimated for the North Equatorial Counter-Current during the Late Miocene.


Asunto(s)
Lagartos , Animales , Teorema de Bayes , Brasil , Especiación Genética , Lagartos/genética , Filogenia , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA