Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Vet Parasitol ; 331: 110299, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232468

RESUMEN

Canine Visceral Leishmaniasis (CVL) is the most fatal form of Leishmania infection in dogs and is caused by L. infantum in the Americas. This parasite follows a zoonotic life cycle, raising concerns within domestic households, where dogs act as the primary reservoir of the parasite. Accurately detecting infected dogs is vital for effective epidemiological control in both canine and human populations. However, existing diagnostic methods in Brazil have limitations, particularly in detecting asymptomatic and oligosymptomatic dogs, leading to ineffective disease control. To address this challenge, we evaluated a novel recombinant antigen from L. infantum, the rLiNTPDase2. Previous studies have confirmed its high performance via ELISA, leading us to assess its suitability for a Lateral Flow Immunochromatographic Assay (LFIA), which is ideal for point-of-care testing. Standardization of the assay involved testing two nitrocellulose membranes (HF135 and HF120, Millipore), three blocking protocols, and five sample dilutions (1:10, 1:20, 1:40, 1:80, and 1:160). Following the chosen conditions (HF120 membrane, 1-minute blocking protocol, and 1:80 sample dilution), we validated our assay with a sample size of 78 dogs, comprising 32 negatives and 46 positives, including symptomatic (n=23), oligosymptomatic (n=17), and asymptomatic (n=6) cases. The results revealed a sensitivity of 86.9 %, specificity of 62.5 %, and accuracy of 76.9 %, which is consistent with ELISA performance for the same samples. Compared to DPP-LVC, our assay demonstrated promising results in detecting asymptomatic and oligosymptomatic cases. This study underscores the suitability of the rLiNTPDase2 antigen for the LFIA format, suggesting its potential as a novel point-of-care diagnostic test for CVL.


Asunto(s)
Antígenos de Protozoos , Enfermedades de los Perros , Leishmaniasis Visceral , Sensibilidad y Especificidad , Animales , Perros , Leishmaniasis Visceral/veterinaria , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/parasitología , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/parasitología , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/análisis , Cromatografía de Afinidad/veterinaria , Cromatografía de Afinidad/métodos , Leishmania infantum/enzimología , Leishmania infantum/inmunología , Proteínas Recombinantes/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos
2.
J Enzyme Inhib Med Chem ; 39(1): 2377586, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39037009

RESUMEN

Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.


Asunto(s)
Antiprotozoarios , Relación Dosis-Respuesta a Droga , Leishmania infantum , Pruebas de Sensibilidad Parasitaria , Superóxido Dismutasa , Leishmania infantum/enzimología , Leishmania infantum/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología
3.
PLoS Pathog ; 20(7): e1012336, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39018347

RESUMEN

Cullin-1-RING ubiquitin ligases (CRL1) or SCF1 (SKP1-CUL1-RBX1) E3 ubiquitin ligases are the largest and most extensively investigated class of E3 ligases in mammals that regulate fundamental processes, such as the cell cycle and proliferation. These enzymes are multiprotein complexes comprising SKP1, CUL1, RBX1, and an F-box protein that acts as a specificity factor by interacting with SKP1 through its F-box domain and recruiting substrates via other domains. E3 ligases are important players in the ubiquitination process, recognizing and transferring ubiquitin to substrates destined for degradation by proteasomes or processing by deubiquitinating enzymes. The ubiquitin-proteasome system (UPS) is the main regulator of intracellular proteolysis in eukaryotes and is required for parasites to alternate hosts in their life cycles, resulting in successful parasitism. Leishmania UPS is poorly investigated, and CRL1 in L. infantum, the causative agent of visceral leishmaniasis in Latin America, is yet to be described. Here, we show that the L. infantum genes LINF_110018100 (SKP1-like protein), LINF_240029100 (cullin-like protein-like protein), and LINF_210005300 (ring-box protein 1 -putative) form a LinfCRL1 complex structurally similar to the H. sapiens CRL1. Mass spectrometry analysis of the LinfSkp1 and LinfCul1 interactomes revealed proteins involved in several intracellular processes, including six F-box proteins known as F-box-like proteins (Flp) (data are available via ProteomeXchange with identifier PXD051961). The interaction of LinfFlp 1-6 with LinfSkp1 was confirmed, and using in vitro ubiquitination assays, we demonstrated the function of the LinfCRL1(Flp1) complex to transfer ubiquitin. We also found that LinfSKP1 and LinfRBX1 knockouts resulted in nonviable L. infantum lineages, whereas LinfCUL1 was involved in parasite growth and rosette formation. Finally, our results suggest that LinfCul1 regulates the S phase progression and possibly the transition between the late S to G2 phase in L. infantum. Thus, a new class of E3 ubiquitin ligases has been described in L. infantum with functions related to various parasitic processes that may serve as prospective targets for leishmaniasis treatment.


Asunto(s)
Proteínas Cullin , Leishmania infantum , Leishmania infantum/metabolismo , Leishmania infantum/enzimología , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Ubiquitinación , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/metabolismo , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
4.
ACS Infect Dis ; 10(8): 2755-2774, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38953453

RESUMEN

Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.


Asunto(s)
Antagonistas del Ácido Fólico , Tetrahidrofolato Deshidrogenasa , Triazinas , Trypanosoma brucei brucei , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Humanos , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Triazinas/farmacología , Triazinas/química , Tripanocidas/farmacología , Tripanocidas/química , Proguanil/farmacología , Proguanil/química , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Leishmania infantum/efectos de los fármacos , Leishmania infantum/enzimología , Bencimidazoles/farmacología , Bencimidazoles/química , Relación Estructura-Actividad , Antiprotozoarios/farmacología , Antiprotozoarios/química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Oxidorreductasas
5.
Parasit Vectors ; 16(1): 282, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580789

RESUMEN

BACKGROUND: Leishmaniasis is a zoonotic disease endemic in the Mediterranean region where Leishmania infantum is the causative agent of human and canine infection. Characterization of this parasite at the subspecies level can be useful in epidemiological studies, to evaluate the clinical course of the disease (e.g. resistant strains, visceral and cutaneous forms of leishmaniasis) as well as to identify infection reservoirs. Multilocus enzyme electrophoresis (MLEE), a method currently recognized as the reference method for characterizing and identifying strains of Leishmania, is cumbersome and time-consuming and requires cultured parasites. These disadvantages have led to the development of other methods, such as multilocus microsatellite typing (MLMT) and multilocus sequence typing (MLST), for typing Leishmania parasites; however, these methods have not yet been applied for routine use. In this study, we first used MLST to identify informative polymorphisms on single-copy genes coding for metabolic enzymes, following which we developed two rapid genotyping assays based on high-resolution melting (HRM) analysis to explore these polymorphisms in L. infantum parasites. METHODS: A customized sequencing panel targeting 14 housekeeping genes was designed and MLST analysis was performed on nine L. infantum canine and human strains/isolates. Two quantitative real-time PCR-HRM assays were designed to analyze two informative polymorphisms on malic enzyme (ME) and glucose-6-phosphate isomerase (GPI) genes (390T/G and 1831A/G, respectively). The two assays were applied to 73 clinical samples/isolates from central/southern Italy and Pantelleria island, and the results were confirmed by DNA sequencing in a subset of samples. RESULTS: The MLST analysis, together with sequences available in the Genbank database, enabled the identification of two informative polymorphisms on the genes coding for ME and GPI. The fast screening of these polymorphisms using two HRM-based assays in 73 clinical samples/isolates resulted in the identification of seven genotypes. Overall, genotype 1 (sequence type 390T/1831G) was the most highly represented (45.2%) in the overall sample and correlated with the most common L. infantum zymodemes (MON-1, MON-72). Interestingly, in Pantelleria island, the most prevalent genotype (70.6%) was genotype 6 (sequence type 390T/1831A). CONCLUSIONS: Applying our HRM assays on clinical samples allowed us to identify seven different genotypes without the need for parasite isolation and cultivation. We have demonstrated that these assays could be used as fast, routine and inexpensive tools for epidemiological surveillance of L. infantum or for the identification of new infection reservoirs.


Asunto(s)
Glucosa-6-Fosfato Isomerasa , Leishmania infantum , Proteínas Protozoarias , Genotipo , Glucosa-6-Fosfato Isomerasa/genética , Leishmania infantum/enzimología , Leishmania infantum/genética , Tipificación de Secuencias Multilocus , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Protozoarias/genética
6.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35306933

RESUMEN

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Asunto(s)
Amida Sintasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Antiprotozoarios/farmacología , Leishmania infantum/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Amida Sintasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leishmania infantum/enzimología , Macrófagos/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Trypanosoma cruzi/enzimología
7.
Bioorg Chem ; 117: 105414, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655843

RESUMEN

In the current work, sixteen novel amide derivatives of phenanthridine were designed and synthesized using 9-fluorenone, 4-Methoxy benzyl amine, and alkyl/aryl acids. The characterization of the title compounds was performed using LCMS, elemental analysis, 1HNMR, 13CNMR and single crystal XRD pattern was also developed for compounds A8. All the final analogs were screened in vitro for anti-leishmanial activity against promastigote form of L. infantum strain. Among the tested analogs, four compounds (A-06, A-11, A-12, and A-15) exhibited significant anti-leishmanial activity with EC50 value ranges from 8.9 to 21.96 µM against amastigote forms of tested L. infantum strain with SI ranges of 1.0 to 4.3. From the activity results it was found that A-11 was the most active compound in both promastigote and amastigotes forms with EC50 values 8.53 and 8.90 µM respectively. In-silico ADME prediction studies depicted that the titled compounds obeyed Lipinski's rule of five as that of the approved marketed drugs. The predicted in-silico toxicity profile also confirmed that the tested compounds were non-toxic. Finally, molecular docking and molecular dynamics study was also performed for significantly active compound (A-11) in order to study it's putative binding pattern at the active site of the selected leishmanial trypanothione reductase target as well as to understand the stability pattern of target-ligand complex for 100 ns. Single crystal XRD of compound A-08 revealed that the compound crystallizes in monoclinic C2/c space group and showed interesting packing arrangements.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Leishmania infantum/efectos de los fármacos , Fenantridinas/química , Fenantridinas/farmacología , Humanos , Leishmania infantum/enzimología , Leishmaniasis Visceral/tratamiento farmacológico , Simulación del Acoplamiento Molecular , NADH NADPH Oxidorreductasas/metabolismo
8.
Parasit Vectors ; 14(1): 438, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454601

RESUMEN

BACKGROUND: The evolution of drug resistance is one of the biggest challenges in leishmaniasis and has prompted the need for new antileishmanial drugs. Repurposing of approved drugs is a faster and very attractive strategy that is gaining supporters worldwide. Different anticancer topoisomerase 1B (TOP1B) inhibitors have shown strong antileishmanial activity and promising selective indices, supporting the potential repurposing of these drugs. However, cancer cells and Leishmania share the ability to become rapidly resistant. The aim of this study was to complete a whole-genome exploration of the effects caused by exposure to topotecan in order to highlight the potential mechanisms deployed by Leishmania to favor its survival in the presence of a TOP1B inhibitor. METHODS: We used a combination of stepwise drug resistance selection, whole-genome sequencing, functional validation, and theoretical approaches to explore the propensity of and potential mechanisms deployed by three independent clones of L. infantum to resist the action of TOP1B inhibitor topotecan. RESULTS: We demonstrated that L. infantum is capable of becoming resistant to high concentrations of topotecan without impaired growth ability. No gene deletions or amplifications were identified from the next-generation sequencing data in any of the three resistant lines, ruling out the overexpression of efflux pumps as the preferred mechanism of topotecan resistance. We identified three different mutations in the large subunit of the leishmanial TOP1B (Top1BF187Y, Top1BG191A, and Top1BW232R). Overexpression of these mutated alleles in the wild-type background led to high levels of resistance to topotecan. Computational molecular dynamics simulations, in both covalent and non-covalent complexes, showed that these mutations have an effect on the arrangement of the catalytic pentad and on the interaction of these residues with surrounding amino acids and DNA. This altered architecture of the binding pocket results in decreased persistence of topotecan in the ternary complex. CONCLUSIONS: This work helps elucidate the previously unclear potential mechanisms of topotecan resistance in Leishmania by mutations in the large subunit of TOP1B and provides a valuable clue for the design of improved inhibitors to combat resistance in both leishmaniasis and cancer. Our data highlights the importance of including drug resistance evaluation in drug discovery cascades.


Asunto(s)
Antiprotozoarios/farmacología , ADN-Topoisomerasas de Tipo I/genética , Resistencia a Medicamentos , Leishmania infantum/efectos de los fármacos , Leishmania infantum/genética , Mutación , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Antineoplásicos/farmacología , Reposicionamiento de Medicamentos , Leishmania infantum/enzimología , Leishmaniasis/parasitología , Simulación de Dinámica Molecular , Secuenciación Completa del Genoma
9.
Molecules ; 26(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206087

RESUMEN

Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis's causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.


Asunto(s)
Leishmania infantum/enzimología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , Fitoquímicos/farmacología , Triterpenos/farmacología , Dominio Catalítico/efectos de los fármacos , Simulación por Computador , Evaluación Preclínica de Medicamentos , Humanos , Absorción Intestinal , Leishmania infantum/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/química , Fitoquímicos/farmacocinética , Proteínas Protozoarias/antagonistas & inhibidores , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/farmacocinética
10.
Parasit Vectors ; 14(1): 366, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34266485

RESUMEN

BACKGROUND: Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. RESULTS: We obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A-/-/+ L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A-/-/+ L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A-/-/+ mutants tested. The FeSOD-A-/-/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A-/-/+ mutant clones than in the WT parasite. CONCLUSIONS: The unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance.


Asunto(s)
Antimonio/farmacología , Antiprotozoarios/farmacología , Regulación hacia Abajo , Leishmania infantum/efectos de los fármacos , Leishmania infantum/genética , Fosforilcolina/análogos & derivados , Superóxido Dismutasa/genética , Leishmania infantum/enzimología , Mutación , Estrés Oxidativo/efectos de los fármacos , Fosforilcolina/farmacología
11.
J Med Chem ; 64(9): 6137-6160, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33945281

RESUMEN

Inhibition of Leishmania infantum trypanothione disulfide reductase (LiTryR) by disruption of its homodimeric interface has proved to be an alternative and unexploited strategy in the search for novel antileishmanial agents. Proof of concept was first obtained by peptides and peptidomimetics. Building on previously reported dimerization disruptors containing an imidazole-phenyl-thiazole scaffold, we now report a new 1,2,3-triazole-based chemotype that yields noncompetitive, slow-binding inhibitors of LiTryR. Several compounds bearing (poly)aromatic substituents dramatically improve the ability to disrupt LiTryR dimerization relative to reference imidazoles. Molecular modeling studies identified an almost unexplored hydrophobic region at the interfacial domain as the putative binding site for these compounds. A subsequent structure-based design led to a symmetrical triazole analogue that displayed even more potent inhibitory activity over LiTryR and enhanced leishmanicidal activity. Remarkably, several of these novel triazole-bearing compounds were able to kill both extracellular and intracellular parasites in cell cultures.


Asunto(s)
Diseño de Fármacos , Leishmania infantum/enzimología , NADH NADPH Oxidorreductasas/química , Multimerización de Proteína/efectos de los fármacos , Tiazoles/química , Tiazoles/farmacología , Triazoles/química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Línea Celular , Humanos , Leishmania infantum/efectos de los fármacos , NADH NADPH Oxidorreductasas/metabolismo , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
12.
PLoS Negl Trop Dis ; 15(4): e0009377, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33905412

RESUMEN

Our understanding of folate metabolism in Leishmania has greatly benefited from studies of resistance to the inhibitor methotrexate (MTX). Folates are reduced in Leishmania by the bifunctional dihydrofolate reductase thymidylate synthase (DHFR-TS) and by pteridine reductase (PTR1). To further our understanding of folate metabolism in Leishmania, a Cos-seq genome-wide gain of function screen was performed against MTX and against the two thymidylate synthase (TS) inhibitors 5-fluorouracil and pemetrexed. The screen revealed DHFR-TS and PTR1 but also the nucleoside transporter NT1 and one hypothetical gene derived from chromosome 31. For MTX, the concentration of folate in the culture medium affected the enrichment pattern for genes retrieved by Cos-seq. We generated a L. infantum DHFR-TS null mutant that was thymidine auxotroph, a phenotype that could be rescued by the addition of thymidine or by transfection of the flavin dependent bacterial TS gene ThyX. In these DHFR-TS null mutants it was impossible to obtain a chromosomal null mutant of PTR1 except if DHFR-TS or PTR1 were provided episomally. The transfection of ThyX however did not allow the elimination of PTR1 in a DHFR-TS null mutant. Leishmania can survive without copies of either DHFR-TS or PTR1 but not without both. Provided that our results observed with the insect stage parasites are also replicated with intracellular parasites, it would suggest that antifolate therapy in Leishmania would only work if both DHFR-TS and PTR1 would be targeted simultaneously.


Asunto(s)
Eliminación de Gen , Leishmania infantum/efectos de los fármacos , Leishmania infantum/genética , Metotrexato/farmacología , Complejos Multienzimáticos/genética , Tetrahidrofolato Deshidrogenasa/genética , Timidilato Sintasa/genética , Animales , ADN Protozoario/genética , ADN Recombinante/genética , Resistencia a Medicamentos , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/farmacología , Leishmania infantum/enzimología , Metotrexato/metabolismo , Complejos Multienzimáticos/metabolismo , Fenotipo , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/metabolismo , Transfección
13.
J Biomol Struct Dyn ; 39(18): 7000-7016, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32794433

RESUMEN

The visceral form of Leishmaniasis, also known as kala-azar, caused by Leishmania chagasi is the main etiological agent of this form in Brazil responsible for 30,000 annual deaths. Despite its epidemiological impact, treatment of the disease is limited by resistance, species-dependent efficacy and serious adverse effects. The application of computational tools to prioritize potential bioactive molecules based on 3D structural of biological target is a viable alternative. Among the L. chagasi validated targets, Fe + 2 superoxide dismutase B2 (LcFeSODB2) is the first parasite enzyme against oxidative stress and it is involved in essential metabolic processes for its survival. Due to substrate binding-site volume (superoxide ion) and consequent difficulty in its active site modulation for small molecules, the search for allosteric sites at LcFeSODB2 3D structure is a promising strategy. As there are no 3D structures of LcFeSODB2, comparative modeling was applied to build 3D models by SWISS-MODEL and MODELLER version 9.19. Next, the best 3D model was used in molecular dynamics (MD) routines with multiple probes on GROMACS version 5.1.2. In addition, potential allosteric sites predicted by FTMap and Metapocket web servers were used with probe occupancy maps from MD to select an allosteric binding site and propose a pharmacophore model. Next, it was used as a template in virtual screening by UNITY® module available on SYBYL-X version 2.1.1 at Sigma-Aldrich CPR™ subset of ZINC12 database. The pharmacophore-based virtual screening resulted in the selection of two potential allosteric LcFeSOD compounds with partial pharmacophoric requirements, drug-like properties and commercial availability for enzymatic assays. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Leishmania infantum , Simulación de Dinámica Molecular , Superóxido Dismutasa/antagonistas & inhibidores , Sitio Alostérico , Leishmania infantum/enzimología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
14.
Mem Inst Oswaldo Cruz ; 115: e190469, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32638832

RESUMEN

BACKGROUND Oxidative stress is responsible for generating DNA lesions and the 8-oxoguanine (8-oxoG) is the most commonly lesion found in DNA damage. When this base is incorporated during DNA replication, it could generate double-strand DNA breaks and cellular death. MutT enzyme hydrolyzes the 8-oxoG from the nucleotide pool, preventing its incorporation during DNA replication. OBJECTIVES To investigate the importance of 8-oxoG in Leishmania infantum and L. braziliensis, in this study we analysed the impact of heterologous expression of Escherichia coli MutT (EcMutT) enzyme in drug-resistance phenotype and defense against oxidative stress. METHODS Comparative analysis of L. braziliensis and L. infantum H2O2 tolerance and cell cycle profile were performed. Lines of L. braziliensis and L. infantum expressing EcMutT were generated and evaluated using susceptibility tests to H2O2 and SbIII, cell cycle analysis, γH2A western blotting, and BrdU native detection assay. FINDINGS Comparative analysis of tolerance to oxidative stress generated by H2O2 showed that L. infantum is more tolerant to exogenous H2O2 than L. braziliensis. In addition, cell cycle analysis showed that L. infantum, after treatment with H2O2, remains in G1 phase, returning to its normal growth rate after 72 h. In contrast, after treatment with H2O2, L. braziliensis parasites continue to move to the next stages of the cell cycle. Expression of the E. coli MutT gene in L. braziliensis and L. infantum does not interfere in parasite growth or in susceptibility to SbIII. Interestingly, we observed that L. braziliensis EcMutT-expressing clones were more tolerant to H2O2 treatment, presented lower activation of γH2A, a biomarker of genotoxic stress, and lower replication stress than its parental non-transfected parasites. In contrast, the EcMutT is not involved in protection against oxidative stress generated by H2O2 in L. infantum. MAIN CONCLUSIONS Our results showed that 8-oxoG clearance in L. braziliensis is important to avoid misincorporation during DNA replication after oxidative stress generated by H2O2.


Asunto(s)
Antimonio/toxicidad , Proteínas de Escherichia coli/genética , Escherichia coli , Guanina/análogos & derivados , Leishmania braziliensis/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Pirofosfatasas , Superóxido Dismutasa/metabolismo , Animales , Antiprotozoarios/farmacología , Proteínas de Escherichia coli/metabolismo , Guanina/farmacología , Humanos , Peróxido de Hidrógeno/toxicidad , Leishmania braziliensis/enzimología , Leishmania infantum/enzimología , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Conejos , Ratas , Superóxido Dismutasa/genética
15.
Biomed Res Int ; 2020: 2615787, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685457

RESUMEN

Leishmania spp. proteases have been proposed as virulence factors contributing to adaptive success these parasites to the mammalian hosts. Since these enzymes are poorly studied in naturally infected dogs, this work aims to show the differences in metalloprotease and cysteine proteases gene expression in ear edge skin of dogs naturally infected by Leishmania (Leishmania) infantum. A cohort of dogs (n = 20) naturally infected by L. (L.) infantum was clinically classified as asymptomatic, oligosymptomatic, and polysymptomatic and the parasite load range estimated. The analysis of proteases expression by RT-PCR in the ear edge skin was also assessed, suggesting more transcripts of proteases in cDNA samples from polysymptomatic dogs than oligosymptomatic and asymptomatic ones. Metalloprotease RT-PCR assays yielded products (202 bp) in all assessed cDNA dog samples. In contrast, cysteine proteases transcripts (227 bp) had shown to be better detected in cDNA samples of polysymptomatic dogs, compared with cDNA samples from asymptomatic and oligosymptomatic dogs. Predictive in silico assays suggested that secondary structures of metalloproteasee mRNAs can be more stable than cysteine proteases at the skin temperature of dogs. Evidence is presented that during natural infection of dogs by L. (L.) infantum, this parasite produces transcripts of metalloprotease and cysteine protease RNA in the skin from asymptomatic, oligosymptomatic, and polysymptomatic dogs.


Asunto(s)
Proteasas de Cisteína/genética , Enfermedades de los Perros/parasitología , Oído/parasitología , Leishmania infantum/enzimología , Leishmaniasis Visceral/veterinaria , Metaloproteasas/genética , ARN/genética , Piel/parasitología , Animales , Proteasas de Cisteína/metabolismo , Perros , Regulación Enzimológica de la Expresión Génica , Metaloproteasas/metabolismo , Conformación de Ácido Nucleico , Carga de Parásitos , ARN/química , ARN/metabolismo , Temperatura
16.
Parasitol Res ; 119(7): 2263-2274, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32462293

RESUMEN

Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which makes the development of new drugs urgent. To achieve this goal, the integration of kinetic and DSF assays against parasitic validated targets, along with phenotypic assays, can help the identification and optimization of bioactive compounds. Pteridine reductase 1 (PTR1), a validated target in Leishmania sp., is responsible for the reduction of folate and biopterin to tetrahydrofolate and tetrahydrobiopterin, respectively, both of which are essential for cell growth. In addition to the in vitro evaluation of 16 thiazolidine-2,4-dione derivatives against Leishmania major PTR1 (LmPTR1), using the differential scanning fluorimetry (ThermoFluor®), phenotypic assays were employed to evaluate the compound effect over Leishmania braziliensis (MHOM/BR/75/M2903) and Leishmania infantum (MHOM/BR/74/PP75) promastigotes viability. The ThermoFluor® results show that thiazolidine-2,4-dione derivatives have micromolar affinity to the target and equivalent activity on Leishmania cells. 2b is the most potent compound against L. infantum (EC50 = 23.45 ± 4.54 µM), whereas 2a is the most potent against L. braziliensis (EC50 = 44.16 ± 5.77 µM). This result suggests that lipophilic substituents on either-meta and/or-para positions of the benzylidene ring increase the potency against L. infantum. On the other hand, compound 2c (CE50 = 49.22 ± 7.71 µM) presented the highest selectivity index.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Tiazolidinedionas/farmacología , Animales , Antiprotozoarios/química , Humanos , Leishmania braziliensis/enzimología , Leishmania infantum/enzimología , Oxidorreductasas/antagonistas & inhibidores , Pruebas de Sensibilidad Parasitaria , Tiazolidinedionas/química
17.
Immunol Lett ; 220: 11-20, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31981576

RESUMEN

Visceral leishmaniasis (VL) is a highly neglected disease that is present in several countries worldwide. Present-day treatments against this disease are unsuitable, mainly due to the toxicity and/or high cost of drugs. In addition, the development of vaccines is still insufficient. In this scenario, a prompt VL diagnosis was deemed necessary, although sensitivity and/or specificity values of the tests have been. In this context, new antigenic candidates should be identified to be employed in a more precise diagnosis of canine and human VL. In this light, the present study evaluated the diagnostic efficacy of the Leishmania infantum pyridoxal kinase (PK) protein, applied in its recombinant version (rPK). In addition, one specific B-cell epitope derived of the PK sequence was predicted, synthetized, and evaluated as diagnostic marker. Results in ELISA tests showed that the antigens were highly sensitive to VL identification in dogs and human sera, presenting a low reactivity with VL-related disease samples. The recombinant A2 (rA2) protein and L. infantum antigenic preparation (SLA), used as controls, also proved to be highly sensitive in detecting symptomatic cases, although a low sensitivity was found when asymptomatic sera were analyzed. High cross-reactivity was also found when these antigens were evaluated against VL-related disease samples. The post-therapeutic serological follow-up showed that anti-rPK and anti-peptide IgG antibody levels decreased in significant levels after treatment. By contrast, the presence of high levels of the anti-rA2 and anti-SLA antibodies was still detected after therapy. In conclusion, rPK and its specific B-cell epitope should be considered for future studies as a diagnostic marker for canine and human VL.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Enfermedades de los Perros/diagnóstico , Leishmania infantum/enzimología , Leishmaniasis Visceral/diagnóstico , Enfermedades Desatendidas/diagnóstico , Proteínas Protozoarias/inmunología , Piridoxal Quinasa/inmunología , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Reacciones Cruzadas , Enfermedades de los Perros/parasitología , Perros , Ensayo de Inmunoadsorción Enzimática , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Humanos , Leishmania infantum/aislamiento & purificación , Leishmaniasis Visceral/veterinaria , Enfermedades Desatendidas/parasitología , Enfermedades Desatendidas/veterinaria , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Piridoxal Quinasa/química , Piridoxal Quinasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Sensibilidad y Especificidad , Pruebas Serológicas
18.
Amino Acids ; 52(2): 247-259, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31037461

RESUMEN

Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777-TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/farmacología , Leishmania infantum/efectos de los fármacos , Sulfuros/química , Sulfuros/farmacología , Secuencias de Aminoácidos , Dominio Catalítico , Glutatión/análogos & derivados , Glutatión/metabolismo , Humanos , Leishmania infantum/enzimología , Leishmania infantum/metabolismo , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Modelos Moleculares , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Espermidina/análogos & derivados , Espermidina/metabolismo
19.
Mem. Inst. Oswaldo Cruz ; 115: e190469, 2020. graf
Artículo en Inglés | LILACS, Sec. Est. Saúde SP | ID: biblio-1135243

RESUMEN

BACKGROUND Oxidative stress is responsible for generating DNA lesions and the 8-oxoguanine (8-oxoG) is the most commonly lesion found in DNA damage. When this base is incorporated during DNA replication, it could generate double-strand DNA breaks and cellular death. MutT enzyme hydrolyzes the 8-oxoG from the nucleotide pool, preventing its incorporation during DNA replication. OBJECTIVES To investigate the importance of 8-oxoG in Leishmania infantum and L. braziliensis, in this study we analysed the impact of heterologous expression of Escherichia coli MutT (EcMutT) enzyme in drug-resistance phenotype and defense against oxidative stress. METHODS Comparative analysis of L. braziliensis and L. infantum H2O2 tolerance and cell cycle profile were performed. Lines of L. braziliensis and L. infantum expressing EcMutT were generated and evaluated using susceptibility tests to H2O2 and SbIII, cell cycle analysis, γH2A western blotting, and BrdU native detection assay. FINDINGS Comparative analysis of tolerance to oxidative stress generated by H2O2 showed that L. infantum is more tolerant to exogenous H2O2 than L. braziliensis. In addition, cell cycle analysis showed that L. infantum, after treatment with H2O2, remains in G1 phase, returning to its normal growth rate after 72 h. In contrast, after treatment with H2O2, L. braziliensis parasites continue to move to the next stages of the cell cycle. Expression of the E. coli MutT gene in L. braziliensis and L. infantum does not interfere in parasite growth or in susceptibility to SbIII. Interestingly, we observed that L. braziliensis EcMutT-expressing clones were more tolerant to H2O2 treatment, presented lower activation of γH2A, a biomarker of genotoxic stress, and lower replication stress than its parental non-transfected parasites. In contrast, the EcMutT is not involved in protection against oxidative stress generated by H2O2 in L. infantum. MAIN CONCLUSIONS Our results showed that 8-oxoG clearance in L. braziliensis is important to avoid misincorporation during DNA replication after oxidative stress generated by H2O2.


Asunto(s)
Humanos , Animales , Ratones , Ratas , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Superóxido Dismutasa/metabolismo , Leishmania braziliensis/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Proteínas de Escherichia coli/genética , Escherichia coli , Guanina/análogos & derivados , Antimonio/toxicidad , Conejos , Superóxido Dismutasa/genética , Leishmania braziliensis/enzimología , Leishmania infantum/enzimología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Proteínas de Escherichia coli/metabolismo , Guanina/farmacología , Peróxido de Hidrógeno/toxicidad , Antiprotozoarios/farmacología
20.
Turkiye Parazitol Derg ; 43(4): 158-164, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31865648

RESUMEN

Objective: Current in-silico research was designed and administered for the screening of 20000 Food and Drug Administration-approved drug compounds with the goal of finding promising drugs against lipophosphoglycan (LPG) and γ-glutamylcysteine synthetase (γ-GCS) of Leishmania infantum. Methods: After the protein sequence of both targets was taken, the 3D structures of protein of interest were predicted and validated. Molecular docking was done among the two putative targets (LPG and γ-GCS) and approved compounds were selected using AutoDock 4.2 program to predict ligand-receptor interactions. Results: After docking experiment was done on 20000 drug compounds, a total number of seven ligands, two for γ-GCS receptor and five for LPG receptor, were assigned as novel, potent anti-leishmanial drugs based on their binding affinity and energy. Of those, five ligands possessed cytotoxic and anti-cancer characteristics and showed good binding capacity to LPG receptor with ΔGbinding up to 8.5 kcal/mol more negative; while two compounds showed good binding capacity to glutamyl receptor with ΔGbinding up to 7.8 kcal/mol more negative. Conclusion: The latest software-based methods are powerful tools for scanning and predicting new peptide templates specific to biological targets in organisms for new drug discovery. However, the use of in vitro and in vivo techniques is a requirement for better evaluation of the potential of projected ligands with the help of in-silico approaches, identifying molecular mechanism of action of the more active compounds is possible. This can help in defining the most likely molecular target, so that the subsequent optimization using in vitro and in vivo techniques can be undertaken.


Asunto(s)
Antiprotozoarios/farmacología , Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Glicoesfingolípidos/antagonistas & inhibidores , Leishmania infantum/efectos de los fármacos , Secuencia de Aminoácidos , Anfotericina B/farmacología , Simulación por Computador , Aprobación de Drogas , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , Leishmania infantum/química , Leishmania infantum/enzimología , Ligandos , Antimoniato de Meglumina/farmacología , Simulación del Acoplamiento Molecular , Proyectos de Investigación , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA