Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Cytokine ; 169: 156301, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515982

RESUMEN

Leishmania infection of macrophages results in altered Ras isoforms expression and Toll-like receptor-2 (TLR2) expression and functions. Therefore, we examined whether TLR2 would selectively alter Ras isoforms' expression in macrophages. We observed that TLR2 ligands- Pam3CSK4, peptidoglycan (PGN), and FSL- selectively modulated the expression of Ras isoforms in BALB/c-derived elicited macrophages. Lentivirally-expressed TLR1-shRNA significantly reversed this Ras isoforms expression profile. TLR2-deficient L. major-infected macrophages and the lymph node cells from the L. major-infected mice showed similarly reversed Ras isoforms expression. Transfection of the macrophages with the siRNAs for the adaptors- Myeloid Differentiation factor 88 (MyD88) and Toll-Interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP)- or Interleukin-1 Receptor-Associated Kinases (IRAKs)- IRAK1 and IRAK4- significantly inhibited the L. major-induced down-regulation of K-Ras, and up-regulation of N-Ras and H-Ras, expression. The TLR1/TLR2-ligand Pam3CSK4 increased IL-10 and TGF-ß expression in macrophages. Pam3CSK4 upregulated N-Ras and H-Ras, but down-regulated K-Ras, expression in C57BL/6 wild-type, but not in IL-10-deficient, macrophages. IL-10 or TGF-ß signaling inhibition selectively regulated Ras isoforms expression. These observations indicate the specificity of the TLR2 regulation of Ras isoforms and their selective modulation by MyD88, TIRAP, and IRAKs, but not IL-10 or TGF-ß, signaling.


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Macrófagos , Receptor Toll-Like 2 , Proteínas ras , Leishmaniasis Cutánea/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Macrófagos/metabolismo , Ligandos , Proteínas ras/metabolismo , Peptidoglicano/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1 , Ratones Endogámicos C57BL , Isoformas de Proteínas/metabolismo , Regulación hacia Abajo
2.
J Biol Chem ; 299(8): 105064, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468101

RESUMEN

Leishmania parasites are heavily dependent on efficient iron acquisition from a tightly regulated host iron pool for survival and virulence. Prior studies uncovered multiple strategies adopted by the parasite to hijack the iron-regulatory network of macrophages. Despite these extensive studies with infected macrophages, there is limited knowledge of the effect of Leishmania infection on systemic iron homeostasis. This issue is particularly relevant for Leishmania major, which causes localized skin infection with minimal lymphatic spread. We show for the first time that L. major infection in the mouse footpad induced influx of iron at the site of infection through blood with simultaneous upregulation of transferrin receptor 1 and downregulation of phagolysosomal iron exporter Nramp1 expression in the footpad tissue. Interestingly, localized L. major infection had far-reaching effects beyond the infection site triggering anemia-like symptoms. This was evident from depleted physiological iron stores from the liver and bone marrow as well as reduced hemoglobin levels and deformed erythrocytes. The infected mice also developed splenomegaly with signs of splenic stress erythropoiesis as indicated by upregulation of several erythroid-related genes. These observations prompted us to provide oral iron supplementations to the L. major-infected mice, which resulted in a drastic reduction of the parasite load and restoration of iron homeostasis.


Asunto(s)
Homeostasis , Hierro , Leishmaniasis Cutánea , Animales , Ratones , Suplementos Dietéticos , Eritrocitos/metabolismo , Hierro/administración & dosificación , Hierro/metabolismo , Leishmania major , Leishmaniasis Cutánea/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675185

RESUMEN

The survival, growth, and virulence of Leishmania spp., a group of protozoan parasites, depends on the proper access and regulation of iron. Macrophages, Leishmania's host cell, may divert iron traffic by reducing uptake or by increasing the efflux of iron via the exporter ferroportin. This parasite has adapted by inhibiting the synthesis and inducing the degradation of ferroportin. To study the role of iron in leishmaniasis, we employed Hjv-/- mice, a model of hemochromatosis. The disruption of hemojuvelin (Hjv) abrogates the expression of the iron hormone hepcidin. This allows unrestricted iron entry into the plasma from ferroportin-expressing intestinal epithelial cells and tissue macrophages, resulting in systemic iron overload. Mice were injected with Leishmania major in hind footpads or intraperitoneally. Compared with wild-type controls, Hjv-/- mice displayed transient delayed growth of L. major in hind footpads, with a significant difference in parasite burden 4 weeks post-infection. Following acute intraperitoneal exposure to L. major, Hjv-/- peritoneal cells manifested increased expression of inflammatory cytokines and chemokines (Il1b, Tnfa, Cxcl2, and Ccl2). In response to infection with L. infantum, the causative agent of visceral leishmaniasis, Hjv-/- and control mice developed similar liver and splenic parasite burden despite vastly different tissue iron content and ferroportin expression. Thus, genetic iron overload due to hemojuvelin deficiency appears to mitigate the early development of only cutaneous leishmaniasis.


Asunto(s)
Hemocromatosis , Leishmaniasis Cutánea , Animales , Ratones , Proteínas Ligadas a GPI/metabolismo , Hemocromatosis/genética , Hemocromatosis/metabolismo , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/metabolismo , Hígado/metabolismo
4.
Sci Rep ; 12(1): 3266, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228627

RESUMEN

Kinesins are motor proteins present in organisms from protists to mammals playing important roles in cell division, intracellular organisation and flagellum formation and maintenance. Leishmania mexicana is a protozoan parasite of the order Kinetoplastida causing human cutaneous leishmaniasis. Kinetoplastida genome sequence analyses revealed a large number of kinesins showing sequence and structure homology to eukaryotic kinesins. Here, we investigate the L. mexicana kinesin LmxKIN29 (LmxM.29.0350), also called DEATH kinesin. The activated MAP kinase LmxMPK3, a kinase affecting flagellum length in Leishmania, is able to phosphorylate recombinant full length LmxKIN29 at serine 554. Insect promastigote LmxKIN29 Leishmania null mutants showed no obvious phenotype. However, in mouse infection experiments, the null mutants were unable to cause the disease, whereas LmxKIN29 add-backs and single allele knockouts caused footpad lesions. Localisation using promastigotes expressing GFP-tagged LmxKIN29 revealed that the kinesin is predominantly found in between the nucleus and the flagellar pocket, while in dividing cells the GFP-fusion protein was found at the anterior and posterior ends of the cells indicating a role in cytokinesis. The inability to cause lesions in infected animals and the amino acid sequence divergence from mammalian kinesins suggests that LmxKIN29 is a potential drug target against leishmaniasis.


Asunto(s)
Leishmania mexicana , Leishmaniasis Cutánea , Animales , Flagelos/metabolismo , Cinesinas/metabolismo , Leishmania mexicana/metabolismo , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Mamíferos/metabolismo , Ratones , Proteínas Protozoarias/metabolismo
5.
PLoS Pathog ; 18(1): e1010247, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041723

RESUMEN

Neutrophils are the first line of defence against invading pathogens. Although neutrophils are well-known professional killers, some pathogens including Leishmania (L.) parasites survive in neutrophils, using these cells to establish infection. Manipulation of neutrophil recruitment to the infection site is therefore of interest in this cutaneous disease. The c-MET tyrosine kinase receptor was shown to promote neutrophil migration to inflamed sites. Here, we investigated the importance of c-MET expression on neutrophils in their recruitment to the infection site and the role of c-Met expression in the pathology of leishmaniasis. Following infection with L. mexicana, mice with conditional deletion of c-MET in neutrophils controlled significantly better their lesion development and parasite burden compared to similarly infected wild type mice. Our data reveal a specific role for c-MET activation in Leishmania-induced neutrophil infiltration, a process correlating with their negative role in the pathology of the diseases. We further show that c-MET phosphorylation is observed in established cutaneous lesions. Exposure to L. mexicana upregulated c-Met expression predominantly in infected neutrophils and c-Met expression influenced ROS release by neutrophils. In addition, pharmacological inhibition of c-MET, administrated once the lesion is established, induced a significant decrease in lesion size associated with diminished infiltration of neutrophils. Both genetic ablation of c-MET in neutrophils and systemic inhibition of c-MET locally resulted in higher levels of CD4+T cells producing IFNγ, suggesting a crosstalk between neutrophils and these cells. Collectively, our data show that c-MET activation in neutrophils contributes to their recruitment following infection, and that L. mexicana induction of c-MET on neutrophils impacts the local pathology associated with this disease. Our results suggest a potential use for this inhibitor in the control of the cutaneous lesion during this parasitic infection.


Asunto(s)
Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/patología , Neutrófilos/inmunología , Proteínas Proto-Oncogénicas c-met/inmunología , Animales , Leishmaniasis Cutánea/metabolismo , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila/inmunología , Proteínas Proto-Oncogénicas c-met/metabolismo
6.
J Mol Med (Berl) ; 100(3): 451-460, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34604942

RESUMEN

In cutaneous leishmaniasis, infection of dendritic cells (DC) is essential for generation of T cell-dependent protective immunity. DC acquires Leishmania major through Fc receptor (FcR)-mediated uptake of complexes comprising antibodies bound to parasites. We now assessed the development of the initial B cell and DC response to the parasite itself and if natural IgG play a role. L. major parasites display large numbers of phospholipids on their surface. Parasites were opsonized with normal mouse serum (NMS), or serum containing anti-phospholipid IgG (PL). We found that L. major bound to PL which significantly enhanced parasite phagocytosis by DC as compared to NMS. Similar results were obtained with cross-reactive human PL antibodies using myeloid primary human DC. In addition, mice infected with PL-opsonized parasites showed significantly improved disease outcome compared to mice infected with NMS-opsonized parasites. Finally, IgMi mice, which produce membrane-bound IgM only and no secreted antibodies, displayed increased susceptibility to infection as compared to wild types. Interestingly, once NMS was administered to IgMi mice, their phenotype was normalized to that of wild types. Upon incubation with IgG-opsonized parasite (IgG derived from infected mice or using PL antibodies), also the IgMi mice were able to show superior immunity. Our findings suggest that "natural" cross-reactive antibodies (e.g., anti-PL Ab) in NMS bind to pathogens to facilitate phagocytosis, which leads to induction of protective immunity via preferential DC infection. Prior L. major-specific B cell-priming does not seem to be absolutely required to facilitate clearance of this important human pathogen in vivo. KEY MESSAGES: We found that anti-phospholipid (anti-PL) antibodies enhance phagocytosis of L. major by DCs. We also found that normal mouse sera have natural antibodies that can imitate PL specific antibodies. Using different genetically modified mice, we found that these antibodies can be IgG, not only IgM.


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Parásitos , Animales , Células Dendríticas , Inmunoglobulina G , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Ratones , Ratones Endogámicos BALB C
7.
Front Immunol ; 12: 730437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745100

RESUMEN

Innate immune cells present a dual role during leishmaniasis: they constitute the first line of host defense but are also the main host cells for the parasite. Response against the infection that results in the control of parasite growth and lesion healing depends on activation of macrophages into a classical activated phenotype. We report an essential role for the microbiota in driving macrophage and monocyte-derived macrophage activation towards a resistance phenotype against Leishmania major infection in mice. Both germ-free and dysbiotic mice showed a higher number of myeloid innate cells in lesions and increased number of infected cells, mainly dermal resident and inflammatory macrophages. Despite developing a Th1 immune response characterized by the same levels of IFN-γ production as the conventional mice, germ-free mice presented reduced numbers of iNOS+ macrophages at the peak of infection. Absence or disturbance of host microbiota impaired the capacity of bone marrow-derived macrophage to be activated for Leishmania killing in vitro, even when stimulated by Th1 cytokines. These cells presented reduced expression of inos mRNA, and diminished production of microbicidal molecules, such as ROS, while presenting a permissive activation status, characterized by increased expression of arginase I and il-10 mRNA and higher arginase activity. Colonization of germ-free mice with complete microbiota from conventional mice rescued their ability to control the infection. This study demonstrates the essential role of host microbiota on innate immune response against L. major infection, driving host macrophages to a resistance phenotype.


Asunto(s)
Inmunidad Innata , Leishmania major/patogenicidad , Leishmaniasis Cutánea/microbiología , Activación de Macrófagos , Macrófagos/microbiología , Microbiota , Animales , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Femenino , Vida Libre de Gérmenes , Interacciones Huésped-Patógeno , Leishmania major/inmunología , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/microbiología
8.
J Parasitol ; 107(5): 810-816, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648629

RESUMEN

Macrophages, within which Leishmania species replicate, generate large amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS) to kill these parasites. The present study assessed the oxidative and nitrosative stress, and specific immune enzymes in the serum of patients with cutaneous leishmaniasis (Cl) before and after treatment and in the control individuals. Serum activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), L-arginase, myeloperoxidase (MPO), and adenosine deaminase (ADA) and the levels of reduced glutathione, malondialdehyde (MDA), and nitric oxide (NO) were studied. The activities of L-arginase, MPO, and ADA and the levels of MDA and NO were significantly elevated (P < 0.001), while the activities of SOD, CAT, and GSH-Px, and the levels of reduced glutathione (GSH) were significantly (P < 0.001) reduced in untreated patients as compared with values of patients after treatment and of control individuals. The treatment, which included intramuscular injection of sodium stibogluconate and meglumine antimoniate, ameliorated these factors in comparison to the untreated group. These results suggest that oxidative and nitrosative stress may play an important role in the pathogenesis of untreated cutaneous leishmaniasis. Furthermore, the reduction in oxidative and nitrosative stress in the treated Cl patients may be due to the drug decreasing energy production by the parasite, which eventually leads to its death.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmaniasis Cutánea/metabolismo , Estrés Nitrosativo/fisiología , Estrés Oxidativo/fisiología , Gluconato de Sodio Antimonio/uso terapéutico , Estudios de Casos y Controles , Humanos , Leishmaniasis Cutánea/tratamiento farmacológico , Macrófagos/metabolismo , Masculino , Antimoniato de Meglumina/uso terapéutico , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
9.
Cell Rep ; 37(2): 109816, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644571

RESUMEN

Cytokines are typically single gene products, except for the heterodimeric interleukin (IL)-12 family. The two subunits (IL-12p40 and IL-12p35) of the prototype IL-12 are known to be simultaneously co-expressed in activated myeloid cells, which secrete the fully active heterodimer to promote interferon (IFN)γ production in innate and adaptive cells. We find that chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, generate functional IL-12. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism is sufficient to propel local T cell differentiation in sites distal to the initial infection and helps control systemic dissemination of a pathogen, although not parasite burden, at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival.


Asunto(s)
Células Dendríticas/metabolismo , Subunidad p35 de la Interleucina-12/metabolismo , Subunidad p40 de la Interleucina-12/metabolismo , Leishmania major/patogenicidad , Leishmaniasis Cutánea/metabolismo , Células del Estroma/metabolismo , Linfocitos T/metabolismo , Animales , Comunicación Celular , Células Dendríticas/inmunología , Células Dendríticas/parasitología , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Parásitos , Interferón gamma/metabolismo , Subunidad p35 de la Interleucina-12/genética , Subunidad p40 de la Interleucina-12/genética , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Multimerización de Proteína , Transducción de Señal , Células del Estroma/inmunología , Células del Estroma/parasitología , Linfocitos T/inmunología , Linfocitos T/parasitología
10.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638841

RESUMEN

Since many of the currently available antileishmanial treatments exhibit toxicity, low effectiveness, and resistance, search and validation of new therapeutic targets allowing the development of innovative drugs have become a worldwide priority. This work presents a structure-based drug discovery strategy to validate the Lmj_04_BRCT domain as a novel therapeutic target in Leishmania spp. The structure of this domain was explored using homology modeling, virtual screening, and molecular dynamics studies. Candidate compounds were validated in vitro using promastigotes of Leishmania major, L. amazonensis, and L. infantum, as well as primary mouse macrophages infected with L. major. The novel inhibitor CPE2 emerged as the most active of a group of compounds against Leishmania, being able to significantly reduce the viability of promastigotes. CPE2 was also active against the intracellular forms of the parasites and significantly reduced parasite burden in murine macrophages without exhibiting toxicity in host cells. Furthermore, L. major promastigotes treated with CPE2 showed significant lower expression levels of several genes (α-tubulin, Cyclin CYCA, and Yip1) related to proliferation and treatment resistance. Our in silico and in vitro studies suggest that the Lmj_04_BRCT domain and its here disclosed inhibitors are new potential therapeutic options against leishmaniasis.


Asunto(s)
Antiprotozoarios , Leishmania major/metabolismo , Leishmaniasis Cutánea/tratamiento farmacológico , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Femenino , Leishmaniasis Cutánea/metabolismo , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , Proteínas Protozoarias/metabolismo
11.
PLoS Pathog ; 17(9): e1008768, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34559857

RESUMEN

Trypanosome Lytic Factor (TLF) is a primate-specific high-density lipoprotein (HDL) complex that, through the cation channel-forming protein apolipoprotein L-1 (APOL1), provides innate immunity to select kinetoplastid parasites. The immunoprotective effects of TLF have been extensively investigated in the context of its interaction with the extracellular protozoan Trypanosoma brucei brucei, to which it confers sterile immunity. We previously showed that TLF could act against an intracellular pathogen Leishmania, and here we dissected the role of TLF and its synergy with host-immune cells. Leishmania major is transmitted by Phlebotomine sand flies, which deposit the parasite intradermally into mammalian hosts, where neutrophils are the predominant phagocytes recruited to the site of infection. Once in the host, the parasites are phagocytosed and shed their surface glycoconjugates during differentiation to the mammalian-resident amastigote stage. Our data show that mice producing TLF have reduced parasite burdens when infected intradermally with metacyclic promastigotes of L. major, the infective, fly-transmitted stage. This TLF-mediated reduction in parasite burden was lost in neutrophil-depleted mice, suggesting that early recruitment of neutrophils is required for TLF-mediated killing of L. major. In vitro we find that only metacyclic promastigotes co-incubated with TLF in an acidic milieu were lysed. However, amastigotes were not killed by TLF at any pH. These findings correlated with binding experiments, revealing that labeled TLF binds specifically to the surface of metacyclic promastigotes, but not to amastigotes. Metacyclic promastigotes of L. major deficient in the synthesis of surface glycoconjugates LPG and/or PPG (lpg1- and lpg5A-/lpg5B- respectively) whose absence mimics the amastigote surface, were resistant to TLF-mediated lysis. We propose that TLF binds to the outer surface glycoconjugates of metacyclic promastigotes, whereupon it kills the parasite in the acidic phagosome of phagocytes. We hypothesize that resistance to TLF requires shedding of the surface glycoconjugates, which occurs several hours after phagocytosis by immune cells, creating a relatively short-lived but effective window for TLF to act against Leishmania.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Inmunidad Innata , Leishmaniasis Cutánea , Lipoproteínas HDL/metabolismo , Animales , Humanos , Leishmania major , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/patología , Lipoproteínas HDL/inmunología , Ratones
12.
Cytokine ; 148: 155699, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530329

RESUMEN

Interleukin-11 (IL-11) is an important member of the IL-6 family of cytokines. IL-11 activates its target cells via binding to a non-signaling α-receptor (IL-11R), which results in recruitment and activation of a gp130 homodimer. The cytokine was initially described as an anti-inflammatory protein, but has recently gained attention as a potent driver in certain types of cancer and different fibrotic conditions. Leishmania spp. are a group of eukaryotic parasites that cause the disease leishmaniasis. They infect phagocytes of their hosts, especially monocytes recruited to the site of infection, and are able to replicate within this rather harsh environment, often resulting in chronic infections of the patient. However, the molecular mechanisms underlying parasite and host cell interactions and factors of the immune cells that are crucial for Leishmania uptake are so far largely unspecified. Recently, increased IL-11 expression in the lesions of patients with cutaneous leishmaniasis has been reported, but the functional relevance is unknown. In this study, we show that monocytes express IL-11R on their cell surface. Furthermore, using an adoptive transfer model of IL-11R-/- monocytes, we analyze the contribution of IL-11 signaling on monocyte recruitment and monocyte infection in a mouse model of cutaneous leishmaniasis and find that IL-11 signaling is dispensable for monocyte recruitment and pathogen uptake during Leishmania major infection.


Asunto(s)
Leishmania major/metabolismo , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Monocitos/metabolismo , Monocitos/parasitología , Receptores de Interleucina-11/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Ratones Endogámicos C57BL , Transducción de Señal
13.
Front Immunol ; 12: 728848, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557194

RESUMEN

Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.


Asunto(s)
Inmunidad Adaptativa , Sistema Inmunológico/parasitología , Inmunidad Innata , Leishmania braziliensis/patogenicidad , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Fagocitosis , Fagosomas/parasitología , Animales , Enfermedad Crónica , Interacciones Huésped-Parásitos , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Leishmania braziliensis/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Mucocutánea/inmunología , Leishmaniasis Mucocutánea/metabolismo , Leishmaniasis Mucocutánea/parasitología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/metabolismo , Fagosomas/inmunología , Fagosomas/metabolismo
14.
Immunology ; 164(4): 754-765, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34432883

RESUMEN

The severity of lesions that develop in patients infected by Leishmania braziliensis is mainly associated with a highly cytotoxic and inflammatory cutaneous environment. Recently, we demonstrated that senescent T and NK cells play a role in the establishment and maintenance of this tissue inflammation. Here, we extended those findings using transcriptomic analyses that demonstrate a strong co-induction of senescence and pro-inflammatory gene signatures in cutaneous leishmaniasis (CL) lesions. The senescence-associated signature was characterized by marked expression of key genes such as ATM, Sestrin 2, p16, p21 and p38. The cell type identification from deconvolution of bulk sequencing data showed that the senescence signature was linked with CD8+ effector memory and TEMRA subsets and also senescent NK cells. A key observation was that the senescence markers in the skin lesions are age-independent of patients and were correlated with lesion size. Moreover, a striking expression of the senescence-associated secretory phenotype (SASP), pro-inflammatory cytokine and chemokines genes was found within lesions that were most strongly associated with the senescent CD8 TEMRA subset. Collectively, our results confirm that there is a senescence transcriptomic signature in CL lesions and supports the hypothesis that lesional senescent cells have a major role in mediating immunopathology of the disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Inmunosenescencia/genética , Leishmania braziliensis/inmunología , Leishmaniasis Cutánea/etiología , Leishmaniasis Cutánea/patología , Transcriptoma , Biomarcadores , Biopsia , Biología Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Bases de Datos Genéticas , Susceptibilidad a Enfermedades/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Leishmaniasis Cutánea/metabolismo , Carga de Parásitos , Piel/patología
15.
Front Immunol ; 12: 656919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276650

RESUMEN

The golden hamster is a suitable model for studying cutaneous leishmaniasis (CL) due to Leishmania (Viannia) braziliensis. Immunopathological mechanisms are well established in the L. (L.) major-mouse model, in which IL-4 instructs a Th2 response towards progressive infection. In the present study, we evaluated the natural history of L. braziliensis infection from its first stages up to lesion establishment, with the aim of identifying immunological parameters associated with the disease outcome and parasitism fate. To this end, hamsters infected with 104, 105, or 106 promastigotes were monitored during the first hours (4h, 24h), early (15 days, 30 days) and late (50 days) post-infection (pi) phases. Cytokines, iNOS and arginase gene expression were quantified in the established lesions by reverse transcription-quantitative PCR. Compared to the 105 or 106 groups, 104 animals presented lower lesions sizes, less tissue damage, and lower IgG levels. Basal gene expression in normal skin was high for TGF-ß, and intermediary for TNF, IL-6, and IL-4. At 4hpi, no cytokine induction was observed in the 104 group, while an upregulation of IL-6, IL-10, and IL-4 was observed in the 106 group. At 15dpi, lesion appearance was accompanied by an increased expression of all assessed cytokines, markedly in the 105 and 106 groups. Upregulation of all investigated cytokines was observed in the late phase, although less expressive in the 104 group. IFN-γ was the depending variable influencing tissue damage, while IL-6 was associated to parasite load. The network correlating gene expression and clinical and laboratorial parameters indicated inoculum-independent associations at 15 and 30dpi. A strong positive network correlation was observed in the 104 group, but not in the 105 or 106 groups. In conclusion, IL-4, IL-6, IL-10, and TGF-ß are linked o L. braziliensis progression. However, a balanced cytokine network is the key for an immune response able to reduce the ongoing infection and reduce pathological damage.


Asunto(s)
Citocinas/metabolismo , Leishmania braziliensis/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Transducción de Señal , Animales , Biomarcadores , Biología Computacional/métodos , Cricetinae , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Femenino , Expresión Génica , Interacciones Huésped-Parásitos/inmunología , Inmunomodulación , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Carga de Parásitos
16.
Glycobiology ; 31(10): 1378-1389, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34192330

RESUMEN

Leishmania (L.) amazonensis is one of the species responsible for the development of cutaneous leishmaniasis in South America. After entering the vertebrate host, L. (L.) amazonensis invades mainly neutrophils, macrophages and dendritic cells. Studies have shown that gal-3 acts as a pattern recognition receptor. However, the role of this protein in the context of L. (L.) amazonensis infection remains unclear. Here, we investigated the impact of gal-3 expression on experimental infection by L. (L.) amazonensis. Our data showed that gal-3 plays a role in controlling parasite invasion, replication and the formation of endocytic vesicles. Moreover, mice with gal-3 deficiency showed an exacerbated inflammatory response. Taken together, our data shed light to a critical role of gal-3 in the host response to infection by L. (L.) amazonensis.


Asunto(s)
Galectina 3/metabolismo , Leishmania/metabolismo , Leishmaniasis Cutánea/metabolismo , Animales , Femenino , Galectina 3/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Immunology ; 164(2): 318-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34021910

RESUMEN

Of the thirteen Toll-like receptors (TLRs) in mice, TLR2 has a unique ability of forming heterodimers with TLR1 and TLR6. Such associations lead to selective cellular signalling and cellular responses such as cytokine expression. One of the signalling intermediates is protein kinase C (PKC); of which, eight isoforms are expressed in macrophages. Leishmania-a protozoan parasite that resides and replicates in macrophages-selectively modulates PKC-α, PKC-ß, PKC-δ and PKC-ζ isoforms in macrophages. As TLR2 plays significant roles in Leishmania infection, we examined whether these PKC isoforms play selective roles in TLR2 signalling and TLR2-induced anti-leishmanial functions. We observed that the TLR2 ligands-Pam3 CSK4 (TLR1/2), PGN (TLR2/2) and FSL (TLR2/6)-differentially phosphorylated and translocated PKC-α, PKC-ß, PKC-δ and PKC-ζ isoforms to cell membrane in uninfected and L. major-infected macrophages. The PKC isoform-specific inhibitors differentially altered IL-10 and IL-12 expression, Th1 and Th2 responses and anti-leishmanial effects in macrophages and in BALB/c mice. While PKC isoforms' inhibitors had insignificant effects on the Pam3CSK4-induced anti-leishmanial functions, PGN-induced pro-leishmanial effects were enhanced by PKC-(α + ß) inhibitors, whereas PKC-(δ + Î¶) inhibitors enhanced the anti-leishmanial effects of FSL. These results indicated that the ligand-induced TLR2 dimerization triggered differential dose-dependent and kinetic profiles of PKC isoform activation and that selective targeting of PKC isoforms using their respective inhibitors in combination significantly modulated TLR2-induced anti-leishmanial functions. To the best of our knowledge, this is the first demonstration of TLR2 dimer signalling through PKC isoforms and TLR2-induced PKC isoform-targeted anti-leishmanial therapy.


Asunto(s)
Leishmaniasis Cutánea/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Citocinas/metabolismo , Ligandos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Fosforilación/fisiología , Transducción de Señal/fisiología
18.
Infect Immun ; 89(8): e0012421, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031127

RESUMEN

Vascular remodeling is a phenomenon seen in the cutaneous lesions formed during infection with Leishmania parasites. Within the lesion, Leishmania major infection leads to the infiltration of inflammatory cells, including macrophages, and is associated with hypoxic conditions and lymphangiogenesis in the local site. This low-oxygen environment is concomitant with the expression of hypoxic inducible factors (HIFs), which initiate the expression of vascular endothelial growth factor-A (VEGF-A) in macrophages during the infection. Here, we found that macrophage hypoxia is elevated in the skin, and the HIF target Vegfa is preferentially expressed at the site of infection. Further, transcripts indicative of both HIF-1α and HIF-2α activation were increased at the site of infection. Given that HIF mediates VEGF-A and that VEGF-A/VEGFR-2 signaling induces lymphangiogenesis, we wanted to investigate the link between myeloid HIF activation and lymphangiogenesis during L. major infection. We show that myeloid aryl hydrocarbon receptor nuclear translocator (ARNT)/HIF/VEGF-A signaling promotes lymphangiogenesis (the generation of newly formed vessels within the local lymphatic network), which helps resolve the lesion by draining away inflammatory cells and fluid. Concomitant with impaired lymphangiogenesis, we find the deletion of myeloid ARNT/HIF signaling leads to an exacerbated inflammatory response associated with a heightened CD4+ Th1 immune response following L. major infection. Altogether, our data suggest that VEGF-A-mediated lymphangiogenesis occurs through myeloid ARNT/HIF activation following Leishmania major infection and this process is critical in limiting immunopathology.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Leishmania major/fisiología , Leishmaniasis Cutánea/etiología , Leishmaniasis Cutánea/metabolismo , Linfangiogénesis/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Transducción de Señal , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Biomarcadores , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Susceptibilidad a Enfermedades/inmunología , Interacciones Huésped-Patógeno/inmunología , Leishmaniasis Cutánea/patología
19.
Emerg Microbes Infect ; 10(1): 1219-1226, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34009107

RESUMEN

Cutaneous leishmaniasis (CL) patients present an exacerbated inflammatory response associated with tissue damage and ulcer development. Increasing numbers of patients have exhibited treatment failure, which remains not well understood. We hypothesized that adjuvant anti-inflammatory therapy would benefit CL patients. The aim of the present study was to investigate the contribution of Notch signalling and gamma-secretase activity to the inflammatory response observed in CL patients. Notch signalling is a molecular signalling pathway conserved among animal species. Gamma-secretase forms a complex of proteins that, among other pathways, modulates Notch signalling and immune response. We found that Notch 1 cell receptor signalling protects against the pathologic inflammatory response, and JLK6, a gamma-secretase inhibitor that does not interfere with Notch signalling, was shown to decrease the in-vitro inflammatory response in CL. Our data suggest that JLK6 may serve as an adjuvant treatment for CL patients.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Leishmaniasis Cutánea/inmunología , Monocitos/inmunología , Receptores Notch/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Antígenos de Protozoos/inmunología , Células Cultivadas , Estudios Transversales , Citocinas/metabolismo , Diaminas/farmacología , Humanos , Inflamación , Leishmania braziliensis/inmunología , Leishmania braziliensis/fisiología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Monocitos/metabolismo , Monocitos/parasitología , Inhibidores de Proteasas/farmacología , Receptor Notch1/metabolismo , Transducción de Señal , Tiazoles/farmacología
20.
Front Immunol ; 12: 660183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841444

RESUMEN

Cutaneous leishmaniasis exhibits a wide spectrum of clinical presentations from self-resolving infections to severe chronic disease. Anti-parasitic drugs are often ineffective in the most severe forms of the disease, and in some cases the magnitude of the disease can result from an uncontrolled inflammatory response rather than unrestrained parasite replication. In these patients, host-directed therapies offer a novel approach to improve clinical outcome. Importantly, there are many anti-inflammatory drugs with known safety and efficacy profiles that are currently used for other inflammatory diseases and are readily available to be used for leishmaniasis. However, since leishmaniasis consists of a wide range of clinical entities, mediated by a diverse group of leishmanial species, host-directed therapies will need to be tailored for specific types of leishmaniasis. There is now substantial evidence that host-directed therapies are likely to be beneficial beyond autoimmune diseases and cancer and thus should be an important component in the armamentarium to modulate the severity of cutaneous leishmaniasis.


Asunto(s)
Modelos Animales de Enfermedad , Leishmania/inmunología , Leishmaniasis Cutánea/inmunología , Macrófagos/inmunología , Animales , Interacciones Huésped-Parásitos/inmunología , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interferón gamma/farmacología , Leishmania/clasificación , Leishmania/fisiología , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Especificidad de la Especie , Células TH1/inmunología , Células TH1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...