Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.452
Filtrar
1.
Sci Rep ; 14(1): 10073, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698123

RESUMEN

Cutaneous leishmaniasis is the most prevalent form of leishmaniasis worldwide. Although various anti-leishmanial regimens have been considered, due to the lack of efficacy or occurrence of adverse reactions, design and development of novel topical delivery systems would be essential. This study aimed to prepare artemether (ART)-loaded niosomes and evaluate their anti-leishmanial effects against Leishmania major. ART-loaded niosomes were prepared through the thin-film hydration technique and characterized in terms of particle size, zeta potential, morphology, differential scanning calorimetry, drug loading, and drug release. Furthermore, anti-leishmanial effect of the preparation was assessed in vitro and in vivo. The prepared ART-loaded niosomes were spherical with an average diameter of about 100 and 300 nm with high encapsulation efficiencies of > 99%. The results of in vitro cytotoxicity revealed that ART-loaded niosomes had significantly higher anti-leishmanial activity, lower general toxicity, and higher selectivity index (SI). Half-maximal inhibitory concentration (IC50) values of ART, ART-loaded niosomes, and liposomal amphotericin B were 39.09, 15.12, and 20 µg/mL, respectively. Also, according to the in vivo study results, ART-loaded niosomes with an average size of 300 nm showed the highest anti-leishmanial effects in animal studies. ART-loaded niosomes would be promising topical drug delivery system for the management of cutaneous leishmaniasis.


Asunto(s)
Arteméter , Leishmania major , Leishmaniasis Cutánea , Liposomas , Liposomas/química , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Arteméter/química , Leishmania major/efectos de los fármacos , Animales , Ratones , Tamaño de la Partícula , Antiprotozoarios/farmacología , Antiprotozoarios/administración & dosificación , Antiprotozoarios/química , Ratones Endogámicos BALB C , Liberación de Fármacos , Humanos
2.
PLoS Negl Trop Dis ; 18(5): e0012165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771858

RESUMEN

The infectious inoculum of a sand fly, apart from its metacyclic promastigotes, is composed of factors derived from both the parasite and the vector. Vector-derived factors, including salivary proteins and the gut microbiota, are essential for the establishment and enhancement of infection. However, the type and the number of bacteria egested during salivation is unclear. In the present study, sand flies of Phlebotomus papatasi were gathered from three locations in hyperendemic focus of zoonotic cutaneous leishmaniasis (ZCL) in Isfahan Province, Iran. By using the forced salivation assay and targeting the 16S rRNA barcode gene, egested bacteria were characterized in 99 (44%) out of 224 sand flies. Culture-dependent and culture-independent methods identified the members of Enterobacter cloacae and Spiroplasma species as dominant taxa, respectively. Ten top genera of Spiroplasma, Ralstonia, Acinetobacter, Reyranella, Undibacterium, Bryobacter, Corynebacterium, Cutibacterium, Psychrobacter, and Wolbachia constituted >80% of the saliva microbiome. Phylogenetic analysis displayed the presence of only one bacterial species for the Spiroplasma, Ralstonia, Reyranella, Bryobacter and Wolbachia, two distinct species for Cutibacterium, three for Undibacterium and Psychrobacter, 16 for Acinetobacter, and 27 for Corynebacterium, in the saliva. The abundance of microbes in P. papatasi saliva was determined by incorporating the data on the read counts and the copy number of 16S rRNA gene, about 9,000 bacterial cells, per sand fly. Both microbiological and metagenomic data indicate that bacteria are constant companions of Leishmania, from the intestine of the vector to the vertebrate host. This is the first forced salivation experiment in a sand fly, addressing key questions on infectious bite and competent vectors.


Asunto(s)
Bacterias , Phlebotomus , Filogenia , ARN Ribosómico 16S , Saliva , Animales , Phlebotomus/microbiología , ARN Ribosómico 16S/genética , Saliva/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Irán , Insectos Vectores/microbiología , Insectos Vectores/fisiología , Femenino , Microbiota , Leishmaniasis Cutánea/transmisión , Leishmaniasis Cutánea/microbiología , Leishmaniasis Cutánea/parasitología , Masculino
3.
Chem Biol Drug Des ; 103(5): e14535, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772877

RESUMEN

Despite efforts, available alternatives for the treatment of leishmaniasis are still scarce. In this work we tested a class of 15 quinolinylhydrazone analogues and presented data that support the use of the most active compound in cutaneous leishmaniasis caused by Leishmania amazonensis. In general, the compounds showed activity at low concentrations for both parasitic forms (5.33-37.04 µM to promastigotes, and 14.31-61.98 µM to amastigotes). In addition, the best compound (MHZ15) is highly selective for the parasite. Biochemical studies indicate that the treatment of promastigotes with MHZ15 leads the loss of mitochondrial potential and increase in ROS levels as the primary effects, which triggers accumulation of lipid droplets, loss of plasma membrane integrity and apoptosis hallmarks, including DNA fragmentation and phosphatidylserine exposure. These effects were similar in the intracellular form of the parasite. However, in this parasitic form there is no change in plasma membrane integrity in the observed treatment time, which can be attributed to metabolic differences and the resilience of the amastigote. Also, ultrastructural changes such as vacuolization suggesting autophagy were observed. The in vivo effectiveness of MHZ15 in the experimental model of cutaneous leishmaniasis was carried out in mice of the BALB/c strain infected with L. amazonensis. The treatment by intralesional route showed that MHZ15 acted with great efficiency with significantly reduction in the parasite load in the injured paws and draining lymph nodes, without clinical signs of distress or compromise of animal welfare. In vivo toxicity was also evaluated and null alterations in the levels of hepatic enzymes aspartate aminotransferase, and alanine aminotransferase was observed. The data presented herein demonstrates that MHZ15 exhibits a range of favorable characteristics conducive to the development of an antileishmanial agent.


Asunto(s)
Apoptosis , Hidrazonas , Leishmaniasis Cutánea , Ratones Endogámicos BALB C , Mitocondrias , Animales , Apoptosis/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hidrazonas/farmacología , Hidrazonas/química , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Leishmania/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Femenino , Leishmania mexicana/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
4.
PLoS Pathog ; 20(5): e1012211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709823

RESUMEN

Cytolytic CD8+ T cells mediate immunopathology in cutaneous leishmaniasis without controlling parasites. Here, we identify factors involved in CD8+ T cell migration to the lesion that could be targeted to ameliorate disease severity. CCR5 was the most highly expressed chemokine receptor in patient lesions, and the high expression of CCL3 and CCL4, CCR5 ligands, was associated with delayed healing of lesions. To test the requirement for CCR5, Leishmania-infected Rag1-/- mice were reconstituted with CCR5-/- CD8+ T cells. We found that these mice developed smaller lesions accompanied by a reduction in CD8+ T cell numbers compared to controls. We confirmed these findings by showing that the inhibition of CCR5 with maraviroc, a selective inhibitor of CCR5, reduced lesion development without affecting the parasite burden. Together, these results reveal that CD8+ T cells migrate to leishmanial lesions in a CCR5-dependent manner and that blocking CCR5 prevents CD8+ T cell-mediated pathology.


Asunto(s)
Linfocitos T CD8-positivos , Movimiento Celular , Leishmaniasis Cutánea , Receptores CCR5 , Animales , Receptores CCR5/metabolismo , Receptores CCR5/inmunología , Linfocitos T CD8-positivos/inmunología , Ratones , Humanos , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Ratones Noqueados , Ratones Endogámicos C57BL , Antagonistas de los Receptores CCR5/farmacología , Maraviroc/farmacología , Femenino
5.
PLoS Negl Trop Dis ; 18(5): e0012156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709850

RESUMEN

The multifactorial basis of therapeutic response can obscure the relation between antimicrobial drug susceptibility and clinical outcome. To discern the relationship between parasite susceptibility to meglumine antimoniate (SbV) and therapeutic outcome of cutaneous leishmaniasis, risk factors for treatment failure were considered in evaluating this relationship in ninety-one cutaneous leishmaniasis patients and corresponding clinical strains of Leishmania (Viannia) panamensis. Parasite susceptibility to 32 µg SbV/mL (plasma Cmax) was evaluated in primary human macrophages, PBMCs, and U937 macrophages. Early parasitological response to treatment was determined in lesions of a subgroup of patients, and pathogenicity of Sb-resistant and sensitive clinical strains was compared in BALB/c mice. Parasite survival in cell models and patient lesions was determined by qRT-PCR of Leishmania 7SLRNA transcript. Parasite loads in BALB/c mice were quantified by limiting dilution analysis. The disparate Sb-susceptibility of parasite subpopulations distinguished by isoenzyme profiles (zymodemes) was manifest in all cell models. Notably, Sb-resistance defined by parasite survival, was most effectively discerned in U937 macrophages compared with primary human host cells, significantly higher among strains from patients who failed treatment than cured and, significantly associated with treatment failure. Each unit increase in transformed survival rate corresponded to a 10.6-fold rise in the odds of treatment failure. Furthermore, treatment failure was significantly associated with naturally Sb-resistant zymodeme 2.3 strains, which also produced larger lesions and parasite burdens in BALB/c mice than Sb-sensitive zymodeme 2.2 strains. The confounding effect of host risk factors for treatment failure in discerning this association was evidenced in comparing strains from patients with and without the defined risk factors for treatment failure. These results establish the association of natural resistance to meglumine antimoniate with treatment failure, the importance of host risk factors in evaluating drug susceptibility and treatment outcome, and the clinical and epidemiological relevance of natural Sb-resistance in L. (V.) panamensis subpopulations.


Asunto(s)
Antiprotozoarios , Resistencia a Medicamentos , Leishmaniasis Cutánea , Macrófagos , Antimoniato de Meglumina , Meglumina , Ratones Endogámicos BALB C , Compuestos Organometálicos , Insuficiencia del Tratamiento , Animales , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Antimoniato de Meglumina/uso terapéutico , Antimoniato de Meglumina/farmacología , Humanos , Antiprotozoarios/uso terapéutico , Antiprotozoarios/farmacología , Femenino , Meglumina/uso terapéutico , Meglumina/farmacología , Compuestos Organometálicos/uso terapéutico , Compuestos Organometálicos/farmacología , Ratones , Macrófagos/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Leishmania guyanensis/efectos de los fármacos , Adulto , Persona de Mediana Edad , Adulto Joven , Carga de Parásitos , Adolescente
6.
PLoS Negl Trop Dis ; 18(4): e0012085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578804

RESUMEN

BACKGROUND: In the Mediterranean basin, three Leishmania species have been identified: L. infantum, L. major and L. tropica, causing zoonotic visceral leishmaniasis (VL), zoonotic cutaneous leishmaniasis (CL) and anthroponotic CL, respectively. Despite animal models and genomic/transcriptomic studies provided important insights, the pathogenic determinants modulating the development of VL and CL are still poorly understood. This work aimed to identify host transcriptional signatures shared by cells infected with L. infantum, L. major, and L. tropica, as well as specific transcriptional signatures elicited by parasites causing VL (i.e., L. infantum) and parasites involved in CL (i.e., L. major, L. tropica). METHODOLOGY/PRINCIPAL FINDINGS: U937 cells differentiated into macrophage-like cells were infected with L. infantum, L. major and L. tropica for 24h and 48h, and total RNA was extracted. RNA sequencing, performed on an Illumina NovaSeq 6000 platform, was used to evaluate the transcriptional signatures of infected cells with respect to non-infected cells at both time points. The EdgeR package was used to identify differentially expressed genes (fold change > 2 and FDR-adjusted p-values < 0.05). Then, functional enrichment analysis was employed to identify the enriched ontology terms in which these genes are involved. At 24h post-infection, a common signature of 463 dysregulated genes shared among all infection conditions was recognized, while at 48h post-infection the common signature was reduced to 120 genes. Aside from a common transcriptional response, we evidenced different upregulated functional pathways characterizing L. infantum-infected cells, such as VEGFA-VEGFR2 and NFE2L2-related pathways, indicating vascular remodeling and reduction of oxidative stress as potentially important factors for visceralization. CONCLUSIONS: The identification of pathways elicited by parasites causing VL or CL could lead to new therapeutic strategies for leishmaniasis, combining the canonical anti-leishmania compounds with host-directed therapy.


Asunto(s)
Leishmania infantum , Leishmania major , Leishmania tropica , Leishmaniasis Cutánea , Leishmaniasis Visceral , Animales , Humanos , Leishmania tropica/genética , Leishmania infantum/genética , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Macrófagos
7.
PLoS Negl Trop Dis ; 18(4): e0012113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662642

RESUMEN

BACKGROUND: Accuracy of molecular tools for the identification of parasites that cause human cutaneous leishmaniasis (CL) could largely depend on the sampling method. Non-invasive or less-invasive sampling methods such as filter paper imprints and cotton swabs are preferred over punch biopsies and lancet scrapings for detection methods of Leishmania based on polymerase chain reaction (PCR) because they are painless, simple, and inexpensive, and of benefit to military and civilian patients to ensure timely treatment. However, different types of samples can generate false negatives and there is a clear need to demonstrate which sample is more proper for molecular assays. METHODOLOGY: Here, we compared the sensitivity of molecular identification of different Leishmania (Viannia) species from Peru, using three types of sampling: punch biopsy, filter paper imprint and lancet scraping. Different composite reference standards and latent class models allowed to evaluate the accuracy of the molecular tools. Additionally, a quantitative PCR assessed variations in the results and parasite load in each type of sample. PRINCIPAL FINDINGS: Different composite reference standards and latent class models determined higher sensitivity when lancet scrapings were used for sampling in the identification and determination of Leishmania (Viannia) species through PCR-based assays. This was consistent for genus identification through kinetoplastid DNA-PCR and for the determination of species using FRET probes-based Nested Real-Time PCR. Lack of species identification in some samples correlated with the low intensity of the PCR electrophoretic band, which reflects the low parasite load in samples. CONCLUSIONS: The type of clinical sample can directly influence the detection and identification of Leishmania (Viannia) species. Here, we demonstrated that lancet scraping samples consistently allowed the identification of more leishmaniasis cases compared to filter paper imprints or biopsies. This procedure is inexpensive, painless, and easy to implement at the point of care and avoids the need for anesthesia, surgery, and hospitalization and therefore could be used in resource limited settings for both military and civilian populations.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Sensibilidad y Especificidad , Humanos , Leishmania/genética , Leishmania/aislamiento & purificación , Leishmania/clasificación , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/diagnóstico , Perú , Manejo de Especímenes/métodos , Reacción en Cadena de la Polimerasa/métodos , Técnicas de Diagnóstico Molecular/métodos , ADN Protozoario/genética , Biopsia
8.
Acta Derm Venereol ; 104: adv35089, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682801

RESUMEN

Israel is endemic for Old-World cutaneous leishmaniasis. The most common species is Leishmania major. However, the available treatment options are limited. This study's objective was to compare the authors' experience with different antimony intralesional treatments of Leishmania major cutaneous leishmaniasis. A retrospective evaluation was undertaken for cases of Leishmania major cutaneous leishmaniasis treated by pentavalent antimony in a university-affiliated medical centre in Israel. The previous treatment of intralesional sodium stibogluconate (Pentostam®) was compared with the current treatment of meglumine antimoniate (Glucantime®). One hundred cases of cutaneous leishmaniasis were treated during the study period, of whom 33 were treated with intralesional sodium stibogluconate and 67 were treated with intralesional meglumine antimoniate. The patients were 78 males and 22 females, mean age 24 (range 10-67) and there was a total of 354 skin lesions. Within 3 months from treatment, 91% (30/33) of the intralesional sodium stibogluconate group and 88% (59/67) of the intralesional meglumine antimoniate group had complete healing of the cutaneous lesions after an average of 3 treatment cycles (non-statistically significant). In conclusion, the 2 different medications have the same efficacy and safety for treating cutaneous leishmaniasis. Pentavalent antimoniate intralesional infiltration treatment is safe, effective, and well tolerated with minimal side effects for Old-World cutaneous leishmaniasis.


Asunto(s)
Gluconato de Sodio Antimonio , Antiprotozoarios , Inyecciones Intralesiones , Leishmania major , Leishmaniasis Cutánea , Antimoniato de Meglumina , Humanos , Antimoniato de Meglumina/administración & dosificación , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/diagnóstico , Femenino , Masculino , Gluconato de Sodio Antimonio/administración & dosificación , Estudios Retrospectivos , Adulto , Antiprotozoarios/administración & dosificación , Antiprotozoarios/efectos adversos , Persona de Mediana Edad , Leishmania major/efectos de los fármacos , Anciano , Adulto Joven , Adolescente , Resultado del Tratamiento , Niño , Factores de Tiempo , Israel , Meglumina/administración & dosificación , Compuestos Organometálicos/administración & dosificación
9.
Microb Genom ; 10(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38578294

RESUMEN

In Morocco, cutaneous leishmaniasis (CL) caused by Leishmania (L.) tropica is an important health problem. Despite the high incidence of CL in the country, the genomic heterogeneity of these parasites is still incompletely understood. In this study, we sequenced the genomes of 14 Moroccan isolates of L. tropica collected from confirmed cases of CL to investigate their genomic heterogeneity. Comparative genomics analyses were conducted by applying the recently established Genome Instability Pipeline (GIP), which allowed us to conduct phylogenomic and principal components analyses (PCA), and to assess genomic variations at the levels of the karyotype, gene copy number, single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELs) variants. Read-depth analyses revealed a mostly disomic karyotype, with the exception of the stable tetrasomy of chromosome 31. In contrast, we identified important gene copy number variations across all isolates, which affect known virulence genes and thus were probably selected in the field. SNP-based cluster analysis of the 14 isolates revealed a core group of 12 strains that formed a tight cluster and shared 45.1 % (87 751) of SNPs, as well as two strains (M3015, Ltr_16) that clustered separately from each other and the core group, suggesting the circulation of genetically highly diverse strains in Morocco. Phylogenetic analysis, which compared our 14 L. tropica isolates against 40 published genomes of L. tropica from a diverse array of locations, confirmed the genetic difference of our Moroccan isolates from all other isolates examined. In conclusion, our results indicate potential regional variations in SNP profiles that may differentiate Moroccan L. tropica from other L. tropica strains circulating in endemic countries in the Middle East. Our report paves the way for future research with a larger number of strains that will allow correlation of diverse phenotypes (resistance to treatments, virulence) and origins (geography, host species, year of isolation) to defined genomic signals such as gene copy number variations or SNP profiles that may represent interesting biomarker candidates.


Asunto(s)
Leishmania tropica , Leishmaniasis Cutánea , Humanos , Leishmania tropica/genética , Filogenia , Variaciones en el Número de Copia de ADN , Marruecos/epidemiología , Leishmaniasis Cutánea/epidemiología , Leishmaniasis Cutánea/parasitología , Genómica
10.
Parasitol Res ; 123(4): 185, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632113

RESUMEN

Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.


Asunto(s)
Alcaloides , Antiprotozoarios , Benzodioxoles , Curcumina , Leishmania braziliensis , Leishmaniasis Cutánea , Piperidinas , Alcamidas Poliinsaturadas , Cricetinae , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Curcumina/farmacología , Leishmaniasis Cutánea/parasitología , Alcaloides/farmacología , Alcaloides/uso terapéutico , Mesocricetus , Antiprotozoarios/farmacología
11.
Eur J Pharm Biopharm ; 199: 114306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679213

RESUMEN

In the context of neglected diseases, tegumentary leishmaniasis (TL) presents an emerging and re-emerging character in the national territory and in the world. The treatment of TL has limitations, such as intravenous administration route, high toxicity, and high treatment costs. Thus, several researchers work on new therapeutic strategies to improve the effectiveness of the treatment of leishmaniasis. In this light, the present study used a topical formulation, containing 8-hydroquinoline (8-HQN), for the treatment of Balb/c mice infected with L. amazonensis. After the treatment, the mean diameter of the lesion was measured, as well as the parasite load in organs and immunological parameters associated with the treatment. The results showed that the animals treated with 8-HQN 5%, when compared to controls, showed a reduction in the mean diameter of the lesion and in the parasite load. The animals treated with the ointment showed a type 1 cellular immune response profile associated with the production of cytokines such as INF-γ and TNF-α. In addition, the treatment did not demonstrate toxicity to mice. Therefore, the topical formulation containing 8-HQN 5% is a promising candidate in the topical treatment and could be considered, in the future, as an alternative for the treatment of TL.


Asunto(s)
Leishmaniasis Cutánea , Ratones Endogámicos BALB C , Oxiquinolina , Carga de Parásitos , Animales , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Ratones , Oxiquinolina/administración & dosificación , Oxiquinolina/química , Femenino , Administración Tópica , Antiprotozoarios/administración & dosificación , Antiprotozoarios/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Citocinas/metabolismo , Pomadas , Interferón gamma , Modelos Animales de Enfermedad
12.
Mem Inst Oswaldo Cruz ; 119: e230182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511814

RESUMEN

BACKGROUND: Leishmaniases encompass a spectrum of neglected diseases caused by parasites of the genus Leishmania, grouped in two forms: tegumentary and visceral leishmaniasis. OBJECTIVES: In this study, we propose Friend Virus B NIH Jackson (FVB/NJ) mouse strain as a new experimental model of infection with Leishmania (Leishmania) amazonensis, the second most prevalent agent of tegumentary leishmaniasis in Brazil. METHODS AND FINDINGS: We performed in vitro infections of FVB/NJ macrophages and compared them with BALB/c macrophages, showing that BALB/c cells have higher infection percentages and a higher number of amastigotes/cell. Phagocytosis assays indicated that BALB/c and FVB/NJ macrophages have similar capacity to uptake parasites after 5 min incubations. We also investigated promastigotes' resistance to sera from FVB/NJ and BALB/c and observed no difference between the two sera, even though FVB/NJ has a deficiency in complement components. Finally, we subcutaneously infected FVB/NJ and BALB/c mice with 2 × 106 parasites expressing luciferase. Analysis of lesion development for 12 weeks showed that FVB/NJ and BALB/c mice have similar lesion profiles and parasite burdens. MAIN CONCLUSIONS: This work characterises for the first time the FVB/NJ mouse as a new model for tegumentary leishmaniasis caused by Leishmania (L.) amazonensis.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Leishmaniasis Visceral , Leishmaniasis , Ratones , Animales , Leishmaniasis Cutánea/parasitología , Leishmaniasis Visceral/parasitología , Modelos Animales de Enfermedad , Macrófagos , Ratones Endogámicos BALB C
13.
Am J Trop Med Hyg ; 110(4): 656-662, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38442428

RESUMEN

Post-kala-azar dermal leishmaniasis (PKDL), the dermal sequel to visceral leishmaniasis (VL), is characterized by hypopigmented macules (macular) and/or papules and nodules (polymorphic). Post-kala-azar dermal leishmaniasis plays a significant role in disease transmission, emphasizing the need for monitoring chemotherapeutic effectiveness. Accordingly, this study aimed to quantify the parasite burden in PKDL patients after treatment with miltefosine by a quantitative polymerase chain reaction (qPCR). A Leishmania kinetoplastid gene-targeted qPCR was undertaken using DNA from skin biopsy specimens of patients with PKDL at three time points, i.e., at disease presentation (week 0, n = 157, group 1), upon completion of treatment (week 12, n = 39, group 2), and at any time point 6 months after completion of treatment (week ≥36, n = 54, group 3). A cycle threshold (Ct) <30 was considered the cutoff for positivity, and load was quantified as the number of parasites/µg genomic DNA (gDNA); cure was considered when samples had a Ct >30. The parasite load at disease presentation (group 1) was 10,769 (1,339-80,441)/µg gDNA (median [interquartile range]). In groups 2 and 3, qPCR results were negative in 35/39 cases (89.7%) and 48/54 cases (88.8%), respectively. In the 10/93 (10.8%) qPCR-positive cases, the parasite burdens in groups 2 and 3 were 2,420 (1,205-5,661)/µg gDNA and 22,195 (5,524-100,106)/µg gDNA, respectively. Serial monitoring was undertaken in 45 randomly selected cases that had completed treatment; all cases in groups 2 or 3 had a Ct >30, indicating cure. Overall, qPCR confirmed an 89.2% cure (as 83/93 cases showed parasite clearance), and the persistent qPCR positivity was attributed to nonadherence to treatment or unresponsiveness to miltefosine and remains to be investigated.


Asunto(s)
Leishmania donovani , Leishmania , Leishmaniasis Cutánea , Leishmaniasis Visceral , Fosforilcolina/análogos & derivados , Humanos , Leishmaniasis Visceral/parasitología , Leishmaniasis Cutánea/parasitología , ADN
14.
PLoS Negl Trop Dis ; 18(3): e0012050, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527083

RESUMEN

Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 µM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmania , Leishmaniasis Cutánea , Humanos , Animales , Ratones , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Anfotericina B/uso terapéutico , Leishmaniasis Cutánea/parasitología , Ftalimidas/farmacología , Ftalimidas/uso terapéutico
15.
Acta Trop ; 254: 107190, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508372

RESUMEN

Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.


Asunto(s)
Antimonio , Antiprotozoarios , Resistencia a Medicamentos , Glutatión , Glutatión/análogos & derivados , Leishmania tropica , Espermidina/análogos & derivados , Leishmania tropica/genética , Leishmania tropica/efectos de los fármacos , Resistencia a Medicamentos/genética , Animales , Antimonio/farmacología , Humanos , Antiprotozoarios/farmacología , Ratones , Glutatión/metabolismo , Línea Celular , Macrófagos/parasitología , Concentración 50 Inhibidora , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/tratamiento farmacológico , Femenino , Adulto , Pruebas de Sensibilidad Parasitaria , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Acta Trop ; 254: 107189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522630

RESUMEN

Cutaneous leishmaniasis (CL) is a vector-borne disease characterized by skin lesions that can evolve into high-magnitude ulcerated lesions. Thus, this study aimed to develop an innovative nanoemulsion (NE) with clove oil, Poloxamer® 407, and multiple drugs, such as amphotericin B (AmB) and paromomycin (PM), for use in the topical treatment of CL. METHODS: Droplet size, morphology, drug content, stability, in vitro release profile, in vitro cytotoxicity on RAW 264.7 macrophages, and antileishmanial activity using axenic amastigotes of Leishmania amazonensis were assessed for NEs. RESULTS: After optimizing the formulation parameters, such as the concentration of clove oil and drugs, using an experimental design, it was possible to obtain a NE with an average droplet size of 40 nm and a polydispersion index of 0.3, and these parameters were maintained throughout the 365 days. Furthermore, the NE showed stability of AmB and PM content for 180 days under refrigeration (4 °C), presented a pH compatible with the skin, and released modified AmB and PM. NE showed the same toxicity as free AmB and higher toxicity than free PM against RAW 264.7 macrophages. The same activity as free AmB, and higher activity than free PM against amastigotes L. amazonensis. CONCLUSION: It is possible to develop a NE for the treatment of CL; however, complementary studies regarding the antileishmanial activity of NE should be carried out.


Asunto(s)
Anfotericina B , Antiprotozoarios , Emulsiones , Leishmaniasis Cutánea , Paromomicina , Paromomicina/farmacología , Paromomicina/administración & dosificación , Anfotericina B/farmacología , Anfotericina B/administración & dosificación , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Animales , Ratones , Antiprotozoarios/farmacología , Antiprotozoarios/administración & dosificación , Antiprotozoarios/química , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Leishmania mexicana/efectos de los fármacos , Aceite de Clavo/farmacología , Aceite de Clavo/química , Poloxámero/química , Estabilidad de Medicamentos , Nanopartículas/química
17.
Med Microbiol Immunol ; 213(1): 4, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532203

RESUMEN

Besides being scarce, the drugs available for treating cutaneous leishmaniasis have many adverse effects. Ozone is an option to enhance the standard treatment due to the wound-healing activity reported in the literature. In this study, we evaluated the efficiency of ozonated sunflower oil as an adjuvant in treating cutaneous lesions caused by Leishmania amazonensis. BALB/c mice were infected with L. amazonensis, and after the lesions appeared, they were treated in four different schedules using the drug treatment with meglumine antimoniate (Glucantime®), with or without ozonated oil. After thirty days of treatment, the lesions' thickness and their parasitic burden, blood leukocytes, production of NO and cytokines from peritoneal macrophages and lymph node cells were analyzed. The group treated with ozonated oil plus meglumine antimoniate showed the best performance, improving the lesion significantly. The parasitic burden showed that ozonated oil enhanced the leishmanicidal activity of the treatment, eliminating the parasites in the lesion. Besides, a decrease in the TNF levels from peritoneal macrophages and blood leukocytes demonstrated an immunomodulatory action of ozone in the ozonated oil-treated animals compared to the untreated group. Thus, ozonated sunflower oil therapy has been shown as an adjuvant in treating Leishmania lesions since this treatment enhanced the leishmanicidal and wound healing effects of meglumine antimoniate.


Asunto(s)
Antiprotozoarios , Leishmaniasis Cutánea , Ozono , Animales , Ratones , Antimoniato de Meglumina/farmacología , Antimoniato de Meglumina/uso terapéutico , Aceite de Girasol/uso terapéutico , Antiprotozoarios/farmacología , Meglumina/farmacología , Meglumina/uso terapéutico , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Cicatrización de Heridas , Ozono/uso terapéutico , Ratones Endogámicos BALB C
18.
Acta Parasitol ; 69(1): 831-838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436865

RESUMEN

BACKGROUND AND OBJECTIVE: Cutaneous leishmaniasis (CL) is still considered to be an uncontrolled endemic disease that spreads in many countries. The current study aimed to determine intra-species relationships of L. major using ITS2 sequencing. METHODS: The study was conducted from the beginning of March to the end of November 2022. All medical information regarding CL was collected from patients of Thi-Qar province who attended the Dermatology Department of Al-Hussein Teaching Hospital in Nasiriyah city. Seventy-three samples were selected for the molecular identification after confirming microscopy with Giemsa stain. In this study, the primers were designed using NCBI GenBank sequence database and Primer 3 plus primer design online software. RESULTS: The results recorded 21 (28.77%) positive samples of L. major using the internal transcribed spacer 2 region (ITS2) in ribosomal RNA gene. The local L. major IQN.1-IQN.10 were submitted to NCBI GenBank database with accession numbers OM069357.1-OM069366.1, respectively. The phylogenetic analysis revealed that local isolates of L. major showed a close relationship with NCBI-BLAST L. major Iran isolate (KU680848.1). CONCLUSION: ITS2-PCR is suitable for identifying Leishmania spp. and determining genetic diversity. A phylogenetic data analysis may provide an idea on the genetic homogeneity of local isolates and knowing the genetic origin of the dermal lesion. However, the local isolates showed genetic proximity to the KU680848.1 isolate. This signifies the possibility of infection prevalence from Iranian areas. In general, genetic variation of L. major isolates may give several clinical manifestations of the cutaneous lesion. Therefore, determination of the heterogeneity is important for detecting the infection origin, epidemiology, therapy, and control strategies.


Asunto(s)
Variación Genética , Leishmania major , Leishmaniasis Cutánea , Filogenia , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/epidemiología , Leishmania major/genética , Leishmania major/aislamiento & purificación , Leishmania major/clasificación , Humanos , ADN Espaciador Ribosómico/genética , Masculino , Femenino , Irán/epidemiología , ADN Protozoario/genética , Adulto , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Adolescente , Niño , Adulto Joven , Piel/parasitología
19.
Parasitology ; 151(5): 506-513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533610

RESUMEN

Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-ß-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.


Asunto(s)
Modelos Animales de Enfermedad , Leishmania mexicana , Leishmaniasis Cutánea , Ratones Endogámicos BALB C , Animales , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Ratones , Femenino , Masculino , Leishmania mexicana/efectos de los fármacos , Tubercidina/farmacología , Tubercidina/análogos & derivados , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/administración & dosificación , Macrófagos Peritoneales/parasitología , Macrófagos Peritoneales/efectos de los fármacos , Leishmania/efectos de los fármacos
20.
Iran J Med Sci ; 49(2): 121-129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356483

RESUMEN

Background: Stem cell-derived secretome (SE) released into the extracellular space contributes to tissue repair. The present study aimed to investigate the impact of isolated secretome (SE) from adipose-derived mesenchymal stem cells (ASCs) on Leishmania major (L. major) lesions in BALB/c mice. Methods: This experimental study was conducted at Ahvaz University of Medical Sciences (Ahvaz, Iran) in 2021. Forty female BALB/c mice were infected with stationary phase promastigotes through intradermal injection in the bottom of their tail and randomly divided into four groups (n=10 per group). The mice were given SE (20 mg/mL), either alone or in combination with Glucantime (GC, 20 mg/mL/Kg), meglumine antimoniate (20 mg/mL/Kg) for the GC group, and phosphate-buffered saline (PBS) for the control group. After eight weeks, the lesion size, histopathology, the levels of Interleukin 10 (IL-10), and Interleukin 12 (IL-12) were assessed. For the comparison of values between groups, the parametric one-way ANOVA was used to assess statistical significance. Results: At the end of the experiment, the mice that received SE had smaller lesions (4.56±0.83 mm versus 3.62±0.59 mm, P=0.092), lower levels of IL-10 (66.5±9.7 pg/mL versus 285.4±25.2 pg/mL, P<0.001), and higher levels of IL-12 (152.2±14.2 pg/mL versus 24.2±4.4 pg/mL, P<0.001) than the control. Histopathology findings revealed that mice treated with SE had a lower parasite burden in lesions and spleen than the control group. Conclusion: The current study demonstrated that ADSC-derived SE could protect mice infected with L. major against leishmaniasis.


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Parásitos , Femenino , Animales , Ratones , Leishmaniasis Cutánea/terapia , Leishmaniasis Cutánea/parasitología , Interleucina-10 , Secretoma , Antimoniato de Meglumina , Interleucina-12
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...