Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
Food Chem ; 462: 141006, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213974

RESUMEN

Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 µL/mL PEO, 18.4 µg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 µg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.


Asunto(s)
Antibacterianos , Quitosano , Películas Comestibles , Emulsiones , Embalaje de Alimentos , Lauratos , Monoglicéridos , Nisina , Aceites Volátiles , Staphylococcus aureus , Nisina/farmacología , Nisina/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Lauratos/química , Lauratos/farmacología , Embalaje de Alimentos/instrumentación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Emulsiones/química , Quitosano/química , Quitosano/farmacología , Monoglicéridos/química , Monoglicéridos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Perilla/química
2.
Chem Phys Lipids ; 264: 105434, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216637

RESUMEN

Melting of brain sphingomyelin (bSM) manifests as a broad feature in the DSC curve that encompasses the temperature range of 25 - 45 °C, with two distinguished maxima originating from the phase transitions of two the most abundant components: C24:1 (Tm,1) and C18:0 (Tm,2). While C24:1/C18:0 sphingomyelin transforms from the gel/ripple phase to the fluid/fluid phase, the dynamics of water molecules in the interfacial layer remain completely unknown. Therefore, we carried out a calorimetric (DSC), spectroscopic (temperature-dependent UV-Vis and fluorescence) and MD simulation study of bSM in the absence/presence of Laurdan® (bSM ± L) suspended in Britton-Robinson buffer with three different pH values, 4 (BRB4), 7 (BRB7) and 9 (BRB9), and of comparable ionic strength (I = 100 mM). According to DSC, T̅m, 1 (≈ 34.5 °C/≈ 32.1 °C) and T̅m, 2 (≈ 38.0 °C/≈ 37.2 °C) of bSM suspended in BRB4, BRB7, and BRB9 in the absence/presence of Laurdan® are found to be practically pH-independent. Turbidity-based data (UV-Vis) detected both qualitative and quantitative differences in the response of bSM suspended in BRB4/BRB7/BRB9 (T̅m: ∼ 35 °C/32.0 ± 0.2 °C/36.4 ± 0.4), suggesting an intricate interplay of weakening of van der Waals forces between their hydrocarbon chains and of increased hydration in the polar headgroups region during melting. The temperature-dependent response of Laurdan® reported a discontinuous, pH-dependent change in the reorientation of interfacial water molecules that coincides with the melting of C24:1 lipids (on average, T̅m (LTC/HTC): ≈ 31.8 °C/30.6 °C/30.5 °C). MD simulations elucidated the impact of Laurdan® on a change in the physicochemical properties of bSM lipids and characterized the hydrogen bond network at the interface at 20 °C and 50 °C.


Asunto(s)
Encéfalo , Simulación de Dinámica Molecular , Transición de Fase , Esfingomielinas , Agua , Esfingomielinas/química , Agua/química , Encéfalo/metabolismo , Rastreo Diferencial de Calorimetría , Concentración de Iones de Hidrógeno , Lauratos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química
3.
Cells ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39120265

RESUMEN

The widely used Laurdan probe has two conformers, resulting in different optical properties when embedded in a lipid bilayer membrane, as demonstrated by our previous simulations. Up to now, the two conformers' optical responses have, however, not been investigated when the temperature and the phase of the membrane change. Since Laurdan is known to be both a molecular rotor and a solvatochromic probe, it is subject to a profound interaction with both neighboring lipids and water molecules. In the current study, molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics calculations are performed for a DPPC membrane at eight temperatures between 270K and 320K, while the position, orientation, fluorescence lifetime and fluorescence anisotropy of the embedded probes are monitored. The importance of both conformers is proven through a stringent comparison with experiments, which corroborates the theoretical findings. It is seen that for Conf-I, the excited state lifetime is longer than the relaxation of the environment, while for Conf-II, the surroundings are not yet adapted when the probe returns to the ground state. Throughout the temperature range, the lifetime and anisotropy decay curves can be used to identify the different membrane phases. The current work might, therefore, be of importance for biomedical studies on diseases, which are associated with cell membrane transformations.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , 2-Naftilamina , Lauratos , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Espectrometría de Fluorescencia , Temperatura , Agua , 1,2-Dipalmitoilfosfatidilcolina/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Lauratos/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Agua/química , Polarización de Fluorescencia
4.
Acc Chem Res ; 57(16): 2245-2254, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105728

RESUMEN

ConspectusLight is ubiquitously available to probe the structure and dynamics of biomolecules and biological tissues. Generally, this cannot be done directly with visible light, because of the absence of absorption by those biomolecules. This problem can be overcome by incorporating organic molecules (chromophores) that show an optical response in the vicinity of those biomolecules. Since those optical properties are strongly dependent on the chromophore's environment, time-resolved spectroscopic studies can provide a wealth of information on biosystems at the molecular scale in a nondestructive way. In this work, we give an overview on the multiscale computational strategy developed by us in the last eight years and prove that theoretical studies and simulations are needed to explain, guide, and predict observations in fluorescence experiments. As we challenge the accepted views on existing probes, we discover unexplored abilities that can discriminate surrounding lipid bilayers and their temperature-dependent as well as solvent-dependent properties. We focus on three archetypal chromophores: diphenylhexatriene (DPH), Laurdan, and azobenzene. Our method shows that conformational changes should not be neglected for the prototype rod-shaped molecule DPH. They determine its position and orientation in a liquid-ordered (Lo) sphingomyelin/cholesterol (SM/Chol) bilayer and are responsible for a strong differentiation of its absorption spectra and fluorescence decay times in dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) membranes, which are at room temperature in liquid-disordered (Ld) and solid-gel (So) phases, respectively. Thanks to its pronounced first excited state dipole moment, Laurdan has long been known as a solvatochromic probe. Since this molecule has however two conformers, we prove that they exhibit different properties in different lipid membrane phases. We see that the two conformers are only blocked in one phase but not in another. Supported by fluorescence anisotropy decay simulations, Laurdan can therefore be regarded as a molecular rotor. Finally, the conformational versatility of azobenzene in saturated Ld lipid bilayers is simulated, along with its photoisomerization pathways. By means of nonadiabatic QM/MM surface hopping analyses (QM/MM-SH), a dual mechanism is found with a torsional mechanism and a slow conversion for trans-to-cis. For cis-to-trans, simulations show a much higher quantum yield and a so-called "pedal-like" mechanism. The differences are related to the different potential energy surfaces as well as the interactions with the surrounding alkyl chains. When tails of increased length are attached to this probe, cis is pushed toward the polar surface, while trans is pulled toward the center of the membrane.


Asunto(s)
Compuestos Azo , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Compuestos Azo/química , Difenilhexatrieno/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Lauratos/química , Simulación de Dinámica Molecular
5.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999144

RESUMEN

This study assessed the nutritional profile of camellia oil through its fatty acid composition, highlighting its high oleic acid content (81.4%), followed by linoleic (7.99%) and palmitic acids (7.74%), demonstrating its excellence as an edible oil source. The impact of beeswax (BW) and glycerol monolaurate (GML) on camellia oil oleogels was investigated, revealing that increasing BW or GML concentrations enhanced hardness and springiness, with 10% BW oleogel exhibiting the highest hardness and springiness. FTIR results suggested that the structure of the oleogels was formed by interactions between molecules without altering the chemical composition. In biscuits, 10% BW oleogel provided superior crispness, expansion ratio, texture, and taste, whereas GML imparted a distinct odor. In sausages, no significant differences were observed in color, water retention, and pH between the control and replacement groups; however, the BW group scored higher than the GML group in the sensory evaluation. The findings suggest that the BW oleogel is an effective fat substitute in biscuits and sausages, promoting the application of camellia oil in food products.


Asunto(s)
Camellia , Lauratos , Monoglicéridos , Compuestos Orgánicos , Aceites de Plantas , Ceras , Camellia/química , Ceras/química , Aceites de Plantas/química , Lauratos/química , Compuestos Orgánicos/química , Compuestos Orgánicos/análisis , Monoglicéridos/química , Productos de la Carne/análisis , Gusto , Ácidos Grasos/química , Ácidos Grasos/análisis
6.
Methods Enzymol ; 700: 105-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38971597

RESUMEN

Hyperspectral imaging is a technique that captures a three-dimensional array of spectral information at each spatial location within a sample, enabling precise characterization and discrimination of biological structures, materials, and chemicals, based on their unique spectral features. Nowadays most commercially available confocal microscopes allow hyperspectral imaging measurements, providing a valuable source of spatially resolved spectroscopic data. Spectral phasor analysis quantitatively and graphically transforms the fluorescence spectra at each pixel of a hyperspectral image into points in a polar plot, offering a visual representation of the spectral characteristics of fluorophores within the sample. Combining the use of environmentally sensitive dyes with phasor analysis of hyperspectral images provides a powerful tool for measuring small changes in lateral membrane heterogeneity. Here, we focus on applications of spectral phasor analysis for the probe LAURDAN on model membranes to resolve packing and hydration. The method is broadly applicable to other dyes and to complex systems such as cell membranes.


Asunto(s)
Colorantes Fluorescentes , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Microscopía Confocal/métodos , Lauratos/química , Membrana Celular/química , Membrana Celular/metabolismo , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Membrana Dobles de Lípidos/química
7.
ACS Chem Biol ; 19(8): 1773-1785, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39069657

RESUMEN

Organelles feature characteristic lipid compositions that lead to differences in membrane properties. In cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to lipid packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells; therefore, it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out the membrane packing of individual cellular organelles. The set of organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes, and Golgi compartments with high specificity while retaining the spectral resolution needed to detect biological changes in membrane ordering. We show that ratiometric imaging with OTLs can resolve membrane heterogeneity within organelles as well as changes in lipid packing resulting from inhibition of trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While the ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application in interrogating lipid dysregulation.


Asunto(s)
2-Naftilamina , Lauratos , Fluidez de la Membrana , Orgánulos , Humanos , Lauratos/química , Lauratos/farmacología , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Fluidez de la Membrana/efectos de los fármacos , Orgánulos/metabolismo , Orgánulos/efectos de los fármacos , Colorantes Fluorescentes/química , Ácidos Grasos/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos
8.
Sci Rep ; 14(1): 15831, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982188

RESUMEN

2-Hydroxyoleic acid (2-OHOA) has gained attention as a membrane lipid therapy (MLT) anti-cancer drug. However, in the viewpoint of anti-cancer drug, 2-OHOA shows poor water solubility and its effectiveness still has space for improvement. Thus, this study aimed to overcome the problems by formulating 2-OHOA into liposome dosage form. Furthermore, in the context of MLT reagents, the influence of 2-OHOA on the biophysical properties of the cytoplasmic membrane remains largely unexplored. To bridge this gap, our study specifically focused the alterations in cancer cell membrane fluidity and lipid packing characteristics before and after treatment. By using a two-photon microscope and the Laurdan fluorescence probe, we noted that liposomes incorporating 2-OHOA induced a more significant reduction in cancer cell membrane fluidity, accompanied by a heightened rate of cellular apoptosis when compared to the non-formulated 2-OHOA. Importantly, the enhanced efficacy of 2-OHOA within the liposomal formulation demonstrated a correlation with its endocytic uptake mechanism. In conclusion, our findings underscore the significant influence of 2-OHOA on the biophysical properties of cancer plasma membranes, emphasizing the potential of liposomes as an optimized delivery system for 2-OHOA in anti-cancer therapy.


Asunto(s)
Membrana Celular , Liposomas , Fluidez de la Membrana , Liposomas/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Fluidez de la Membrana/efectos de los fármacos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Apoptosis/efectos de los fármacos , Lauratos/química , Microscopía de Fluorescencia por Excitación Multifotónica , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Ácidos Oléicos/química , Colorantes Fluorescentes/química
9.
Food Chem ; 455: 139959, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850980

RESUMEN

The Glycerol monolaurate (GML) oleogel was induced using Camellia oil by slowly raising the temp to the melting point (MP) of GML. Whey protein isolate (WPI) solution with different ratios was composited with GML oleogel by emulsion template methods, forming dense spines and honeycomb-like networks and impressed with an adjustable composite structure. Textural results showed that compared with single GML-based oleogels, the GML/WPI composite oleogels had the advantages of high hardness and molding, and structural stability. The composite oleogels had moderate thermal stability and maximal oil binding (96.36%). In particular, as up to 6 wt% GML/WPI, its modulus apparent viscosity was significantly increased in rheology and similar to commercial fats. Moreover, it achieved the highest release of FFA (64.07%) and the synergy provided a lipase substrate and reduced the body's burden. The resulting composite oleogel also showed intermolecular hydrogen bonding and van der Waals force interactions. These findings further enlarge the application in the plant and animal-based combined of fat substitutes, delivery of bioactive molecules, etc., with the desired physical and functional properties according to different proportions.


Asunto(s)
Digestión , Lauratos , Monoglicéridos , Compuestos Orgánicos , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Lauratos/química , Monoglicéridos/química , Compuestos Orgánicos/química , Viscosidad , Reología , Modelos Biológicos , Camellia/química , Animales , Lipasa/química , Lipasa/metabolismo , Sustitutos de Grasa/química
10.
Food Chem ; 457: 140148, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908245

RESUMEN

The inclusion complex (IC) was successfully obtained by encapsulating glycerol monolaurate (GML) into the cavity of hydroxypropyl-ß-cyclodextrin (HP-ß-CD). Compared with solubility of pure GML <80 µg/mL in water, and the water-solubility of encapsulated GML was significantly improved and reached to 270,000 µg/mL. IC can form nanoparticles by self-assembly, probably assigned to its strong capability to form micellar-type aggregates. A Higuchi's AL-type phase-solubility diagram indicated the strong interaction between host and guest molecules with the formation of 1:1 GML/HP-ß-CD complex and the stability constant at 6248 L/mol. Compared with pure GML, encapsulated GML at the same concentration can also show good antibacterial capabilities against S. aureus and E. coli in sterile water, and the effective preservative capabilities towards beef meatballs. The boosted enhancement in water-solubility of GML and the effective antibacterial capabilities endowed IC with potential in the application of food decontamination.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Antibacterianos , Escherichia coli , Lauratos , Micelas , Monoglicéridos , Solubilidad , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Escherichia coli/efectos de los fármacos , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Lauratos/química , Lauratos/farmacología , Monoglicéridos/química , Monoglicéridos/farmacología , Bovinos , Animales , Agua/química , Pruebas de Sensibilidad Microbiana
11.
Int J Biol Macromol ; 275(Pt 2): 133331, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945706

RESUMEN

The multifunctional active smart biomass film was prepared by incorporating chitosan-adsorbed laurate esterified starch curcumin Pickering emulsion into the starch film matrix, with nano-cellulose serving as reinforcing agents. The mechanical and functional properties of the film were studied, and the film was used to monitor the freshness of pork. The results demonstrated a relatively uniform distribution of curcumin and Pickering emulsion droplets within the film matrix. Furthermore, the thermal stability was minimally impacted by the introduction of curcumin Pickering emulsion, while the tensile strength and tensile strain of the film were increased, and both its hydrophobicity and antioxidant properties were improved. The free radical scavenging rate reached 56.01 %, with sustained high antioxidant capacity even after 8 days. Additionally, the presence of curcumin provided the film with pH indicating ability and delayed pork spoilage. Therefore, this work provides an attractive strategy for constructing green, active, and smart biomass packaging films for meat packaging applications.


Asunto(s)
Biomasa , Quitosano , Curcumina , Emulsiones , Embalaje de Alimentos , Almidón , Curcumina/química , Quitosano/química , Almidón/química , Emulsiones/química , Embalaje de Alimentos/métodos , Antioxidantes/química , Animales , Porcinos , Lauratos/química , Resistencia a la Tracción , Adsorción , Carne/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Concentración de Iones de Hidrógeno
12.
Food Chem ; 453: 139689, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781902

RESUMEN

In this study, based on the discovery of thymol/glycerol monolaurate (GML) eutectic solvent, we studied the effect of GML as a multi-functional component (ripening inhibitor and antibacterial agent) on the formation, stability and antibacterial activity of eutectic nanoemulsions, and investigated the preservation of nanoemulsion in fresh pork. These results indicated that the formation of eutectic solvent was due to the hydrogen bonding between thymol and GML in the molten state. And eutectic nanoemulsions prepared with medium GML concentrations (20%, 40%, and 60%) of eutectic solvents as oil phases had small droplet diameters (<150 nm), exhibited sustained-release characteristics, and had excellent physicochemical stability. Moreover, the addition of GML enhanced the antibacterial activity of thymol nanoemulsion against S. aureus. as seen by their ability to inhibit affect formation more effectively. Treatment of fresh pork with optimized eutectic nanoemulsions (40% thymol/60% GML) extended its shelf life during refrigeration, which was mainly attributed to the ability of the encapsulated essential oil to inhibit microbial growth and lipid oxidation. These results provide a novel strategy to control Ostwald ripening and maintain the high antibacterial activity of thymol in nanoemulsion-based delivery systems.


Asunto(s)
Antibacterianos , Emulsiones , Lauratos , Monoglicéridos , Staphylococcus aureus , Timol , Timol/química , Timol/farmacología , Emulsiones/química , Emulsiones/farmacología , Lauratos/química , Lauratos/farmacología , Monoglicéridos/química , Monoglicéridos/farmacología , Porcinos , Animales , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Antibacterianos/farmacología , Antibacterianos/química , Conservación de Alimentos
13.
Biophys Chem ; 311: 107269, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815545

RESUMEN

Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-rac-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (W0, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins - cytochrome c, myoglobin, and flavodoxin - in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as W0 was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.


Asunto(s)
Glicerol , Micelas , Mioglobina , Tensoactivos , Mioglobina/química , Tensoactivos/química , Glicerol/química , Citocromos c/química , Flavodoxina/química , Lauratos/química , Termodinámica , Agua/química , Dimetilaminas
14.
J Photochem Photobiol B ; 250: 112833, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141326

RESUMEN

The solvatochromic dye Laurdan is widely used in sensing the lipid packing of both model and biological membranes. The fluorescence emission maximum shifts from about 440 nm (blue channel) in condensed membranes (So) to about 490 nm (green channel) in the liquid-crystalline phase (Lα). Although the fluorescence intensity based generalized polarization (GP) is widely used to characterize lipid membranes, the fluorescence lifetime of Laurdan, in the blue and the green channel, is less used for that purpose. Here we explore the correlation between GP and fluorescence lifetimes by spectroscopic measurements on the So and Lα phases of large unilamellar vesicles of DMPC and DPPC. A positive correlation between GP and the lifetimes is observed in each of the optical channels for the two lipid phases. Microfluorimetric determinations on giant unilamellar vesicles of DPPC and DOPC at room temperature are performed under linearly polarized two-photon excitation to disentangle possible subpopulations of Laurdan at a scale below the optical resolution. Fluorescence intensities, GP and fluorescence lifetimes depend on the angle between the orientation of the linear polarization of the excitation light and the local normal to the membrane of the optical cross-section. This angular variation depends on the lipid phase and the emission channel. GP and fluorescence intensities in the blue and green channel in So and in the blue channel in Lα exhibit a minimum near 90o. Surprisingly, the intensity in the green channel in Lα reaches a maximum near 90o. The fluorescence lifetimes in the two optical channels also reach a pronounced minimum near 90o in So and Lα, apart from the lifetime in the blue channel in Lα where the lifetime is short with minimal angular variation. To our knowledge, these experimental observations are the first to demonstrate the existence of a bent conformation of Laurdan in lipid membranes, as previously suggested by molecular dynamics calculations.


Asunto(s)
Lauratos , Liposomas Unilamelares , Membrana Celular , Lauratos/análisis , Lauratos/química , 2-Naftilamina/química , Colorantes Fluorescentes/química , Polarización de Fluorescencia
15.
Biochim Biophys Acta Biomembr ; 1865(7): 184176, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37328024

RESUMEN

Cells are constantly adapting to maintain their identity in response to the surrounding media's temporal and spatial heterogeneity. The plasma membrane, which participates in the transduction of external signals, plays a crucial role in this adaptation. Studies suggest that nano and micrometer areas with different fluidities at the plasma membrane change their distribution in response to external mechanical signals. However, investigations linking fluidity domains with mechanical stimuli, specifically matrix stiffness, are still in progress. This report tests the hypothesis that the stiffness of the extracellular matrix can modify the equilibrium of areas with different order in the plasma membrane, resulting in changes in overall membrane fluidity distribution. We studied the effect of matrix stiffness on the distribution of membrane lipid domains in NIH-3 T3 cells immersed in matrices of varying concentrations of collagen type I, for 24 or 72 h. The stiffness and viscoelastic properties of the collagen matrices were characterized by rheometry, fiber sizes were measured by Scanning Electron Microscopy (SEM) and the volume occupied by the fibers by second harmonic generation imaging (SHG). Membrane fluidity was measured using the fluorescent dye LAURDAN and spectral phasor analysis. The results demonstrate that an increase in collagen stiffness alters the distribution of membrane fluidity, leading to an increasing amount of the LAURDAN fraction with a high degree of packing. These findings suggest that changes in the equilibrium of fluidity domains could represent a versatile and refined component of the signal transduction mechanism for cells to respond to the highly heterogeneous matrix structural composition. Overall, this study sheds light on the importance of the plasma membrane's role in adapting to the extracellular matrix's mechanical cues.


Asunto(s)
Lauratos , Fluidez de la Membrana , Membrana Celular/metabolismo , Lauratos/química , Colágeno/metabolismo
16.
Methods Appl Fluoresc ; 11(1)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36252561

RESUMEN

Hyperspectral imaging (HSI) is a paramount technique in biomedical science, however, unmixing and quantification of each spectral component is a challenging task. Traditional unmixing relies on algorithms that need spectroscopic parameters from the fluorescent species in the sample. The phasor-based multi-harmonic unmixing method requires only the empirical measurement of the pure species to compute the pixel-wise photon fraction of every spectral component. Using simulations, we demonstrate the feasibility of the approach for up to 5 components and explore the use of adding a 6th unknown component representing autofluorescence. The simulations show that the method can be successfully used in typical confocal imaging experiments (with pixel photon counts between 101and 103). As a proof of concept, we tested the method in living cells, using 5 common commercial dyes for organelle labeling and we easily and accurately separate them. Finally, we challenged the method by introducing a solvatochromic probe, 6-Dodecanoyl-N,N-dimethyl-2-naphthylamine (LAURDAN), intended to measure membrane dynamics on specific subcellular membrane-bound organelles by taking advantage of the linear combination between the organelle probes and LAURDAN. We succeeded in monitoring the membrane order in the Golgi apparatus, Mitochondria, and plasma membrane in the samein-vivocell and quantitatively comparing them. The phasor-based multi-harmonic unmixing method can help expand the outreach of HSI and democratize its use by the community for it does not require specialized knowledge.


Asunto(s)
2-Naftilamina , Lauratos , Lauratos/análisis , Lauratos/química , 2-Naftilamina/análisis , 2-Naftilamina/química , Microscopía Fluorescente/métodos , Membrana Celular
17.
Biochim Biophys Acta Biomembr ; 1864(1): 183794, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627747

RESUMEN

Employing fluorescence spectroscopy and the membrane-embedded dye Laurdan we experimentally show that linear changes of cell membrane order in the physiological temperature regime are part of broad order-disorder-phase transitions which extend over a much broader temperature range. Even though these extreme temperatures are usually not object of live science research due to failure of cellular functions, our findings help to understand and predict cell membrane properties under physiological conditions as they explain the underlying physics of a broad order-disorder phase transition. Therefore, we analyzed the membranes of various cell lines, red blood cell ghosts and lipid vesicles by spectral decomposition in a custom-made setup in a temperature range from -40 °C to +90 °C. While the generalized polarization as a measure for membrane order of artificial lipid membranes like phosphatidylcholine show sharp transitions as known from calorimetry measurements, living cells in a physiological temperature range do only show linear changes. However, extending the temperature range shows the existence of broad transitions and their sensitivity to cholesterol content, pH and anaesthetic. Moreover, adaptation to culture conditions like decreased temperature and morphological changes like detachment of adherent cells or dendrite growth are accompanied by changes in membrane order as well. The observed changes of the generalized polarization are equivalent to temperature changes dT in the range of +12 K < dT < -6 K.


Asunto(s)
Membrana Celular/química , Membrana Eritrocítica/química , Lípidos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Colesterol/química , Colorantes Fluorescentes/química , Lauratos/química , Transición de Fase , Fosfatidilcolinas/química , Espectrometría de Fluorescencia , Termodinámica
18.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L191-L203, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851730

RESUMEN

By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggests that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure, and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of nonlamellar phases. The surface activity of AFS is not only comparable with that of NS under physiologically meaningful conditions but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.


Asunto(s)
Líquido Amniótico/química , Surfactantes Pulmonares/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animales , Rastreo Diferencial de Calorimetría , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lauratos/química , Lípidos/química , Membranas , Porcinos
19.
J Food Sci ; 86(10): 4717-4729, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34553787

RESUMEN

(-)-Epigallocatechin-3-O-gallate(EGCG) was enzymatically modified to enhance the lipophilicity and the antioxidant property. The determination of optimal reaction conditions are as follows: Lipase DF "Amano" 15 and acetone were used as catalyst and solvent, respectively. Equal molar of EGCG and vinyl laurate (1:1); lipase addition of 6.0% (w/w of total substrates); reaction temperature of 50°C and reaction time of 96 h, which obtained the conversion rate of EGCG at 80.1%. The structure of EGCG lauroyl derivatives were 5″-O-lauroyl-EGCG, 3″,5″-2-O-lauroyl-EGCG, and 5',3″,5″-3-O-lauroyl-EGCG, identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR). Compared with the logP of precursor EGCG (0.69 ± 0.03), the logP of EGCG lauroyl derivatives was 1.37 ± 0.19, 2.27 ± 0.33, and 3.28 ± 0.37, increasing by 0.98, 2.28, and 3.75 times, respectively (p < 0.05), suggesting the grafted fatty acid chains make EGCG derivatives more lipophilic, and the lipid solubility gradually increased as the number of substituents increased. Furthermore, EGCG lauroyl derivatives had excellent lipid oxidation than that of EGCG. The POVs (peroxide values) of soybean oil with mono-, di-, tri-lauroyl EGCG were significantly reduced by 42%, 47%, and 57% than that of EGCG at 21 days, respectively, indicating the antioxidative inhibition of these derivatives decreased with the increase in substituents. This indicates that these derivatives have broad prospects of the antioxidant application while improving their solubility properties in lipophilic environments/high-fat food. Practical Application: The lipophilic esterification reaction of EGCG catalyzed by new catalytic lipase DF "Amano" 15 was carried out in a non-aqueous solvent.Various reaction factors on a higher conversion rate of EGCG lauroyl derivatives were evaluated. The lipophilicity and antioxidant properties of EGCG lauroyl derivatives were much excellent than that of parent EGCG.


Asunto(s)
Catequina/análogos & derivados , Lauratos , Compuestos de Vinilo , Antioxidantes/química , Antioxidantes/farmacología , Catequina/química , Catequina/farmacología , Esterificación , Lauratos/química , Lauratos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Compuestos de Vinilo/química , Compuestos de Vinilo/farmacología
20.
Biochim Biophys Acta Biomembr ; 1863(12): 183728, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34416246

RESUMEN

Using LAURDAN fluorescence we observed that water dynamics measured at the interface of DOPC bilayers can be differentially regulated by the presence of crowded suspensions of different proteins (HSA, IgG, Gelatin) and PEG, under conditions where the polymers are not in direct molecular contact with the lipid interface. Specifically, we found that the decrease in water dipolar relaxation at the membrane interface correlates with an increased fraction of randomly oriented (or random coil) configurations in the polymers, as Gelatin > PEG > IgG > HSA. By using the same experimental strategy, we also demonstrated that structural transitions from globular to extended conformations in proteins can induce transitions between lamellar and non-lamellar phases in mixtures of DOPC and monoolein. Independent experiments using Raman spectroscopy showed that aqueous suspensions of polymers exhibiting high proportions of randomly oriented conformations display increased fractions of tetracoordinated water, a configuration that is dominant in ice. This indicates a greater capacity of this type of structure for polarizing water and consequently reducing its chemical activity. This effect is in line with one of the tenets of the Association Induction Hypothesis, which predicts a long-range dynamic structuring of water molecules via their interactions with proteins (or other polymers) showing extended conformations. Overall, our results suggest a crucial role of water in promoting couplings between structural changes in macromolecules and supramolecular arrangements of lipids. This mechanism may be of relevance to cell structure/function when the crowded nature of the intracellular milieu is considered.


Asunto(s)
Inmunoglobulina G/química , Lípidos/química , Albúmina Sérica Humana/química , Agua/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Gelatina/química , Glicéridos/química , Lauratos/química , Conformación Molecular , Fosfatidilcolinas/química , Polietilenglicoles/química , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA