Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 502, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840053

RESUMEN

BACKGROUND: Lentil is a significant legume that are consumed as a staple food and have a significant economic impact around the world. The purpose of the present research on lentil was to assess the hydrothermal time model's capacity to explain the dynamics of Lens culinaris L. var. Markaz-09 seed germination, as well as to ascertain the germination responses at various sub-optimal temperatures (T) and water potentials (Ψ). In order to study lentil seed germination (SG) behavior at variable water potentials (Ψs) and temperatures (Ts). A lab experiment employing the hydrothermal time model was created. Seeds were germinated at six distinct temperatures: 15 0С, 20 0С, 25 0С, 30 0С, 35 0С, and 40 0С, with five Ψs of 0, -0.3, -0.6, -0.9, and - 1.2 MPa in a PEG-6000 (Polyethylene glycol 6000) solution. RESULTS: The results indicated that the agronomic parameters like Germination index (GI), Germination energy (GE), Timson germination index (TGI), were maximum in 25 0C at (-0.9 MPa) and lowest at 40 0C in 0 MPa. On other hand, mean germination time (MGT) value was highest at 15 0C in -1.2 MPa and minimum at 40 0C in (-0.6 MPa) while Mean germination rate (MGR) was maximum at 40 0C in (0 MPa) and minimum at 15 0C in (-0.6 MPa). CONCLUSIONS: The HTT model eventually defined the germination response of Lens culinaris L. var. Markaz-09 (Lentil) for all Ts and Ψs, allowing it to be employed as a predictive tool in Lens culinaris L. var. Markaz-09 (Lentil) seed germination simulation models.


Asunto(s)
Germinación , Lens (Planta) , Semillas , Temperatura , Germinación/fisiología , Semillas/fisiología , Semillas/crecimiento & desarrollo , Lens (Planta)/fisiología , Lens (Planta)/crecimiento & desarrollo , Agua/metabolismo , Modelos Biológicos , Presión Osmótica
2.
Sci Rep ; 14(1): 10215, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702403

RESUMEN

Weeds pose a major constraint in lentil cultivation, leading to decrease farmers' revenues by reducing the yield and increasing the management costs. The development of herbicide tolerant cultivars is essential to increase lentil yield. Even though herbicide tolerant lines have been identified in lentils, breeding efforts are still limited and lack proper validation. Marker assisted selection (MAS) can increase selection accuracy at early generations. Total 292 lentil accessions were evaluated under different dosages of two herbicides, metribuzin and imazethapyr, during two seasons at Marchouch, Morocco and Terbol, Lebanon. Highly significant differences among accessions were observed for days to flowering (DF) and maturity (DM), plant height (PH), biological yield (BY), seed yield (SY), number of pods per plant (NP), as well as the reduction indices (RI) for PH, BY, SY and NP. A total of 10,271 SNPs markers uniformly distributed along the lentil genome were assayed using Multispecies Pulse SNP chip developed at Agriculture Victoria, Melbourne. Meta-GWAS analysis was used to detect marker-trait associations, which detected 125 SNPs markers associated with different traits and clustered in 85 unique quantitative trait loci. These findings provide valuable insights for initiating MAS programs aiming to enhance herbicide tolerance in lentil crop.


Asunto(s)
Resistencia a los Herbicidas , Herbicidas , Lens (Planta) , Polimorfismo de Nucleótido Simple , Lens (Planta)/genética , Lens (Planta)/efectos de los fármacos , Lens (Planta)/crecimiento & desarrollo , Herbicidas/farmacología , Herbicidas/toxicidad , Resistencia a los Herbicidas/genética , Estudio de Asociación del Genoma Completo , Genes de Plantas , Sitios de Carácter Cuantitativo
3.
PLoS One ; 19(5): e0302870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776345

RESUMEN

The systematic identification of insertion/deletion (InDel) length polymorphisms from the entire lentil genome can be used to map the quantitative trait loci (QTL) and also for the marker-assisted selection (MAS) for various linked traits. The InDels were identified by comparing the whole-genome resequencing (WGRS) data of two extreme bulks (early- and late-flowering bulk) and a parental genotype (Globe Mutant) of lentil. The bulks were made by pooling 20 extreme recombinant inbred lines (RILs) each, derived by crossing Globe Mutant (late flowering parent) with L4775 (early flowering parent). Finally, 734,716 novel InDels were identified, which is nearly one InDel per 5,096 bp of lentil genome. Furthermore, 74.94% of InDels were within the intergenic region and 99.45% displayed modifier effects. Of these, 15,732 had insertions or deletions of 20 bp or more, making them amenable to the development of PCR-based markers. An InDel marker I-SP-356.6 (chr. 3; position 356,687,623; positioned 174.5 Kb from the LcFRI gene) was identified as having a phenotypic variance explained (PVE) value of 47.7% for earliness when validated in a RIL population. Thus, I-SP-356.6 marker can be deployed in MAS to facilitate the transfer of the earliness trait to other elite late-maturing cultivars. Two InDel markers viz., I-SP-356.6 and I-SP-383.9 (chr. 3; linked to LcELF3a gene) when tested in 9 lentil genotypes differing for maturity duration, clearly distinguished three early (L4775, ILL7663, Precoz) and four late genotypes (Globe Mutant, MFX, L4602, L830). However, these InDels could not be validated in two genotypes (L4717, L4727), suggesting either absence of polymorphism and/or presence of other loci causing earliness. The identified InDel markers can act as valuable tools for MAS for the development of early maturing lentil varieties.


Asunto(s)
Genoma de Planta , Genotipo , Mutación INDEL , Lens (Planta) , Sitios de Carácter Cuantitativo , Lens (Planta)/genética , Lens (Planta)/crecimiento & desarrollo , Marcadores Genéticos , Reacción en Cadena de la Polimerasa/métodos , Mapeo Cromosómico/métodos
4.
Pest Manag Sci ; 80(6): 2626-2638, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38343001

RESUMEN

BACKGROUND: Montana accounts for approximately 45% of US dry pea production and the pea leaf weevil (PLW; Sitona lineatus (L.)) is the most common insect pest in this region. After crop emergence adult PLW feed on the foliage to mature and subsequently mate, and the soil-dwelling larvae feed and develop on the nitrogen-fixing root nodules. Producers commonly apply prophylactic insecticide treatments to the seed at planting as well as one or two post-emergent insecticide sprays to control PLW damage. To develop alternative management strategies based on integrated pest management (IPM), this field study evaluated pulse crops grown in Montana for adult feeding preference and larval development. Ten different field pea varieties, along with two faba bean, lentil and chickpea varieties, were evaluated during the 2020 and 2021 field seasons at the Montana State University Arthur H. Post Agronomy Farm. RESULTS: Significant PLW pest pressure was observed within the research plots during both experimental years. Field pea and faba bean were preferred by the foliage feeding adult stage, with all but one variety averaging 39.2 to 86.3 average notches per plant. The pea variety Lifter was significantly preferred over all other comparisons, averaging 142.4 and 95.0 notches per plant in 2020 and 2021, respectively. Adult PLW feeding on lentil and chickpea was minimal, averaging 3.3 to 8.2 and 0.5 to 1.6 notches per plant, respectively. Numbers of larvae were highest on the roots of pea varieties, a known reproductive host, and almost nil on lentil and chickpea roots. Faba bean is also known as reproductive host, but, unexpectedly, larval populations were also low on the two faba bean varieties. CONCLUSIONS: The results from this study provide some limited evidence for alternative IPM strategies for field peas based on host plant tolerance or resistance within the range of varieties tested. Adult preference and larval development of PLW varied between the different pulse crops with field peas and faba beans being the most susceptible and lentils and chickpeas being the least susceptible. Host plant resistance against PLW could provide more sustainable IPM approaches in the future. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Larva , Pisum sativum , Gorgojos , Animales , Gorgojos/crecimiento & desarrollo , Gorgojos/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Pisum sativum/crecimiento & desarrollo , Montana , Lens (Planta)/crecimiento & desarrollo , Cicer/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Vicia faba/crecimiento & desarrollo , Conducta Alimentaria
5.
PLoS One ; 17(1): e0262146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35077446

RESUMEN

The advent of improved lentil varieties (ILVs) in the mid-1990s solved the disease problem which almost halted lentil production in Bangladesh. Levels of adoption of ILVs have been documented in the literature, but little is known about their impacts. Applying an instrumental variables regression to data collected from a sample of 1,694 lentil plots and DNA fingerprinting for varietal identification, this study provides estimates of the plot-level impacts of adoption of ILVs in Bangladesh. Model results show that adoption of ILVs is associated with 14.3% (181.14 kg/ha) higher yields and 17.23% (US$169.44/ha) higher gross margins. Since 45% of lentil area is under ILVs, they generated over 8.77 tones (6%) more supply of lentils from domestic sources, saving the country US$8.22 million in imports in 2015 alone. By investing in the generation and scaling of ILVs, Bangladesh and other South Asian countries with similar agro-ecologies can increase production and decrease dependency on lentil imports.


Asunto(s)
Producción de Cultivos/economía , Lens (Planta)/crecimiento & desarrollo , Bangladesh , Dermatoglifia del ADN , Lens (Planta)/genética , Repeticiones de Microsatélite/genética
6.
Gene ; 807: 145952, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500049

RESUMEN

Extreme temperature is one of the serious threats to crop production in present and future scenarios of global climate changes. Lentil (Lens culinaris) is an important crop, and there is a serious lack of genetic information regarding environmental and temperature stresses responses. This study is the first report of evaluation of key genes and molecular mechanisms related to temperature stresses in lentil using the RNA sequencing technique. De novo transcriptome assembly created 44,673 contigs and differential gene expression analysis revealed 7494 differentially expressed genes between the temperature stresses and control group. Basic annotation of generated transcriptome assembly in our study led to the identification of 2765 novel transcripts that have not been identified yet in lentil genome draft v1.2. In addition, several unigenes involved in mechanisms of temperature sensing, calcium and hormone signaling and DNA-binding transcription factor activity were identified. Also, common mechanisms in response to temperature stresses, including the proline biosynthesis, the photosynthetic light reactions balancing, chaperone activity and circadian rhythms, are determined by the hub genes through the protein-protein interaction networks analysis. Deciphering the mechanisms of extreme temperature tolerance would be a new way for developing crops with enhanced plasticity against climate change. In general, this study has identified set of mechanisms and various genes related to cold and heat stresses which will be useful in better understanding of the lentil's reaction to temperature stresses.


Asunto(s)
Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/genética , Estrés Fisiológico/genética , Cambio Climático , Frío/efectos adversos , Respuesta al Choque por Frío/genética , Productos Agrícolas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Anotación de Secuencia Molecular/métodos , Fotosíntesis , Mapas de Interacción de Proteínas/genética , Temperatura , Transcriptoma/genética
7.
PLoS One ; 16(8): e0248200, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34358230

RESUMEN

Water being a vital part of cell protoplasm plays a significant role in sustaining life on earth; however, drastic changes in climatic conditions lead to limiting the availability of water and causing other environmental adversities. α-tocopherol being a powerful antioxidant, protects lipid membranes from the drastic effects of oxidative stress by deactivating singlet oxygen, reducing superoxide radicals, and terminating lipid peroxidation by reducing fatty acyl peroxy radicals under drought stress conditions. A pot experiment was conducted and two groups of lentil cultivar (Punjab-2009) were exposed to 20 and 25 days of drought induced stress by restricting the availability of water after 60th day of germination. Both of the groups were sprinkled with α-tocopherol 100, 200 and 300 mg/L. Induced water deficit stress conditions caused a pronounced decline in growth parameters including absolute growth rate (AGR), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), relative growth rate (RGR), chlorophyll a, b, total chlorophyll content, carotenoids, and soluble protein content (SPC) which were significantly enhanced by exogenously applied α-tocopherol. Moreover, a significant increase was reported in total proline content (TPC), soluble sugar content (SSC), glycine betaine (GB) content, endogenous tocopherol levels, ascorbate peroxidase (APX), catalase (CAT) peroxidase (POD) and superoxide dismutase (SOD) activities. On the contrary, exogenously applied α-tocopherol significantly reduced the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2). In conclusion, it was confirmed that exogenous application of α-tocopherol under drought induced stress regimes resulted in membrane protection by inhibiting lipid peroxidation, enhancing the activities of antioxidative enzymes (APX, CAT, POD, and SOD) and accumulation of osmolytes such as glycine betaine, proline and sugar. Consequently, modulating different growth, physiological and biochemical attributes.


Asunto(s)
Antioxidantes/farmacología , Lens (Planta)/crecimiento & desarrollo , alfa-Tocoferol/farmacología , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Producción de Cultivos , Deshidratación , Peróxido de Hidrógeno/metabolismo , Lens (Planta)/efectos de los fármacos , Lens (Planta)/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo
8.
J Plant Physiol ; 265: 153494, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34454370

RESUMEN

Raffinose, stachyose and verbascose form the three major members of the raffinose family oligosaccharides (RFO) accumulated during seed development. Raffinose synthase (RS; EC 2.4.1.82) and stachyose synthase (STS; EC 2.4.1.67) have been associated with raffinose and stachyose synthesis, but the precise mechanism for verbascose synthesis is not well understood. In this study, full-length RS (2.7 kb) and STS (2.6 kb) clones were isolated by screening a cDNA library prepared from developing lentil seeds (18, 20, 22 and 24 days after flowering [DAF]) to understand the roles of RS and STS in RFO accumulation in developing lentil seeds. The nucleotide sequences of RS and STS genes were similar to those reported for Pisum sativum. Patterns of transcript accumulation, enzyme activities and RFO concentrations were also comparable to P. sativum. However, during lentil seed development raffinose, stachyose and verbascose accumulation corresponded to transcript accumulation for RS and STS, with peak transcript abundance occurring at about 22-24 DAF, generally followed by a sequential increase in raffinose, stachyose and verbascose concentrations followed by a steady level thereafter. Enzyme activities for RS, STS and verbascose synthase (VS) also indicated a sudden increase at around 24-26 DAF, but with an abrupt decline again coinciding with the subsequent steady state increase in the RFO. Galactan:galactan galactosyl transferase (GGT), the galactinol-independent pathway enzyme, however, exhibited steady increase in activity from 24 DAF onwards before abruptly decreasing at 34 DAF. Although GGT activity was detected, isolation of a GGT sequence from the cDNA library was not successful.


Asunto(s)
Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Lens (Planta)/enzimología , Lens (Planta)/genética , Oligosacáridos/biosíntesis , Rafinosa/biosíntesis , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lens (Planta)/crecimiento & desarrollo , Oligosacáridos/genética , Rafinosa/genética , Semillas/enzimología , Semillas/genética
9.
Food Chem ; 359: 129810, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957327

RESUMEN

A validated method for B vitamin separation and quantification from lentil seeds using ultra high performance liquid chromatography-selected reaction monitoring mass spectrometry (UHPLC-SRM MS) was reported. The use of three enzymes (acid phosphatase, ß-glucosidase, and rat serum) with a 4 h incubation was sufficient to convert bound B vitamins into their free forms. Twenty B vitamers were selected and a 5-min UHPLC-SRM MS method was optimized for rapid analysis. This method was applied to quantify B vitamin concentration during lentil seed germination over a 5-day period. Total B vitamins increased up to 1.5-fold on day 5 (from 39.2 µg/g to 60.6 µg/g of dry weight) comparing with dry seeds. Vitamin B5 (pantothenic acid) was the most abundant B vitamin in both dry seeds (34.2%) and in germinated seeds (17.7%-24.5% of total B vitamins); B8 (biotin) and B12 (cyanocobalamin) were not detected in lentil samples.


Asunto(s)
Análisis de los Alimentos/métodos , Lens (Planta)/química , Espectrometría de Masas , Complejo Vitamínico B/análisis , Germinación , Lens (Planta)/crecimiento & desarrollo
10.
Appl Environ Microbiol ; 87(15): e0300420, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33990306

RESUMEN

Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA (increased symbiotic effectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant's regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity.


Asunto(s)
Genes Bacterianos , Medicago truncatula/microbiología , Sinorhizobium meliloti/genética , Sinorhizobium/genética , Simbiosis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/microbiología , Medicago truncatula/crecimiento & desarrollo , Fijación del Nitrógeno , Pisum sativum/crecimiento & desarrollo , Pisum sativum/microbiología , Proteómica , Rhizobium/genética
11.
Molecules ; 26(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802449

RESUMEN

Seven-day-old sprouts of fenugreek (Trigonella foenum-graecum L.), lentil (Lens culinaris L.), and alfalfa (Medicagosativa L.) were studied. The legume seeds and then sprouts were soaked each day for 30 min during 6 days with water (control) or mixture of Fe-EDTA and sodium silicate (Optysil), or sodium silicate (Na-Sil) alone. Germination and sprout growing was carried out at temperature 20 ± 2 °C in 16/8 h (day/night) conditions. Phenolic compounds (free, ester, and glycosides) content were determined by HPLC-ESI-MS/MS using a multiple reaction monitoring of selected ions. Flavonoids and phenolic acids were released from their esters after acid hydrolysis and from glycosides by alkaline hydrolysis. The presence and high content of (-)-epicatechin (EC) in fenugreek sprouts was demonstrated for the first time. Applied elicitors decreased the level of free EC in fenugreek and alfalfa sprouts but enhanced the content of its esters. Besides, elicitors decreased the content of quercetin glycosides in lentil and fenugreek sprouts but increased the content of quercetin and apigenin glycosides in alfalfa sprouts. The applied elicitors decreased the glycoside levels of most phenolic acids in lentil and p-hydroxybenzoic acid in fenugreek, while they increased the content of this acid in alfalfa. The mixture of iron chelate and sodium silicate had less effect on changes in flavonoid and phenolic acid content in legume sprouts than silicate alone. In general, the used elicitors increased the content of total phenolic compounds in fenugreek and alfalfa sprouts and decreased the content in lentil sprouts. Among the evaluated elicitors, Optysil seems to be worth recommending due to the presence of iron chelate, which can be used to enrich sprouts with this element.


Asunto(s)
Quelantes del Hierro/farmacología , Lens (Planta)/metabolismo , Medicago sativa/metabolismo , Fenoles/análisis , Semillas/metabolismo , Silicatos/farmacología , Trigonella/metabolismo , Flavonoides/análisis , Germinación , Lens (Planta)/efectos de los fármacos , Lens (Planta)/crecimiento & desarrollo , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Trigonella/efectos de los fármacos , Trigonella/crecimiento & desarrollo
12.
Food Chem ; 343: 128549, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189480

RESUMEN

Whole grains and pulses are rich in nutrients but often avoided by individuals with gastrointestinal disorders, due to high levels of fermentable oligo-, di-, monosaccharides and polyols (FODMAPs). This study investigated the impact of malting as delivery-system for endogenous enzymes. Malts from barley and wheat (naturally high in fructans), lentils and chickpeas (high in galactooligosaccharides), oat and buckwheat (low in FODMAPs) were produced. While barley and wheat malts had slightly elevated fructan-levels, in oat malt 0.8 g/100 g DM fructans were de novo synthesized. In lentils and chickpeas galactooligosaccharides diminished by 80-90%. Buckwheat did not contain any FODMAPs commonly investigated, but fagopyritols which may have a similar physiological effect. Also fagopyritols were degraded. While malted pulses and buckwheat are directly suitable for low FODMAP applications, using the combined approach of malting and fermentation, malted cereals could contribute to high nutritional values of such products.


Asunto(s)
Disacáridos/metabolismo , Grano Comestible/metabolismo , Manipulación de Alimentos/métodos , Fructanos/metabolismo , Monosacáridos/metabolismo , Oligosacáridos/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Disacáridos/análisis , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Fructanos/análisis , Germinación , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/metabolismo , Monosacáridos/análisis , Oligosacáridos/análisis , Triticum/crecimiento & desarrollo , Triticum/metabolismo
13.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255324

RESUMEN

The plant rhizosphere interfaces an array of microbiomes related to plant growth and development. Cultivar-specific soil microbial communities with respect to their taxonomic structure and specific function have not been investigated explicitly in improving the adaptation of lentil cultivars under rice-fallow ecology. The present study was carried out to decipher the rhizosphere microbiome assembly of two lentil cultivars under rice-fallow ecology for discerning the diversity of microbial communities and for predicting the function of microbiome genes related to nitrogen (N) and phosphorus (P) cycling processes deploying high-throughput whole (meta) genome sequencing. The metagenome profile of two cultivars detected variable microbiome composition with discrete metabolic activity. Cyanobacteria, Bacteroidetes, Proteobacteria, Gemmatimonadetes, and Thaumarchaeota were abundant phyla in the "Farmer-2" rhizosphere, whereas Actinobacteria, Acidobacteria, Firmicutes, Planctomycetes, Chloroflexi, and some incompletely described procaryotes of the "Candidatus" category were found to be robustly enriched the rhizosphere of "Moitree". Functional prediction profiles of the microbial metagenomes between two cultivars revealed mostly house keeping genes with general metabolism. Additionally, the rhizosphere of "Moitree" had a high abundance of genes related to denitrification processes. Significant difference was observed regarding P cycling genes between the cultivars. "Moitree" with a profuse root system exhibited better N fixation and translocation ability due to a good "foraging strategy" for improving acquisition of native P under the nutrient depleted rice-fallow ecology. However, "Farmer-2" revealed a better "mining strategy" for enhancing P solubilization and further transportation to sinks. This study warrants comprehensive research for explaining the role of microbiome diversity and cultivar-microbe interactions towards stimulating microbiome-derived soil reactions regarding nutrient availability under rice-fallow ecology.


Asunto(s)
Lens (Planta)/genética , Metagenoma/genética , Microbiota/genética , Oryza/genética , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/microbiología , Metagenómica/métodos , Nitrógeno/metabolismo , Oryza/crecimiento & desarrollo , Oryza/microbiología , Fósforo/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
14.
J Genet ; 992020.
Artículo en Inglés | MEDLINE | ID: mdl-32366732

RESUMEN

Lentil is one of the most important food legume species, however its genetic and genomic resources remained largely uncharacterized and unexploited. In the past few years, a number of genetic maps have been constructed and marker resources have been developed in lentil. These resources could be exploited for understanding the extent and distribution of genetic variation in genus Lens and also for developing saturated and consensus genetic maps suitable for quantitative trait loci (QTL) mapping and marker-assisted selection. The present study aims to enrich polymerase chain reaction-based linkage map of F10 recombinant inbred lines (RILs) population of 94 individuals derived from cross WA8649090 9 Precoz and identification of QTLs linked to early plant vigour traits. Of the 268 polymorphic markers (93 simple sequence repeats (SSR), three inter-simple sequence repeats (ISSRs) and 172 random amplified polymorphic DNA (RAPDs)), 265 (90 SSRs, three ISSRs and 172 RAPDs) were mapped on seven linkage groups, varying in length between 25.6 and 210.3 cM, coverage of 809.4 cM with an average marker spacing of 3.05 cM. The study also reported assigning of 24 new cross-genera SSRs of Trifolium pratense on the present linkage map. The RILs along with the parents were screened for shoot length, root length, seedling length, dry weight, number of leaves and number of branches based on two replications under polyhouse conditions. A QTLhotspot consisting of six QTLs for shoot length (cm), root length (cm) and seedling length (cm) was observed between a map distances of56.61 and 86.81 cM on LG1.


Asunto(s)
Genoma de Planta , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/genética , Plantones/crecimiento & desarrollo , Plantones/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , ADN de Plantas/genética , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Repeticiones de Microsatélite , Fenotipo , Polimorfismo Genético , Sitios de Carácter Cuantitativo
15.
PLoS One ; 15(4): e0231377, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32298316

RESUMEN

Lentil (Lens culinaris Medik.) is a cool-season pulse grown in winter cropping cycle in South Asia and provides a major source of nutrition for many low-income households. Lentil productivity is perceived to be sensitive to high rainfall, but few studies document spatial and temporal patterns of yield variation across climate, soil, and agronomic gradients. Using farm survey data from Nepal, this study characterizes patterns of lentil productivity and efficiency for two cropping seasons. Additional insights were derived from on-farm trials conducted over a 5-year period that assess agronomic, drainage, and cultivar interventions. To contextualize the inferences derived from farm surveys and trials, the Stempedia model was used to simulate the severity of Stemphylium blight (Stemphylium botryosum) risk-the principal fungal disease in lentil-with 30 years of historical climate data. Although development efforts in Nepal have prioritized pulse intensification, results confirm that lentil remains a risky enterprise highlighting the prevalence of crop failures (16%), modest yields (353 kg ha-1), and low levels of profitability (US$ 33 ha-1) in wet winters. Nevertheless, site factors such as drainage class influence responses with upland sites performing well in wet winters and lowland sites performing well in dry winters. In wet winters, a phenomena perceived to be increasing, 76% of surveyed farmers reported significant disease pressure and simulations with Stempedia predict that conditions favoring Stemphylium occur in >60% of all years. Nevertheless, simulation results also suggest that these risks can be addressed through earlier planting. Based on the combined results, gains in yield, yield stability, and technical efficiency can be enhanced in western Nepal by: 1) ensuring timely lentil planting to mitigate climate-mediated disease risk, 2) evaluating new lentil lines that may provide enhanced resistance to diseases and waterlogging, and 3) encouraging the emergence of mechanization solutions to overcome labor bottlenecks.


Asunto(s)
Biomasa , Clima , Producción de Cultivos/métodos , Productos Agrícolas/crecimiento & desarrollo , Lens (Planta)/crecimiento & desarrollo , Simulación por Computador , Producción de Cultivos/normas , Nepal
16.
PLoS One ; 15(3): e0229554, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32126106

RESUMEN

Domesticated lentil has a relatively narrow genetic base globally and most released varieties are susceptible to severe biotic and abiotic stresses. The crop wild relatives could provide new traits of interest for tailoring novel germplasm and cultivated lentil improvement. The primary objective of this study was to evaluate wild lentil accessions for identification of economically viable agro-morphological traits and resistance against major biotic stresses. The study has revealed substantial variations in seed yield and its important component characters. Further, the diversity analysis of wild accessions showed two major clusters which were bifurcated into sub-clusters, thereby suggesting their wider genetic divergence. However, principal component analysis exhibited that seed yield plant-1, number of seeds plant-1, number of pods plant-1, harvest index and biological yield plant-1 contributed significantly to the total genetic variation assessed in wild lentil taxa. Moreover, some of the wild accessions collected from Syria and Turkey regions showed resistance against more than one disease indicating rich diversity of lentil genetic resources. The identification of most promising genotypes carrying resistance against major biotic stresses could be utilized in the cultivated or susceptible varieties of lentil for enhancing genetic gains. The study has also identified some trait specific accessions, which could also be taken into the consideration while planning distant hybridization in lentil.


Asunto(s)
Lens (Planta)/genética , Resistencia a la Enfermedad/genética , Fusarium/patogenicidad , Variación Genética , Genoma de Planta , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/microbiología , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Análisis de Componente Principal , Estrés Fisiológico/genética , Siria , Turquía
17.
Food Chem ; 314: 126184, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31954939

RESUMEN

In this study, pulse protein isolates (PPIs) were extracted from 0, 1, 3, and 5 days germinated chickpea, lentil, and yellow pea flours by alkaline extraction-isoelectric precipitation method. The germination time had negligible impact on the proximate composition of PPIs. In total, 67 volatiles in PPIs were identified via HS-SPME-GC-MS/O. Among all the identified volatile components, seven of them, including hexanal (11), (E)-2-octen-1-ol (7), (E,Z)-2,6-nonadienal (17), 3-octen-2-one (33), 3,5-octadien-2-one (34), 2-methoxy-3-isopropylpyrazine (56), and 2-methoxy-3-(1-methylpropyl)pyrazine (57), contributed to the beany-related odor of PPIs but much less than that in raw flours. However, the overall beany-related odor of PPIs increased when the germination time exceeded 1 day. Both the activity of lipoxygenase and the free radical populations in PPIs were positively related to the overall beany-related odor. Our findings are crucial for the preparation of germinated pulse proteins with improved functionality but without increasing undesirable odor.


Asunto(s)
Cicer/química , Lens (Planta)/química , Odorantes/análisis , Pisum sativum/química , Proteínas de Vegetales Comestibles/aislamiento & purificación , Cicer/crecimiento & desarrollo , Harina/análisis , Radicales Libres/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Germinación , Humanos , Lens (Planta)/crecimiento & desarrollo , Lipooxigenasa/metabolismo , Pisum sativum/crecimiento & desarrollo , Proteínas de Vegetales Comestibles/química , Compuestos Orgánicos Volátiles/análisis
18.
Plant Biol (Stuttg) ; 22 Suppl 1: 123-132, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31532043

RESUMEN

The stimulatory effect of elevated [CO2 ] (e[CO2 ]) on crop production in future climates is likely to be cancelled out by predicted increases in average temperatures. This effect may become stronger through more frequent and severe heat waves, which are predicted to increase in most climate change scenarios. Whilst the growth and yield response of some legumes grown under the interactive effect of e[CO2 ] and heat waves has been studied, little is known about how N2 fixation and overall N metabolism is affected by this combination. To address these knowledge gaps, two lentil genotypes were grown under ambient [CO2 ] (a[CO2 ], ~400 µmol·mol-1 ) and e[CO2 ] (~550 µmol·mol-1 ) in the Australian Grains Free Air CO2 Enrichment facility and exposed to a simulated heat wave (3-day periods of high temperatures ~40 °C) at flat pod stage. Nodulation and concentrations of water-soluble carbohydrates (WSC), total free amino acids, N and N2 fixation were assessed following the imposition of the heat wave until crop maturity. Elevated [CO2 ] stimulated N2 fixation so that total N2 fixation in e[CO2 ]-grown plants was always higher than in a[CO2 ], non-stressed control plants. Heat wave triggered a significant decrease in active nodules and WSC concentrations, but e[CO2 ] had the opposite effect. Leaf N remobilization and grain N improved under interaction of e[CO2 ] and heat wave. These results suggested that larger WSC pools and nodulation under e[CO2 ] can support post-heat wave recovery of N2 fixation. Elevated [CO2 ]-induced accelerated leaf N remobilisation might contribute to restore grain N concentration following a heat wave.


Asunto(s)
Dióxido de Carbono , Calor , Lens (Planta) , Fijación del Nitrógeno , Nitrógeno , Australia , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Ambiente , Lens (Planta)/efectos de los fármacos , Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/metabolismo , Nitrógeno/metabolismo
19.
Environ Pollut ; 258: 113544, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31859126

RESUMEN

Gradual contamination of agricultural land with copper (Cu), due to the indiscriminate uses of fungicides and pesticides, and the discharge of industrial waste to the environment, poses a high threat for soil degradation and consequently food crop production. In this study, we combined morphological, physiological and biochemical assays to investigate the mechanisms underlying acetate-mediated Cu toxicity tolerance in lentil. Results demonstrated that high dose of Cu (3.0 mM CuSO4. 5H2O) reduced seedling growth and chlorophyll content, while augmenting Cu contents in both roots and shoots, and increasing oxidative damage in lentil plants through disruption of the antioxidant defense. Principle component analysis clearly indicated that Cu accumulation and increased oxidative damage were the key factors for Cu toxicity in lentil seedlings. However, acetate pretreatment reduced Cu accumulation in roots and shoots, increased proline content and improved the responses of antioxidant defense (e.g. increased catalase and glutathione-S-transferase activities, and improved action of glutathione-ascorbate metabolic pathway). As a result, excess Cu-induced oxidative damage was reduced, and seedling growth was improved under Cu stress conditions, indicating the role of acetate in alleviating Cu toxicity in lentil seedlings. Taken together, exogenous acetate application reduced Cu accumulation in lentil roots and shoots and mitigated oxidative damage by activating the antioxidant defense, which were the major determinants for alleviating Cu toxicity in lentil seedlings. Our findings provide mechanistic insights into the protective roles of acetate in mitigating Cu toxicity in lentil, and suggest that application of acetate could be a novel and economical strategy for the management of heavy metal toxicity and accumulation in crops.


Asunto(s)
Antioxidantes , Cobre/metabolismo , Cobre/farmacología , Homeostasis/fisiología , Lens (Planta)/metabolismo , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Acetatos , Clorofila/metabolismo , Peróxido de Hidrógeno , Lens (Planta)/efectos de los fármacos , Lens (Planta)/crecimiento & desarrollo , Estrés Oxidativo , Hojas de la Planta/metabolismo , Análisis de Componente Principal
20.
Sci Rep ; 9(1): 12976, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506558

RESUMEN

The present study reports the role of morphological, physiological and reproductive attributes viz. membrane stability index (MSI), osmolytes accumulations, antioxidants activities and pollen germination for heat stress tolerance in contrasting genotypes. Heat stress increased proline and glycine betaine (GPX) contents, induced superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione peroxidase (GPX) activities and resulted in higher MSI in PDL-2 (tolerant) compared to JL-3 (sensitive). In vitro pollen germination of tolerant genotype was higher than sensitive one under heat stress. In vivo stressed pollens of tolerant genotype germinated well on stressed stigma of sensitive genotype, while stressed pollens of sensitive genotype did not germinate on stressed stigma of tolerant genotype. De novo transcriptome analysis of both the genotypes showed that number of contigs ranged from 90,267 to 104,424 for all the samples with N50 ranging from 1,755 to 1,844 bp under heat stress and control conditions. Based on assembled unigenes, 194,178 high-quality Single Nucleotide Polymorphisms (SNPs), 141,050 microsatellites and 7,388 Insertion-deletions (Indels) were detected. Expression of 10 genes was evaluated using quantitative Real Time Polymerase Chain Reaction (RT-qPCR). Comparison of differentially expressed genes (DEGs) under different combinations of heat stress has led to the identification of candidate DEGs and pathways. Changes in expression of physiological and pollen phenotyping related genes were also reaffirmed through transcriptome data. Cell wall and secondary metabolite pathways are found to be majorly affected under heat stress. The findings need further analysis to determine genetic mechanism involved in heat tolerance of lentil.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Respuesta al Choque Térmico , Lens (Planta)/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Transcriptoma , Perfilación de la Expresión Génica , Genotipo , Lens (Planta)/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...