Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pak J Biol Sci ; 25(1): 90-99, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35001579

RESUMEN

<b>Background and Objective:</b> The proposed study involves the approach from the point of anti-viral activity of gold nanoparticles against the <i>Bluetongue virus</i>. Among viral diseases, Bluetongue is regarded as an economically scouring disease. Neither a vaccine nor an antiviral drug is available for the prevention or treatment of this disease. The antiviral activity of gold nanoparticles synthesized by a novel isolate of <i>Streptomyces tuirus</i> DBZ39 is the breakthrough of the study. <i>Streptomyces tuirus </i>DBZ39, a novel isolate obtained from alkaline soil was proved to be efficient actinomycetes, for the extracellular synthesis of gold nanoparticles. <b>Materials and Methods:</b> An upstream bioprocess was optimized and developed for the synthesis of controlled size gold nanoparticles with solitary mono dispersal pattern in aurum chloride solution. The characterization and confirmation of gold nanoparticles were illustrated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX) and Fourier Transmission Infrared Radiation Analysis (FTIR). <b>Results:</b> Biomass size of 3 g, substrate concentration of 1 mM, pH of 8.5 and temperature of 45°C were observed as optimum conditions for the synthesis of 15-24 nm size gold nanoparticles. The <i>Bluetongue virus</i> (BTV) which belongs to the genus Orbivirus in the family Reoviridae with 26 serotypes is an etiological agent of infectious and non-contagious Bluetongue disease of main sheep and several other domestic animals. <b>Conclusion:</b> Gold nanoparticles for the 1st time, at a higher concentration of 1:64 dilutions revealed a very promising and novel antiviral property against the <i>Bluetongue virus</i>.


Asunto(s)
Antivirales/normas , Virus de la Lengua Azul/efectos de los fármacos , Oro/farmacología , Streptomyces/aislamiento & purificación , Antivirales/farmacología , Lengua Azul/tratamiento farmacológico , Lengua Azul/fisiopatología , Virus de la Lengua Azul/patogenicidad , Oro/uso terapéutico , Nanopartículas/normas , Streptomyces/metabolismo
2.
Viruses ; 13(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452303

RESUMEN

Statin derivatives can inhibit the replication of a range of viruses, including hepatitis C virus (HCV, Hepacivirus), dengue virus (Flavivirus), African swine fever virus (Asfarviridae) and poliovirus (Picornaviridae). We assess the antiviral effect of fluvastatin in cells infected with orbiviruses (bluetongue virus (BTV) and Great Island virus (GIV)). The synthesis of orbivirus outer-capsid protein VP2 (detected by confocal immunofluorescence imaging) was used to assess levels of virus replication, showing a reduction in fluvastatin-treated cells. A reduction in virus titres of ~1.7 log (98%) in fluvastatin-treated cells was detected by a plaque assay. We have previously identified a fourth non-structural protein (NS4) of BTV and GIV, showing that it interacts with lipid droplets in infected cells. Fluvastatin, which inhibits 3-hydroxy 3-methyl glutaryl CoA reductase in the mevalonic acid pathway, disrupts these NS4 interactions. These findings highlight the role of the lipid pathways in orbivirus replication and suggest a greater role for the membrane-enveloped orbivirus particles than previously recognised. Chemical intermediates of the mevalonic acid pathway were used to assess their potential to rescue orbivirus replication. Pre-treatment of IFNAR(-/-) mice with fluvastatin promoted their survival upon challenge with live BTV, although only limited protection was observed.


Asunto(s)
Antivirales/farmacología , Virus de la Lengua Azul/efectos de los fármacos , Fluvastatina/farmacología , Ácido Mevalónico/metabolismo , Orbivirus/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Lengua Azul/tratamiento farmacológico , Lengua Azul/virología , Virus de la Lengua Azul/fisiología , Línea Celular , Ceratopogonidae/enzimología , Ceratopogonidae/virología , Fluvastatina/uso terapéutico , Humanos , Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Redes y Vías Metabólicas , Ratones , Orbivirus/fisiología , Receptor de Interferón alfa y beta/genética , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus de la Fiebre Amarilla/efectos de los fármacos , Virus de la Fiebre Amarilla/fisiología
3.
J Recept Signal Transduct Res ; 40(5): 426-435, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32249640

RESUMEN

Outstanding increase of oral absorption, bioavailability, and antiviral efficacy of phosphorylated nucleosides and basic antiviral influence of abacavir is the central idea for the development of new series of phosphorylated abacavir (ABC) derivatives. The designed compounds were primarily screened for antiviral nature against HN protein of NDV and VP7 protein of BTV using the molecular environment approach. Out of all the designed compounds, the compounds which are having higher binding energies against these two viral strains were prompted for the synthesis of the target compounds (5A-K). Among the synthesized title compounds (5A-K), the compounds which have exhibited higher dock scores akin to the rest of the compounds were then selected and screened for the antiviral activity against NDV and BTV infected embryonated eggs and BHK 21 cell lines through the in ovo and in vitro approaches. The results revealed that all the designed compounds have formed higher binding energies against both the targets. Among all, the compounds which are selected based on their dock scores such as 5A, 5F, 5G, 5H, 5I, and 5K against NDV and 5J, 5E, 5I, 5C, 5A, and 5K against BTV have shown significant antiviral activity against HN protein of NDV, VP7 protein of Bluetongue virus in both NDV- and BTV-treated embryonated eggs and BHK 21 cell lines. Hence, it is concluded that, the best lead compounds will stand as the potential antiviral agents and prompted them as virtuous therapeutics against NDV and BTV in future.


Asunto(s)
Lengua Azul/tratamiento farmacológico , Didesoxinucleósidos/farmacología , Proteína HN/efectos de los fármacos , Proteínas del Núcleo Viral/antagonistas & inhibidores , Animales , Enfermedades de las Aves/tratamiento farmacológico , Enfermedades de las Aves/genética , Enfermedades de las Aves/virología , Lengua Azul/genética , Lengua Azul/virología , Virus de la Lengua Azul/efectos de los fármacos , Virus de la Lengua Azul/genética , Virus de la Lengua Azul/patogenicidad , Simulación por Computador , Didesoxinucleósidos/química , Enfermedad de Newcastle/tratamiento farmacológico , Enfermedad de Newcastle/genética , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Fosforilación , Ovinos/virología , Enfermedades de las Ovejas/tratamiento farmacológico , Enfermedades de las Ovejas/genética , Relación Estructura-Actividad , Proteínas del Núcleo Viral/genética
4.
J Vis Exp ; (80)2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24145313

RESUMEN

To identify potential antivirals against BTV, we have developed, optimized and validated three assays presented here. The CPE-based assay was the first assay developed to evaluate whether a compound showed any antiviral efficacy and have been used to screen large compound library. Meanwhile, cytotoxicity of antivirals could also be evaluated using the CPE-based assay. The dose-response assay was designed to determine the range of efficacy for the selected antiviral, i.e. 50% inhibitory concentration (IC50) or effective concentration (EC50), as well as its range of cytotoxicity (CC50). The ToA assay was employed for the initial MoA study to determine the underlying mechanism of the novel antivirals during BTV viral lifecycle or the possible effect on host cellular machinery. These assays are vital for the evaluation of antiviral efficacy in cell culture system, and have been used for our recent researches leading to the identification of a number of novel antivirals against BTV.


Asunto(s)
Antirretrovirales/farmacología , Virus de la Lengua Azul/efectos de los fármacos , Animales , Lengua Azul/tratamiento farmacológico , Lengua Azul/virología , Línea Celular , Cricetinae , Efecto Citopatogénico Viral/efectos de los fármacos , Relación Dosis-Respuesta a Droga
5.
PLoS One ; 7(8): e43341, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22905259

RESUMEN

Bluetongue virus (BTV), a member in the family Reoviridae, is a re-emerging animal disease infecting cattle and sheep. With its recent outbreaks in Europe, there is a pressing need for efficacious antivirals. We presented here the identification and characterization of a novel virostatic molecule against BTV, an aminothiophenecarboxylic acid derivative named compound 003 (C003). The virostatic efficacy of C003 could be improved via chemical modification, leading to a de novo synthesized compound 052 (C052). The 50% effective concentrations (EC(50)) of C003 and C052 were determined at 1.76 ± 0.73 µM and 0.27 ± 0.12 µM, respectively. The 50% cytotoxicity concentration (CC(50)) of C003 was over 100 µM and the CC(50) of C052 was at 82.69 µM. Accordingly, the 50% selective index (SI(50)) of C003 and C052 against BTV was over 57 and 306, respectively. The inhibitory effect of C003/C052 on BTV-induced apoptosis was also confirmed via the inhibition of caspase-3/-7 activation post BTV infection. C003/C052 could inhibit BTV induced CPE even when added as late as 24 h.p.i., indicating that they might act at late stage of viral life-cycle. C003/C052 could reduce over two-logs of both the progeny virus production and the number of genomic viral RNA copies. Interestingly, both the activation of host autophagy and viral protein expression were inhibited post BTV infection when cells were treated with C003 and C052, suggesting that C003/C052 might act as virostatic agents via inhibiting host autophagy activation. Although further investigations might be needed to pin down the exact mechanism of C003/C052, our finding suggested that these compounds might be potent lead compounds with potential novel mechanism of action against BTV.


Asunto(s)
Antivirales/farmacología , Virus de la Lengua Azul/metabolismo , Lengua Azul/tratamiento farmacológico , Lengua Azul/virología , Animales , Apoptosis , Autofagia , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular , Supervivencia Celular , Cricetinae , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Concentración 50 Inhibidora , Modelos Químicos , ARN Viral/metabolismo , Tiofenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...