Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Sci Total Environ ; 929: 172560, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641102

RESUMEN

Lanthanum (La), the second most abundant rare earth element (REE) is emerging as an environmental issue, with the potential to impact ecosystems and human health. Major sources of soil contamination by La include agricultural, and industrial activities. Lanthanum is non-essential for plant growth but accumulates in various plant parts. The uptake of La by plants is intricately influenced by various factors such as soil pH, redox potential, cation exchange capacity, presence of organic acids and rhizosphere composition. These factors significantly impact the availability and absorption of La ions. Lanthanum impact on plants depends on soil characteristics, cultivated species, developmental stage, La concentration, treatment period, and growth conditions. Excessive La concentrations affect cell division, DNA structure, nutrient uptake, and photosynthesis and induce toxicity symptoms. Plants employ detoxification mechanisms like vacuolar sequestration, osmolyte synthesis, and antioxidant defense system. However, higher concentrations of La can overwhelm these defense mechanisms, leading to adverse effects on plant growth and development. Further, accumulation of La in plants increases the risk for human exposure. Strategies to mitigate La toxicity are, therefore, vital for ecosystem protection. The application of phytoremediation, supplementation, chelation, amendments, and biosorption techniques contributes to the mitigation of La toxicity. This review provides insights into La sources, uptake, toxicity, and alleviation strategies in plants. Identifying research gaps and discussing advancements aims to foster a holistic understanding and develop effective strategies for protecting plant health and ecosystem resilience against La contamination.


Asunto(s)
Biodegradación Ambiental , Lantano , Plantas , Contaminantes del Suelo , Lantano/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo , Suelo/química
2.
Toxicology ; 502: 153731, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38253231

RESUMEN

Lanthanum (La) and cerium (Ce), rare earth elements with physical properties similar to calcium (Ca), are generally considered non-toxic when used appropriately. However, their ions possess anti-tumor capabilities. This investigation explores the potential applications and mechanisms of LaCl3 or CeCl3 treatment in triple-negative breast cancer (TNBC) cell lines. TNBC, characterized by the absence of estrogen receptor (ERα), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is prone to early metastasis and resistant to hormone therapy. Our results demonstrate that La/Ce treatment reduces cell growth, and when combined with cisplatin, it synergistically inhibits cell growth and the PI3K/AKT pathway. La and Ce induce oxidative stress by disrupting mitochondrial function, leading to protein oxidation. Additionally, they interfere with protein homeostasis and induce nucleolar stress. Furthermore, disturbance in F-actin web formation impairs cell migration. This study delves into the mechanism by which calcium-like elements La and Ce inhibit breast cancer cell growth, shedding light on their interference in mitochondrial function, protein homeostasis, and cytoskeleton assembly.


Asunto(s)
Elementos de la Serie de los Lantanoides , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Calcio , Cisplatino , Lantano/toxicidad , Línea Celular Tumoral
3.
Ecotoxicol Environ Saf ; 271: 115928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215666

RESUMEN

Nephrotoxicity is a common adverse effect induced by various chemicals, necessitating the development of reliable toxicity screening models for nephrotoxicity assessment. In this study, we assessed a group of nephrotoxicity indicators derived from different toxicity pathways, including conventional endpoints and kidney tubular injury biomarkers such as clusterin (CLU), kidney injury molecule-I (KIM-1), osteopontin (OPN), and neutrophil gelatinase-associated lipocalin (NGAL), using HK-2 and induced pluripotent stem cells (iPSCs)-derived renal proximal tubular epithelial-like cells (PTLs). Among the biomarkers tested, OPN emerged as the most discerning and precise marker. The predictive potential of OPN was tested using a panel of 10 nephrotoxic and 5 non-nephrotoxic compounds. The results demonstrated that combining OPN with the half-maximal inhibitory concentration (IC50) enhanced the diagnostic accuracy in both cellular models. Additionally, PTLs cells showed superior predictive efficacy for nephrotoxicity compared to HK-2 cells in this investigation. The two cellular models were utilized to evaluate the nephrotoxicity of lanthanum. The findings indicated that lanthanum possesses nephrotoxic properties; however, the degree of nephrotoxicity was relatively low, consistent with the outcomes of in vivo experiments.


Asunto(s)
Lantano , Osteopontina , Humanos , Osteopontina/metabolismo , Lantano/toxicidad , Lantano/metabolismo , Riñón , Túbulos Renales/metabolismo , Biomarcadores/metabolismo
4.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37908164

RESUMEN

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Asunto(s)
Adipogénesis , Lantano , Ratones , Animales , Lantano/toxicidad , Ratones Endogámicos C57BL , Vía de Señalización Wnt , beta Catenina/metabolismo , Diferenciación Celular
5.
Sci Total Environ ; 908: 168374, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37956851

RESUMEN

Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.


Asunto(s)
Cadmio , Contaminantes del Suelo , Humanos , Cadmio/análisis , Lactuca , Lantano/toxicidad , Plomo/toxicidad , Verduras , Endocitosis , Contaminantes del Suelo/análisis , Suelo
6.
Ecotoxicol Environ Saf ; 267: 115627, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890244

RESUMEN

Rare earth elements (REEs) are emerging as an anticipated pollution in the environment due to their active use in many areas. However, the effects of REEs on the photosynthesis of rice have not been thoroughly explored. Therefore, this study emphasizes how high levels of La(III) affect the thylakoid membrane of rice seedlings, thereby inhibiting photosynthesis and growth. Here, we reported that rice plants treated with La(III) exhibited an increase in La accumulation in the leaves, accompanied by a decrease in chlorophyll content and photosynthetic capacity. La(III) exposure decreased Mg content in leaves, but possibly increased other nutrients including Cu, Mn, and Zn through systemic endocytosis. K-band and L-band appeared in the fluorescence OJIP transients, indicating La(III) stress destroyed the donor and receptor sides of photosystem II (PSII). Numerous reaction centers (RC/CSm) were inactivated by La(III) treatment, which resulted in a reduction in electron transport capacity (decreased ETo/RC and ETo/CSm) and an increase in the dissipation of the excess excitation energy by heat (increased DIo/RC and DIo/CSm). The BN-PAGE analysis of thylakoid membrane protein complexes showed that La(III) induced the degradation of supercomplexes, PSII core, LHCII, PSI core, LHCI, and F1-ATPase binding Cyt b6f complex. Collectively, this study revealed that La(III) causes significant degradation of thylakoid membrane proteins, thereby promoting the decomposition of photosynthetic complexes, ultimately destroying the chloroplast structure and reducing the photosynthetic performance of rice seedlings.


Asunto(s)
Oryza , Tilacoides , Proteínas de la Membrana , Lantano/toxicidad , Plantones , Fluorescencia , Cloroplastos , Fotosíntesis , Proteínas de las Membranas de los Tilacoides , Clorofila
7.
Sci Total Environ ; 894: 165018, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353023

RESUMEN

The increasing demand for rare earth elements (REEs) in modern applications has drawn significant attention. REEs can be introduced into the environment through REE-containing fertilizers, abandoned REE-rich equipment, and mining, persisting and impacting soil quality, nutrient cycles, and plant growth. Scientists have raised concerns about REEs entering the food chain from the environment and eventually accumulating in organisms. Decades of experimental evidence have shown that these effects include inhibited growth, impaired liver function, and alterations in children's intelligence quotients. However, there exists a paucity of research that has elucidated the metabolic-level biological impacts of REEs. In our study, Caenorhabditis elegans (C. elegans) was used as a model organism to investigate physiological and inherent metabolic changes under exposure to different concentrations of REEs. The diet bacteria of nematodes play a key role in their life and development. Therefore, we investigated the influence of bacterial activity on the nematodes' response to REE exposure. We observed a concentration-dependent accumulation of REEs in nematodes, which consequently led to a reduction in lifespan and alterations in body length. Exposure to a mixed solution of REEs, in comparison to a single REE solution, resulted in greater toxicity toward nematodes. The metabolic results showed that the above changes were closely related to REE-induced amino acid metabolism disorder, membrane disturbance, DNA damage, and oxidative stress. Of note, the presence of living bacteria elicits REE effects in C. elegans. These findings highlight the potential intrinsic metabolic changes occurring in nematodes under REE exposure. Our study raises awareness of the exposure risks associated with REEs, provides valuable insight into the metabolic-level biological impacts of REEs and contributes to the development of effective mitigation strategies to reduce potential risks to human health.


Asunto(s)
Cerio , Metales de Tierras Raras , Animales , Niño , Humanos , Lantano/toxicidad , Caenorhabditis elegans , Metales de Tierras Raras/análisis , Suelo/química
8.
Environ Sci Process Impacts ; 25(8): 1288-1297, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37249563

RESUMEN

While our awareness of the toxicity of rare earth elements to aquatic organisms increases, our understanding of their direct interaction and accumulation remains limited. This study describes the acute toxicity of lanthanum (La) and gadolinium (Gd) in Daphnia magna neonates and discusses potential modes of action on the basis of the respective patterns of biodistribution. Ecotoxicological bioassays for acute toxicity were conducted and dissolved metal concentrations at the end of the tests were determined. The results showed a significant difference in nominal EC50 (immobility) between La (>30 mg L-1) and Gd (13.93 (10.92 to 17.38) mg L-1). Daphnids that were then exposed to a concentration close to the determined EC50 of Gd (15 mg L-1, nominal concentration) for 48 h and 72 h were studied by synchrotron micro and nano-X-ray fluorescence to evaluate the biodistribution of potentially accumulated metals. X-ray fluorescence analyses showed that La was mainly found in the intestinal track and appeared to accumulate in the hindgut. This accumulation might be explained by the ingestion of solid La precipitates formed in the media. In contrast, Gd could only be detected in a small amount, if at all, in the intestinal tract, but was present at a much higher concentration in the tissues and became more pronounced with longer exposure time. The solubility of Gd is higher in the media used, leading to higher dissolved concentrations and uptake into tissue in ionic form via common metal transporting proteins. By studying La and Gd biodistribution in D. magna after an acute exposure, the present study has demonstrated that different uptake pathways of solid and dissolved metal species may lead to different accumulation patterns and toxicity.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Gadolinio/toxicidad , Lantano/toxicidad , Lantano/metabolismo , Daphnia , Distribución Tisular , Metales de Tierras Raras/toxicidad , Metales/metabolismo , Contaminantes Químicos del Agua/análisis
9.
Bull Environ Contam Toxicol ; 110(3): 65, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922429

RESUMEN

Rare earth elements (REEs) cerium (Ce) and lanthanum (La) and their combination were tested across a concentration range, from toxic (10-4 to 10-5 M) to lower concentrations (10-6 to 10-8 M) for their effects on sea urchin (Sphaerechinus granularis) sperm. A significantly decreased fertilization rate (FR) was found for sperm exposed to 10-5 M Ce, La and their combination, opposed to a significant increase of FR following 10-7 and 10-8 M REE sperm exposure. The offspring of REE-exposed sperm showed significantly increased developmental defects following sperm exposure to 10-5 M REEs vs. untreated controls, while exposure to 10-7 and 10-8 M REEs resulted in significantly decreased rates of developmental defects. Both of observed effects-on sperm fertilization success and on offspring quality-were closely exerted by Ce or La or their combination.


Asunto(s)
Cerio , Metales de Tierras Raras , Animales , Masculino , Lantano/toxicidad , Cerio/toxicidad , Semen , Erizos de Mar , Metales de Tierras Raras/toxicidad , Espermatozoides
10.
Ecotoxicol Environ Saf ; 251: 114538, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652740

RESUMEN

The increasing use of Rare Earth Elements (REE) in emerging technologies, medicine and agriculture has led to chronic aquatic compartment contamination. In this context, this aimed to evaluate the acute toxic effects of lanthanum (La), neodymium (Nd) and samarium (Sm), as both single and binary and ternary mixtures on the survival of the microcrustacean Daphnia similis. A metal solution medium with (MS) and without EDTA and cyanocobalamin (MSq) as chelators was employed as the assay dilution water to assess REE bioavailability effects. In the single exposure experiments, toxicity in the MS medium decreased following the order La > Sm > Nd, while the opposite was noted for the MSq medium, which was also more toxic than the MS medium. The highest MS toxicity was observed for the binary Nd + La (1:1) mixture (EC50 48 h of 11.57 ± 1.22 mg.L-1) and the lowest, in the ternary Sm + La + Nd (2:2:1) mixture (EC50 48 h 41.48 ± 1.40 mg.L-1). The highest toxicity in the MSq medium was observed in the single assays and in the binary Sm + Nd (1:1) mixture (EC50 48 h 10.60 ± 1.57 mg.L-1), and the lowest, in the ternary Sm + La + Nd (1:2:2) mixture (EC50 48 h 36.76 ± 1.54 mg.L-1). Concerning the MS medium, 75 % of interactions were additive, 19 % antagonistic, and 6 % synergistic. In the MSq medium, 56 % of interactions were synergistic and 44 % additive. The higher toxicity observed in the MSq medium indicates that the absence of chelators can increase the concentrations of more toxic free ions, suggesting that the MS medium should be avoided in REE assays. Additive interactions were observed in greater or equivalent amounts in both media and were independent of elemental mixture ratios. These findings improve the understanding of environmental REE effects, contributing to the establishment of future guidelines and ecological risk calculations.


Asunto(s)
Daphnia , Metales de Tierras Raras , Animales , Metales de Tierras Raras/toxicidad , Samario , Lantano/toxicidad , Neodimio/farmacología , Quelantes/farmacología
11.
Aquat Toxicol ; 255: 106380, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36592562

RESUMEN

The versatile applicability of rare earth elements (REEs) especially lanthanum (La) in diverse fields, has led to large-scale mineral exploitation globally, inevitably resulting in substantial release of La into environment. As emerging anthropogenic environmental contaminant, La-induced toxicological effects and potential ecotoxicological implications in relation to realistic levels of La in aquatic ecosystems are becoming major concerns. To address these issues, Daphnia magna was selected as a prototype, and toxicity tests were conducted to explore the effects of La exposure on life-history characteristics and fecundity fitness, as showcased by quantitative variations from the individual level to population scale. In parallel, to further denote transgenerational caloric impacts of parental La exposure, bioenergetic profiles on newborn neonates were concurrently determined by measuring macromolecule forms in terms of proteins, glycogens and lipids to quantify nutritional alterations at progeny level. The results revealed that low-dose La exposure slightly stimulated the demographic potential and nutritional responses, exhibiting dose-dependent hormesis-like effects and promising non-toxicological potential to Daphnia, whereas high-dose La exposure of greater than 59.2 µg La L - 1, conspicuously imposed detrimental effects on quantity and quality of offspring, i.e. not only reducing body size, lifespan expectancy and reproductive output in a concentration-dependent way and resulting in lower population fitness by a dynamic life-table analysis, but eventually leading to the decrease of nutritional qualities and caloric contents on neonates. Taken together, these two-phase findings regarding the dose-related shift from hormesis to inhibition not only provided valuable insights into the complicated biological outcomes of La effects on environmentally-relevant organisms, but experimentally highlighted the significant implications of considering environmental and nutritional consequences in ecologically assessing the La-triggered risk at environmentally realistic occurrences, particularly on gradient scenarios crossing upstream and downstream of highly complex mining watersheds.


Asunto(s)
Lantano , Contaminantes Químicos del Agua , Animales , Lantano/toxicidad , Daphnia , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Reproducción , Metabolismo Energético
12.
J Appl Toxicol ; 43(3): 402-415, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36065135

RESUMEN

Lanthanum (La) as a rare earth element is widely used in agriculture, industry, and medicine. It has been suggested in several studies that La might influence glycolipid metabolism in vivo. In this study, we used 3T3-L1 preadipocytes as in vitro cell model to elucidate the effects of La(NO3 )3 on adipogenesis and the underlying mechanisms. The results showed that La(NO3 )3 could inhibit the adipogenic differentiation of 3T3-L1 preadipocytes, which showed a decrease in lipid accumulation and the downregulation of specific adipogenic transcription factors. La(NO3 )3 exerted its inhibitory effect mainly at the early differentiation stage. Furthermore, La(NO3 )3 influenced the S-phase entry and cell cycle process during the mitotic clonal expansion and regulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expressions of the proteins in phosphatidylinositol 3-kinase (PI3K)/Akt pathway at the early stage of differentiation. Besides, La(NO3 )3 upregulated the expressions of wnt10b mRNA and ß-catenin protein and promoted the nucleus translocation of ß-catenin. Additionally, we found that La(NO3 )3 could promote the growth of 3T3-L1 preadipocytes both with and without MDI (3-isobutyl-1-methylxanthine [IBMX], dexamethasone [Dex], and insulin) stimulation. Collectively, these results indicated that La(NO3 )3 could inhibit adipogenesis in 3T3-L1 preadipocytes and influence cell proliferation.


Asunto(s)
Adipogénesis , Lantano , Animales , Ratones , Lantano/toxicidad , Células 3T3-L1 , Fosfatidilinositol 3-Quinasas , Diferenciación Celular
13.
Cell Mol Neurobiol ; 43(3): 1181-1196, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35661286

RESUMEN

Lanthanum (La) is a natural rare-earth element that can damage the central nervous system and impair learning and memory. However, its neurotoxic mechanism remains unclear. In this study, adult female rats were divided into 4 groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3, respectively, and this was done from conception to the end of the location. Their offspring rats were used to establish animal models to investigate LaCl3 neurotoxicity. Primary neurons cultured in vitro were treated with LaCl3 and infected with LKB1 overexpression lentivirus. The results showed that LaCl3 exposure resulted in abnormal axons in the hippocampus and primary cultured neurons. LaCl3 reduced the expression of LKB1, p-LKB1, STRAD and MO25 proteins, and directly or indirectly affected the expression of LKB1, leading to decreased activity of LKB1-MARK2 and LKB1-STK25-GM130 pathways. This study indicated that LaCl3 exposure could interfere with the normal effects of LKB1 in the brain and downregulate LKB1-MARK2 and LKB1-STK25-GM130 signaling pathways, resulting in abnormal axon in offspring rats.


Asunto(s)
Axones , Lantano , Ratas , Femenino , Animales , Lantano/toxicidad , Ratas Wistar , Transducción de Señal , Proteínas Serina-Treonina Quinasas
14.
J Hazard Mater ; 441: 129924, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36113347

RESUMEN

Light rare earth elements (LREEs) have been long used in agriculture (i.e., mainly via aerially applied LREE fertilizers) based on the fact that low-dose LREEs promote plant growth. Meanwhile, the toxic effects of low-dose LREEs on organisms have also been found. However, the cellular and molecular mechanism of low-dose LREEs acting on organisms remain unclear. Plants are at the beginning of food chains, so it is critical to uncover the cellular and molecular mechanism of low-dose LREEs on plants. Here, lanthanum (La) and soybean were the representatives of LREEs and plants, respectively. The effects of low-dose La on soybean leaves were investigated, and the stimulatory effect and mechanism of low-dose LREEs on leaf cells were revealed. Specifically, clathrin-mediated endocytosis (CME) activated by low-dose La is an influx channel for La in soybean leaf cells. The intracellular La and La-activated CME jointly disturbed multiple forms of intracellular homeostasis, including metallic element homeostasis, redox homeostasis, gene expression homeostasis. The disturbed homeostasis either stimulated cell growth or caused damage to the plasma membrane of soybean leaf cells. These results provide new insights for clarifying the cellular and molecular mechanisms of low-dose LREEs as a class of stimulators instead of nutrients to stimulate plants.


Asunto(s)
Lantano , Metales de Tierras Raras , Clatrina/metabolismo , Clatrina/farmacología , Fertilizantes , Lantano/toxicidad , Metales de Tierras Raras/metabolismo , Hojas de la Planta/metabolismo , Plantas , Glycine max
15.
Chemosphere ; 302: 134850, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35551939

RESUMEN

Lanthanum (La) is one of the most abundant emergent rare earth elements. Its release into the environment is enhanced by its use in various industrial applications. In the aquatic environment, emerging contaminants are one of the stressors with the ability to compromise the fitness of its inhabitants. Warming and acidification can also affect their resilience and are another consequence of the growing human footprint on the planet. However, from information gathered in the literature, a study on the effects of ocean warming, acidification, and their interaction with La was never carried out. To diminish this gap of knowledge, we explored the effects, combined and as single stressors, of ocean warming, acidification, and La (15 µg L-1) accumulation and elimination on the surf clam (Spisula solida). Specimens were exposed for 7 days and depurated for an additional 7-day period. Furthermore, a robust set of membrane-associated, protein, and antioxidant enzymes and non-enzymatic biomarkers (LPO, HSP, Ub, SOD, CAT, GPx, GST, TAC) were quantified. Lanthanum was bioaccumulated after just one day of exposure, in both control and climate change scenarios. A 7-day depuration phase was insufficient to achieve control values and in a warming scenario, La elimination was more efficient. Biochemical response was triggered, as highlighted by enhanced SOD, CAT, GST, and TAC levels, however as lipoperoxidation was observed it was insufficient to detoxify La and avoid damage. The HSP was largely inhibited in La treatments combined with warming and acidification. Concomitantly, lipoperoxidation was highest in clams exposed to La, warming, and acidification combined. The results highlight the toxic effects of La on this bivalve species and its enhanced potential in a changing world.


Asunto(s)
Bivalvos , Spisula , Contaminantes Químicos del Agua , Animales , Cambio Climático , Concentración de Iones de Hidrógeno , Lantano/toxicidad , Océanos y Mares , Agua de Mar , Superóxido Dismutasa , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
16.
Ecotoxicology ; 31(6): 897-908, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35610399

RESUMEN

The increasing exploitation and application of rare earth elements (REEs) may induce hazardous risks to freshwater aquatic organisms. Due to the lack of water quality criteria (WQC) and sufficient reliable toxicity data, little information is available on the ecological risk of REEs in surface water. In this study, lanthanum (La) toxicity data were collected from published toxicological studies, and the data quality was assessed using a toxicological data reliability assessment tool. To obtain more toxicity data, Daphnia magna, Cyprinus carpio, and Dania rerio embryos were selected as surrogate species, and an interspecies correlation estimation (ICE) model was used to predict the toxicity of La for untested species. The species sensitivity distributions (SSDs) of La toxicity and WQC were investigated. Differences were observed in the hazardous concentrations for 5% of species (HC5), but no statistically significant differences were noted in the SSD curves between the measured acute toxicity data and the predicted data. For the SSDs constructed from the measured toxicity data, the ICE-predicted toxicity data and all acute data supplemented with the ICE-predicted data, the acute WQC values of La were 88, 1022 and 256 µg/L, respectively. According to the SSD and corresponding HC5 of chronic toxicity data, the chronic WQC was 14 µg/L. The results provide a scientific reference for establishing WQC for freshwater aquatic organisms and ecological risk assessments of REEs.


Asunto(s)
Carpas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Agua Dulce , Lantano/toxicidad , Reproducibilidad de los Resultados , Especificidad de la Especie , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
17.
Environ Pollut ; 307: 119387, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35513194

RESUMEN

The increasing use of rare earth elements (REEs) in electric and electronic equipment has been associated with the presence of these elements in aquatic systems. The present study aimed to evaluate the toxicity of two REEs, Lanthanum (La) and Gadolinium (Gd), towards the mussel species Mytilus galloprovincialis. For this, the toxicity was assessed after a short-term exposure (14 days) to an environmentally relevant concentration of each element (10 µg/L), followed by a recovery period (14 days) in the absence of any contaminant. The measured biomarkers included energy-related parameters, activity of antioxidant and biotransformation enzymes, indicators of oxidative damage, levels of oxidized glutathione and neurotoxicity. After exposure mussels accumulated more La (0.54 µg/g) than Gd (0.15 µg/g). After recovery higher concentration decrease was observed for Gd (≈40% loss) compared to La exposed mussels (≈30% loss) which may be associated with lower detoxification capacity of mussels previously exposed to La. Mussels increased their metabolism (i.e., higher electron transport system activity) only after the exposure to Gd. Exposure to La and Gd resulted into lower energy expenditure, while when both elements were removed glycogen and protein concentrations decreased to values observed in non-contaminated mussels. Antioxidant and biotransformation capacity was mainly increased in the presence of Gd. This defense response avoided the occurrence of cellular damage but still loss of redox balance was found regardless the contaminant, which was re-established after the recovery period. Neurotoxicity was only observed in the presence of Gd with no effects after the recovery period. Results showed that a short-term exposure to La and especially to Gd can exert deleterious effects that may compromise specific biochemical pathways in aquatic species, such as M. galloprovincialis, but under low concentrations organisms can be able to re-establish their biochemical status to control levels after a recovery period.


Asunto(s)
Metales de Tierras Raras , Mytilus , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Gadolinio/toxicidad , Lantano/metabolismo , Lantano/toxicidad , Mytilus/metabolismo , Estrés Oxidativo , Contaminantes Químicos del Agua/metabolismo
18.
J Trace Elem Med Biol ; 71: 126957, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35227975

RESUMEN

Studies dealing with Rare Earth Elements (REE) ecotoxicological behavior are scattered and with potential conflicting results. Climate change impacts on aquatic biota and is known to modify contaminants toxicokinetic. Nevertheless, the current knowledge on the potential interactions between climate change and REE is virtually non-existent. Therefore, we focus our research on La and Gd as representatives of Light and Heavy REE that also are of great environmental concern. Experiments on different mediums (fresh-, brackish- and seawater) were designed to run at present-day and near-future conditions (T°=+4 °C, pH=△-0.4). Sampling was taken at different time scales from minutes to hours for one day. The main challenge was to evaluate the availability of La and Gd under environmental conditions closely related to climate changes scenarios. Furthermore, this study will contribute to the baseline knowledge by which future research towards understanding REE patterns and toxicity will build upon. Lanthanum and Gd behave differently with salinity. Temperature also affects the availability of dissolved La in freshwater. On the other hand, pH reduction causes the decrease of Gd in freshwater. In this medium, concentrations reduce sharply, presumably due to sorption processes or precipitates. In the brackish water experiment only the dissolved La levels in the Warming (T°=+4 °C) and Warming & Acidification (T°=+4 °C, pH=△0.4) diminished significantly through time. Dissolved La and Gd levels in seawater were relatively constant with time. The speciation of both elements is also of great relevance for ecotoxicological experiments. The trivalent free ions (La3+ and Gd3+) were the most common species in the trials. However, as ionic strength increases, the availability of other complexes rose, which should be subject of great attention for upcoming ecotoxicological studies.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Gadolinio/análisis , Lantano/toxicidad , Lantano/análisis , Ecotoxicología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales de Tierras Raras/análisis
19.
Biol Trace Elem Res ; 200(4): 1640-1649, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35178682

RESUMEN

Lanthanum can induce neurotoxicity and impair cognitive function; therefore, research on the mechanism by which the ability to learning and memory is decreased by lanthanum is vitally important for protecting health. Microglia are a type of neuroglia located throughout the brain and spinal cord that play an important role in the central nervous system. When overactive, these cells can cause the excessive production of inflammatory cytokines that can damage neighboring neurons. The purpose of this study was to explore the effect of lanthanum in the form of lanthanum chloride (LaCl3) on learning and the memory of mice and determine whether there is a relationship between hippocampal neurons or learning and memory damage and excessive production of inflammatory cytokines. Four groups of pregnant Chinese Kun Ming mice were exposed to 0, 18, 36, or 72 mM LaCl3 in their drinking water during lactation. The offspring were then exposed to LaCl3 in the breast milk at birth until weaning and then exposed to these concentrations in their drinking water for 2 months after weaning. The results showed that LaCl3 impaired learning and memory in mice and injured their neurons, activated the microglia, and significantly overregulated the mRNA and protein expression of tumor necrosis factor alpha, interleukin (IL)-1ß, IL-6, monocyte chemoattractant protein-1, and nitric oxide in the hippocampus. The results of this study suggest that lanthanum can impair learning and memory in mice, possibly by over-activating the microglia.


Asunto(s)
Lantano , Microglía , Animales , Femenino , Hipocampo/metabolismo , Lantano/metabolismo , Lantano/toxicidad , Aprendizaje por Laberinto , Embarazo , Ratas , Ratas Wistar , Transducción de Señal
20.
Food Chem Toxicol ; 161: 112831, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35090998

RESUMEN

Lanthanum is one of REEs documented to have neurotoxicity that led to learning and memory ability impairments. However, the mechanisms underlying La-induced neurotoxicity remain largely unexplored. Autophagy is a self-balancing and self-renewal process that degrades damaged organelles and macromolecules through lysosomal pathway. Importantly, appropriate autophagy levels have protective effects against harmful stress, while excessive autophagy has been demonstrated to be implicated in neurological diseases. ER is close to mitochondria at specific sites with a reported distance of 10-30 nm. The functional domains between the two organelles, called MAM, have been associated with autophagosome synthesis. In this study, the pregnant Wistar rats were randomly divided into four groups and given distilled water solution containing 0%, 0.125%, 0.25%, and 0.5% LaCl3 for drinking during gestation and lactation. The pups were exposed to LaCl3 via the maternal placenta and three-week lactation. Experimental results showed that LaCl3 decreased spatial learning and memory ability of offspring rats, decreased tethering protein complexes expression of MAM, damaged MAM structure, up-regulated NOX4 expression which led to active ROS-AMPK-mTOR signaling pathway. Our findings suggest that decreased spatial learning and memory ability induced by LaCl3 may be related to the abnormally autophagy regulated by tethering protein complexes of MAM.


Asunto(s)
Autofagia/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Lantano/toxicidad , Membranas Mitocondriales/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Hipocampo/metabolismo , Lactancia , Masculino , Mitocondrias , Membranas Mitocondriales/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Distribución Aleatoria , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...