Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.775
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731976

RESUMEN

Increasing antimicrobial resistance (AMR) challenges conventional antibiotics, prompting the search for alternatives. Extracellular vesicles (EVs) from pasteurised cattle milk offer promise, due to their unique properties. This study investigates their efficacy against five pathogenic bacteria, including Staphylococcus aureus ATCC 25923, aiming to combat AMR and to develop new therapies. EVs were characterised and tested using various methods. Co-culture experiments with S. aureus showed significant growth inhibition, with colony-forming units decreasing from 2.4 × 105 CFU/mL (single dose) to 7.4 × 104 CFU/mL (triple doses) after 12 h. Milk EVs extended lag time (6 to 9 h) and increased generation time (2.8 to 4.8 h) dose-dependently, compared to controls. In conclusion, milk EVs exhibit dose-dependent inhibition against S. aureus, prolonging lag and generation times. Despite limitations, this suggests their potential in addressing AMR.


Asunto(s)
Vesículas Extracelulares , Leche , Staphylococcus aureus , Vesículas Extracelulares/metabolismo , Animales , Leche/microbiología , Staphylococcus aureus/efectos de los fármacos , Bovinos , Antibacterianos/farmacología , Pasteurización , Pruebas de Sensibilidad Microbiana
2.
Food Res Int ; 186: 114305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729687

RESUMEN

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Asunto(s)
Equidae , Fermentación , Cabras , Kéfir , Leche , Animales , Kéfir/microbiología , Bovinos , Leche/microbiología , Leche/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Gusto , Camelus , Microbiología de Alimentos , Lactobacillus/metabolismo , Microbiota , Acetobacter/metabolismo , Aminoácidos/metabolismo , Aminoácidos/análisis
3.
BMC Vet Res ; 20(1): 200, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745199

RESUMEN

BACKGROUND: In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS: After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION: This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Haplotipos , Mastitis Bovina , Leche , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Bovinos , Leche/microbiología , Leche/citología , Femenino , Mastitis Bovina/microbiología , Staphylococcus aureus/fisiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Recuento de Células/veterinaria , Temperatura Corporal , Vagina/microbiología
4.
Sci Rep ; 14(1): 10349, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710789

RESUMEN

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Asunto(s)
Mastitis Bovina , Trasplante de Células Madre Mesenquimatosas , Leche , Animales , Bovinos , Femenino , Mastitis Bovina/terapia , Mastitis Bovina/microbiología , Leche/citología , Leche/microbiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Citocinas/metabolismo , Citocinas/sangre
5.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710998

RESUMEN

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Enteritis , Variación Genética , Mastitis Bovina , Leche , Filogenia , Animales , Clostridium perfringens/genética , Clostridium perfringens/aislamiento & purificación , Clostridium perfringens/clasificación , Clostridium perfringens/patogenicidad , Bovinos , Egipto , Femenino , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Leche/microbiología , Enteritis/microbiología , Enteritis/veterinaria , Mastitis Bovina/microbiología , Enfermedades de los Bovinos/microbiología , Heces/microbiología , Fosfolipasas de Tipo C/genética , Industria Lechera , Granjas , Toxinas Bacterianas/genética
6.
Vet Q ; 44(1): 1-9, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38733121

RESUMEN

The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.


Asunto(s)
Animales Recién Nacidos , Heces , Microbioma Gastrointestinal , Lactancia , Leche , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/fisiología , Caballos , Femenino , Leche/química , Leche/microbiología , Heces/microbiología , Heces/química , Animales Recién Nacidos/microbiología , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis
7.
Artículo en Alemán | MEDLINE | ID: mdl-38701797

RESUMEN

OBJECTIVE: Four parameters of a decision tree for Selective Dry Cow Treatment (SDCT), examined in a previous study, were analyzed regarding their efficacy in detecting cows for dry cow treatment (DCT, use of intramammary antimicrobials). This study set out to review wether all parameters (somatic cell count [SCC≥ 200 000 SC/ml 3 months' milk yield recordings prior dry off (DO)], clinical mastitis history during lactation [≥1 CM], culturing [14d prior DO, detection of major pathogens] and California-Mastitis-Test [CMT, > rate 1/+ at DO]) are necessary for accurate decision making, whether there are possible alternatives to replace culturing, and whether a simplified model could replace the decision tree. MATERIAL AND METHODS: Records of 18 Bavarian dairy farms from June 2015 to August 2017 were processed. Data analysis was carried out by means of descriptive statistics, as well as employing a binary cost sensitive classification tree and logit-models. For statistical analyses the outcomes of the full 4-parameter decision tree were taken as ground truth. RESULTS: 848 drying off procedures in 739 dairy cows (CDO) were included. SCC and CMT selected 88.1%, in combination with CM 95.6% of the cows that received DCT (n=494). Without culturing, 22 (4.4%) with major pathogens (8x Staphylococcus [S.] aureus) infected CDO would have been misclassified as not needing DCT. The average of geometric mean SCC (within 100 d prior DO) for CDO with negative results in culturing was<100 000 SC/ml milk, 100 000-150 000 SC/ml for CDO infected with minor pathogens, and ≥ 150 000 SC/ml for CDO infected with major pathogens (excluding S.aureus). Using SCC during lactation (at least 1x > 200 000 SC/ml) and positive CMT to select CDO for DCT, contrary to the decision tree, 37 CDO (4.4%) would have been treated "incorrectly without" and 43 CDO (5.1%) "unnecessarily with" DCT. Modifications were identified, such as SCC<131 000 SC/ml within 100 d prior to DO for detecting CDO with no growth or minor pathogens in culturing. The best model for grading CDO for or against DCT (CDO without CM and SCC<200 000 SC/ml [last 3 months prior DO]) had metrics of AUC=0.74, Accuracy=0.778, balanced Accuracy=0.63, Sensitivity=0.92 and Specificity=0.33. CONCLUSIONS: Combining the decision tree's parameters SCC, CMT and CM renders suitable selection criteria under the conditions of this study. When omitting culturing, lower thresholds for SCC should be considered for each farm individually to select CDO for DCT. Nonetheless, the most accurate model could not replace the full decision tree.


Asunto(s)
Industria Lechera , Árboles de Decisión , Mastitis Bovina , Animales , Bovinos , Femenino , Mastitis Bovina/microbiología , Mastitis Bovina/diagnóstico , Industria Lechera/métodos , Alemania , Leche/citología , Leche/microbiología , Lactancia/fisiología
8.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698383

RESUMEN

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Asunto(s)
Mastitis Bovina , Streptococcus agalactiae , Streptococcus , Mastitis Bovina/diagnóstico , Mastitis Bovina/microbiología , Animales , Bovinos , Femenino , Streptococcus agalactiae/aislamiento & purificación , Streptococcus/aislamiento & purificación , Staphylococcus aureus/aislamiento & purificación , Sensibilidad y Especificidad , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Cocos Grampositivos/aislamiento & purificación , Inmunoensayo/veterinaria , Inmunoensayo/métodos , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Leche/microbiología , Leche/citología
9.
BMC Vet Res ; 20(1): 168, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698418

RESUMEN

BACKGROUND: Digital dermatitis (DD) is a contagious hoof infection affecting cattle worldwide. The disease causes lameness and a reduction in animal welfare, which ultimately leads to major decreases in milk production in dairy cattle. The disease is most likely of polymicrobial origin with Treponema phagedenis and other Treponema spp. playing a key role; however, the etiology is not fully understood. Diagnosis of the disease is based on visual assessment of the feet by trained hoof-trimmers and veterinarians, as a more reliable diagnostic method is lacking. The aim of this study was to evaluate the use of an enzyme-linked immunosorbent assay (ELISA) on bulk tank milk samples testing for the presence of T. phagedenis antibodies as a proxy to assess herd prevalence of DD in Swedish dairy cattle herds. RESULTS: Bulk tank milk samples were collected in 2013 from 612 dairy herds spread across Sweden. A nationwide DD apparent prevalence of 11.9% (8.1-14.4% CI95%) was found, with the highest proportion of test-positive herds in the South Swedish regions (31.3%; 19.9-42.4% CI95%). CONCLUSIONS: This study reveals an underestimation of DD prevalence based on test results compared to hoof trimming data, highlighting the critical need for a reliable and accurate diagnostic method. Such a method is essential for disease monitoring and the development of effective control strategies. The novelty of ELISA-based diagnostic methods for DD, coupled with the disease's polymicrobial origin, suggests an avenue for improvement. Developing an expanded ELISA, incorporating antigens from various bacterial species implicated in the disease, could enhance diagnostic accuracy. The significance of this study is underscored by the extensive analysis of a substantial sample size (612). Notably, this investigation stands as the largest assessment to date, evaluating the application of ELISA on bulk tank milk for DD diagnosis at the herd level.


Asunto(s)
Enfermedades de los Bovinos , Dermatitis Digital , Ensayo de Inmunoadsorción Enzimática , Leche , Treponema , Animales , Bovinos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Leche/microbiología , Suecia/epidemiología , Dermatitis Digital/diagnóstico , Dermatitis Digital/microbiología , Treponema/aislamiento & purificación , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/epidemiología , Femenino , Infecciones por Treponema/veterinaria , Infecciones por Treponema/diagnóstico , Infecciones por Treponema/microbiología , Prevalencia , Anticuerpos Antibacterianos/análisis , Industria Lechera
10.
BMC Vet Res ; 20(1): 193, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734661

RESUMEN

BACKGROUND: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS: The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS: The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.


Asunto(s)
Mastitis Bovina , Leche , Streptococcus , Animales , Bovinos , Mastitis Bovina/microbiología , Mastitis Bovina/epidemiología , Polonia/epidemiología , Femenino , Leche/microbiología , Streptococcus/aislamiento & purificación , Streptococcus/genética , Streptococcus/clasificación , Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/clasificación , Staphylococcus aureus/aislamiento & purificación , Staphylococcus aureus/genética , Streptococcus agalactiae/aislamiento & purificación , Streptococcus agalactiae/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética
11.
Vet Microbiol ; 293: 110103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718528

RESUMEN

Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products.


Asunto(s)
Antibacterianos , Enterococcus faecium , Leche , Oxazolidinonas , Animales , Bovinos , Enterococcus faecium/genética , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/aislamiento & purificación , Leche/microbiología , China/epidemiología , Oxazolidinonas/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Plásmidos/genética , Linezolid/farmacología , Secuenciación Completa del Genoma , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/veterinaria , Infecciones por Bacterias Grampositivas/epidemiología , Genes Bacterianos/genética
12.
J Hazard Mater ; 471: 134323, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640680

RESUMEN

Sensitive detection and point-of-care test of bacterial pathogens is of great significance in safeguarding the public health worldwide. Inspired by the characteristics of horseradish peroxidase (HRP), we synthesized a hybrid nanoflower with peroxidase-like activity via a three-component self-assembled strategy. Interestingly, the prepared nanozyme not only could act as an alternative to HRP for colorimetric biosensing, but also function as a unique signal probe that could be recognized by a pregnancy test strip. By combining the bifunctional properties of hybrid nanoflower, isothermal amplification of LAMP, and the specific recognition and non-specific cleavage properties of CRISPR/Cas12a system, the dual-readout CRISPR/Cas12a biosensor was developed for sensitive and rapid detection of Salmonella enterica. Moreover, this platform in the detection of Salmonella enterica had limits of detection of 1 cfu/mL (colorimetric assay) in the linear range of 101-108 cfu/mL and 102 cfu/mL (lateral flow assay) in the linear range of 102-108 cfu/mL, respectively. Furthermore, the developed biosensor exhibited good recoveries in the spiked samples (lake water and milk) with varying concentrations of Salmonella enterica. This work provides new insights for the design of multifunctional nanozyme and the development of innovative dual-readout CRISPR/Cas system-based biosensing platform for the detection of pathogens.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Salmonella enterica , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Técnicas Biosensibles/métodos , Leche/microbiología , Técnicas de Amplificación de Ácido Nucleico/métodos , Nanoestructuras/química , Colorimetría/métodos , Animales , Límite de Detección , Técnicas de Diagnóstico Molecular
13.
Res Vet Sci ; 172: 105240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608347

RESUMEN

Antimicrobial usage (AMU) could be reduced by differentiating the causative bacteria in cases of clinical mastitis (CM) as either Gram-positive or Gram-negative bacteria or identifying whether the case is culture-negative (no growth, NG) mastitis. Immunoassays for biomarker analysis and a Tandem Mass Tag (TMT) proteomic investigation were employed to identify differences between samples of milk from cows with CM caused by different bacteria. A total of 94 milk samples were collected from cows diagnosed with CM across seven farms in Scotland, categorized by severity as mild (score 1), moderate (score 2), or severe (score 3). Bovine haptoglobin (Hp), milk amyloid A (MAA), C-reactive protein (CRP), lactoferrin (LF), α-lactalbumin (LA) and cathelicidin (CATHL) were significantly higher in milk from cows with CM, regardless of culture results, than in milk from healthy cows (all P-values <0.001). Milk cathelicidin (CATHL) was evaluated using a novel ELISA technique that utilises an antibody to a peptide sequence of SSEANLYRLLELD (aa49-61) common to CATHL 1-7 isoforms. A classification tree was fitted on the six biomarkers to predict Gram-positive bacteria within mastitis severity scores 1 or 2, revealing that compared to the rest of the samples, Gram-positive samples were associated with CRP < 9.5 µg/ml and LF ≥ 325 µg/ml and MAA < 16 µg/ml. Sensitivity of the tree model was 64%, the specificity was 91%, and the overall misclassification rate was 18%. The area under the ROC curve for this tree model was 0.836 (95% bootstrap confidence interval: 0.742; 0.917). TMT proteomic analysis revealed little difference between the groups in protein abundance when the three groups (Gram-positive, Gram-negative and no growth) were compared, however when each group was compared against the entirety of the remaining samples, 28 differentially abundant protein were identified including ß-lactoglobulin and ribonuclease. Whilst further research is required to draw together and refine a suitable biomarker panel and diagnostic algorithm for differentiating Gram- positive/negative and NG CM, these results have highlighted a potential panel and diagnostic decision tree. Host-derived milk biomarkers offer significant potential to refine and reduce AMU and circumvent the many challenges associated with microbiological culture, both within the lab and on the farm, while providing the added benefit of reducing turnaround time from 14 to 16 h of microbiological culture to just 15 min with a lateral flow device (LFD).


Asunto(s)
Biomarcadores , Mastitis Bovina , Leche , Animales , Bovinos , Femenino , Leche/química , Leche/microbiología , Mastitis Bovina/microbiología , Mastitis Bovina/diagnóstico , Biomarcadores/metabolismo , Proteoma , Proteínas de la Leche/análisis , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Catelicidinas
14.
Food Funct ; 15(9): 5026-5040, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38650522

RESUMEN

This study utilized high-throughput sequencing and SEM observation to elucidate the microbial composition of a Tibetan herder's homemade kefir grain named TKG-Y. Subsequently, S. warneri KYS-164 was isolated from TKG-Y, which can produce mixed protein substances with antibacterial activity, namely bacteriocin-like inhibitory substances (BLIS). BLIS can significantly reduce the growth rate of Escherichia coli 366-a, Staphylococcus aureus CICC 10384 and mixed strains at low concentrations (1 × MIC). The presence of the warnericin-centered gene cluster in KYS-164 may explain the antibacterial properties of the BLIS. Pepsin and an acidic environment can reduce the number of colonies of KYS-164 by 2.5 Log10 CFU mL-1 within 1 h, and reduce the antibacterial activity of BLIS by 21.48%. S. warneri KYS-164 showed no antibiotic resistance and biological toxicity after 80 subcultures, while BLIS produced by 40 generations of the strain retained their inhibitory efficacy against pathogenic bacteria. After 48-hour fermentation of milk with KYS-164, volatile compounds such as aldehydes, phenols, esters, and alcohols, giving it a floral, fruity, milky, oily, and nutty aroma, were released, enriching the sensory characteristics of dairy products. This study not only revealed the bacterial colony composition information of home-made kefir grain TKG-Y but also discovered and proved that S. warneri KYS-164 has the potential to inhibit bacteria and ferment dairy products. This will provide a basis for subsequent applied research on KYS-164.


Asunto(s)
Antibacterianos , Fermentación , Kéfir , Leche , Kéfir/microbiología , Leche/microbiología , Antibacterianos/farmacología , Animales , Tibet , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Bacteriocinas/farmacología
15.
J Vet Med Sci ; 86(5): 468-473, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569837

RESUMEN

Streptococcus uberis is one of major pathogens causing bovine mastitis. However, there is poor information on antimicrobial resistance (AMR) among the Japanese isolates. To provide treatment information for the mastitis caused by S. uberis in Japan, we aimed to clarify AMR patterns of the isolates from bovine milk mainly in Chiba. AMR phenotyping/genotyping [blaZ-erm(A)-erm(B)-mef(A)-linB-lnuD-tet(M)-tet(O)-tet(K)-tet(L)-tet(S)] and multilocus sequence typing were performed to analyze relationships between AMR patterns and clonal complexes (CCs). Resistance to tetracycline-, macrolide-, and lincosamide-classes was mainly associated with possession of tet(O), tet(S), erm(B), linB, and lnuD genes. CC996 was significantly associated with multidrug resistance (P<0.0001). These findings will aid Chiba farm animal clinics in treating bovine mastitis.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Mastitis Bovina , Leche , Infecciones Estreptocócicas , Streptococcus , Animales , Bovinos , Streptococcus/efectos de los fármacos , Streptococcus/genética , Streptococcus/aislamiento & purificación , Japón , Leche/microbiología , Mastitis Bovina/microbiología , Femenino , Antibacterianos/farmacología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Tipificación de Secuencias Multilocus , Genotipo , Pruebas de Sensibilidad Microbiana
16.
Biosens Bioelectron ; 256: 116260, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613935

RESUMEN

Various bioelectronic noses have been recently developed for mimicking human olfactory systems. However, achieving direct monitoring of gas-phase molecules remains a challenge for the development of bioelectronic noses due to the instability of receptor and the limitations of its surrounding microenvironment. Here, we report a MXene/hydrogel-based bioelectronic nose for the sensitive detection of liquid and gaseous hexanal, a signature odorant from spoiled food. In this study, a conducting MXene/hydrogel structure was formed on a sensor via physical adsorption. Then, canine olfactory receptor 5269-embedded nanodiscs (cfOR5269NDs) which could selectively recognize hexanal molecules were embedded in the three-dimensional (3D) MXene/hydrogel structures using glutaraldehyde as a linker. Our MXene/hydrogel-based bioelectronic nose exhibited a high selectivity and sensitivity for monitoring hexanal in both liquid and gas phases. The bioelectronic noses could sensitively detect liquid and gaseous hexanal down to 10-18 M and 6.9 ppm, and they had wide detection ranges of 10-18 - 10-6 M and 6.9-32.9 ppm, respectively. Moreover, our bioelectronic nose allowed us to monitor hexanal levels in fish and milk. In this respect, our MXene/hydrogel-based bioelectronic nose could be a practical strategy for versatile applications such as food spoilage assessments in both liquid and gaseous systems.


Asunto(s)
Técnicas Biosensibles , Nariz Electrónica , Técnicas Biosensibles/métodos , Animales , Gases/química , Gases/análisis , Aldehídos/química , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Perros , Receptores Odorantes/química , Humanos , Leche/microbiología , Leche/química , Diseño de Equipo , Odorantes/análisis
17.
Food Microbiol ; 121: 104514, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637076

RESUMEN

The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.


Asunto(s)
Queso , Productos Lácteos Cultivados , Lactococcus lactis , Animales , Proteoma/metabolismo , Fermentación , Queso/microbiología , Leche/microbiología , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
18.
Food Microbiol ; 121: 104531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637091

RESUMEN

The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products.


Asunto(s)
Queso , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Staphylococcus aureus/genética , Queso/microbiología , Brasil , Microbiología de Alimentos , Acero Inoxidable/análisis , Enterotoxinas/genética , Leche/microbiología
19.
Open Vet J ; 14(3): 779-786, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38682148

RESUMEN

Background: Milk-borne bacteria cause degradation of milk products and constitute a significant risk to public health. Aim: The objectives of the present study are to determine the microbiological quality of dairy products and to investigate pathogenic microorganisms. Methods: A total of 60 samples of raw milk, homemade cheese, and yogurt were randomly selected from different retail marketplaces in Basrah. The bacteriological and biochemical tests were utilized to identify the pathogens in dairy samples, as well as the molecular technique was used as an accurate diagnostic test. Results: The prevalence of contamination of milk products with various isolates was estimated as 50% (95% Cl: 36.8-63.2). The mean of total bacteria count for cheese was 7.29 ± 2.70, raw milk 4.62 ± 2.86, and yogurt 2.87 ± 1.05, with a significant p-value (p = 0.001). The mean count of aerobic spore-forming (ASF) contaminated raw milk was analyzed as 3.77 ± 1.18 and less contamination detected in the yogurt samples with mean of ASF was estimated as 2.52 ± 1.47 SD log 10 CFU/ml. A range of important microorganisms to human health were identified by employing the VITEK_2 system and sequencing 16S rDNA gene, including Staphylococcus aureus, Escherichia coli, Pseudomonas aerogenosa, and Bacillus cereus. Conclusion: The study indicates that there is a high level of bacterial contamination in dairy products with different bacteria species, which is medically important. Therefore, food safety management must be implemented to reduce biological risks carried by dairy products and ensure healthy food for consumers.


Asunto(s)
Productos Lácteos , Microbiología de Alimentos , Leche , Animales , Productos Lácteos/microbiología , Microbiología de Alimentos/estadística & datos numéricos , Leche/microbiología , Medición de Riesgo , Irak/epidemiología , Queso/microbiología , Bacterias/aislamiento & purificación , Bacterias/clasificación , Yogur/microbiología
20.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 8-14, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678633

RESUMEN

The existence of diverse microbes in unprocessed camel milk poses a significant threat to the well-being of a large population, especially infants and toddlers. The objective of this study was to ascertain the existence of microorganisms in unprocessed raw camel milk by employing a molecular-based technique in combination with a histological examination of bacteria. The identification of microbial species was achieved by employing PCR amplification and sequencing of 16s rRNA gene fragments. Various micorganisms found includes the probiotic Lactobacillus species, Staphylococcus succinic, Macrococcus casealyticus, Bacillus cohnii, and Salinicoccus kunmingensis. To prevent microbial contamination in raw milk, it is necessary to adequately heat or pasteurise the milk and to wash and sterilise the udder before milking the camel. This is because raw milk contains microbes that cause multiple diseases. Moreover, in the current era of the COVID-19 pandemics, ensuring proper sanitary conditions in milk and its derivatives might potentially mitigate the transmission of various diseases among consumers shortly. Keywords: camel, microbiota, 16s rRNA gene, PCR.


Asunto(s)
Camelus , Microbiota , Leche , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S , Camelus/microbiología , Animales , Leche/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética , Reacción en Cadena de la Polimerasa/métodos , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...