Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.423
Filtrar
2.
Sci Rep ; 14(1): 9619, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671192

RESUMEN

K-562 is a well-known in vitro cellular model that represents human leukemia cell lines. Although the K-562 cells have been extensively characterized, there are inconsistencies in the data across publications, showing the presence of multiple K-562 cell lines. This suggests that analyzing a single K-562 cell line is insufficient to provide reliable reference data. In this study, we compared three K-562 cell lines with different IDs (RCB0027, RCB1635, and RCB1897) to investigate the fundamental characteristics of K-562 cells. Amplifications of the BCR-ABL1 fusion gene and at 13q31 were detected in all three cell lines, whereas each genome exhibited distinctive features of sequence variants and loss of heterozygosity. This implies that each K-562 cell line can be characterized by common and unique features through a comparison of multiple K-562 cell lines. Variations in transcriptome profiles and hemoglobin synthesis were also observed among the three cell lines, indicating that they should be considered sublines that have diverged from the common ancestral K-562 despite no changes from the original cell name. This leads to unintentional differences in genotypes and/or phenotypes among cell lines that share the same name. These data show that characterizing a single K-562 cell line does not necessarily provide data that are applicable to other K-562 cells. In this context, it is essential to modify cell names in accordance with changes in characteristics during cell culture. Furthermore, our data could serve as a reference for evaluating other K-562 sublines, facilitating the discovery of new K-562 sublines with distinct characteristics. This approach results in the accumulation of K-562 sublines with diverged characteristics and expands the options available, which may help in selecting the most suitable K-562 subline for each experiment.


Asunto(s)
Proteínas de Fusión bcr-abl , Humanos , Proteínas de Fusión bcr-abl/genética , Células K562 , Línea Celular Tumoral , Leucemia/genética , Leucemia/patología , Transcriptoma , Pérdida de Heterocigocidad
3.
Mol Biol Rep ; 51(1): 526, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632160

RESUMEN

BACKGROUND: Vitamin D deficiency is prevalent among the Indonesian population, particularly in individuals diagnosed with leukemia-lymphoma. The regulation of vitamin D metabolism is influenced by the expression of several enzymes, such as CYP2R1, CYP24A1, and the vitamin D receptor (VDR). This study aimed to scrutinize the gene expression profiles in both mRNA and protein levels of VDR, CYP2R1, and CYP24A1 in leukemia and lymphoma patients. METHOD: The research was a cross-sectional study conducted at Cipto Mangunkusumo Hospital (RSCM) in Jakarta, Indonesia. The study included a total of 45 patients aged over 18 years old who have received a diagnosis of lymphoma or leukemia. Vitamin D status was measured by examining serum 25 (OH) D levels. The analysis of VDR, CYP2R1, and CYP24A1 mRNA expression utilized the qRT-PCR method, while protein levels were measured through the ELISA method. CONCLUSION: The study revealed a noteworthy difference in VDR protein levels between men and women. The highest mean CYP24A1 protein levels were observed in the age group > 60 years. This study found a significant, moderately positive correlation between VDR protein levels and CYP24A1 protein levels in the male and vitamin D sufficiency groups. In addition, a significant positive correlation was found between VDR mRNA levels and CYP2R1 mRNA levels, VDR mRNA levels and CYP2R1 mRNA levels, and CYP2R1 mRNA levels and CYP24A1 mRNA levels. However, the expression of these genes does not correlate with the protein levels of its mRNA translation products in blood circulation.


Asunto(s)
Colestanotriol 26-Monooxigenasa , Familia 2 del Citocromo P450 , Leucemia , Linfoma , Receptores de Calcitriol , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Colestanotriol 26-Monooxigenasa/genética , Estudios Transversales , Sistema Enzimático del Citocromo P-450/genética , Familia 2 del Citocromo P450/genética , Perfilación de la Expresión Génica , Leucemia/genética , Leucemia/metabolismo , Linfoma/genética , Linfoma/metabolismo , Receptores de Calcitriol/genética , ARN Mensajero/metabolismo , Vitamina D , Vitamina D3 24-Hidroxilasa/genética , Pueblos del Sudeste Asiático/genética
4.
Support Care Cancer ; 32(4): 220, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467943

RESUMEN

PURPOSE: Leukemias have been associated with oral manifestations, reflecting susceptibility to cancer therapy-induced oral mucositis. We sought to identify SNPs associated with both leukemia and oral mucositis (OM). METHODS: Whole exome sequencing was performed on leukemia and non-cancer blood disorder (ncBD) patients' saliva samples (N = 50) prior to conditioning therapy. WHO OM grading scores were determined: moderate to severe (OM2-4) vs. none to mild (OM0-1). Reads were processed using Trim Galorev0.6.7, Bowtie2v2.4.1, Samtoolsv1.10, Genome Analysis Toolkit (GATK)v4.2.6.1, and DeepVariantv1.4.0. We utilized the following pipelines: P1 analysis with PLINK2v3.7, SNP2GENEv1.4.1 and MAGMAv1.07b, and P2 [leukemia (N = 42) vs. ncBDs (N = 8)] and P3 [leukemia + OM2-4 (N = 18) vs. leukemia + OM0-1 (N = 24)] with Z-tests of genotypes and protein-protein interaction determination. GeneCardsSuitev5.14 was used to identify phenotypes (P1 and P2, leukemia; P3, oral mucositis) and average disease-causing likelihood and DGIdb for drug interactions. P1 and P2 genes were analyzed with CytoScape plugin BiNGOv3.0.3 to retrieve overrepresented Gene Ontology (GO) terms and Ensembl's VEP for SNP outcomes. RESULTS: In P1, 457 candidate SNPs (28 genes) were identified and 21,604 SNPs (1016 genes) by MAGMAv1.07b. Eighteen genes were associated with "leukemia" per VarElectv5.14 analysis and predicted to be deleterious. In P2 and P3, 353 and 174 SNPs were significant, respectively. STRINGv12.0 returned 77 and 32 genes (C.L. = 0.7) for P2 and P3, respectively. VarElectv5.14 determined 60 genes from P2 associated with "leukemia" and 11 with "oral mucositis" from P3. Overrepresented GO terms included "cellular process," "signaling," "hemopoiesis," and "regulation of immune response." CONCLUSIONS: We identified candidate SNPs possibly conferring susceptibility to develop leukemia and oral mucositis.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia , Mucositis , Estomatitis , Humanos , Polimorfismo de Nucleótido Simple , Proyectos Piloto , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Estomatitis/genética , Estomatitis/inducido químicamente , Leucemia/genética , Leucemia/terapia , Leucemia/complicaciones , Terapia Conductista
5.
Leukemia ; 38(5): 1115-1130, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555405

RESUMEN

Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.


Asunto(s)
Proteína de la Leucemia Mieloide-Linfoide , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Humanos , Ratones , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Reordenamiento Génico , Proteómica/métodos , Feto/metabolismo , Adulto , Femenino , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia/genética , Leucemia/patología , Leucemia/metabolismo
6.
RNA Biol ; 21(1): 1-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38329136

RESUMEN

In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.


Asunto(s)
Neoplasias Hematológicas , Leucemia , Humanos , Regulación de la Expresión Génica , ARN/genética , Neoplasias Hematológicas/genética , Leucemia/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
Sci Adv ; 10(8): eadk3127, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394203

RESUMEN

Epigenetic dysregulation has been reported in multiple cancers including leukemias. Nonetheless, the roles of the epigenetic reader Tudor domains in leukemia progression and therapy remain unexplored. Here, we conducted a Tudor domain-focused CRISPR screen and identified SGF29, a component of SAGA/ATAC acetyltransferase complexes, as a crucial factor for H3K9 acetylation, ribosomal gene expression, and leukemogenesis. To facilitate drug development, we integrated the CRISPR tiling scan with compound docking and molecular dynamics simulation, presenting a generally applicable strategy called CRISPR-Scan Assisted Drug Discovery (CRISPR-SADD). Using this approach, we identified a lead inhibitor that selectively targets SGF29's Tudor domain and demonstrates efficacy against leukemia. Furthermore, we propose that the structural genetics approach used in our study can be widely applied to diverse fields for de novo drug discovery.


Asunto(s)
Leucemia , Dominio Tudor , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Acetiltransferasas/metabolismo , Descubrimiento de Drogas , Leucemia/tratamiento farmacológico , Leucemia/genética
8.
J Biomed Sci ; 31(1): 27, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419051

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are pivotal players in cellular processes, and their unique cell-type specific expression patterns render them attractive biomarkers and therapeutic targets. Yet, the functional roles of most lncRNAs remain enigmatic. To address the need to identify new druggable lncRNAs, we developed a comprehensive approach integrating transcription factor binding data with other genetic features to generate a machine learning model, which we have called INFLAMeR (Identifying Novel Functional LncRNAs with Advanced Machine Learning Resources). METHODS: INFLAMeR was trained on high-throughput CRISPR interference (CRISPRi) screens across seven cell lines, and the algorithm was based on 71 genetic features. To validate the predictions, we selected candidate lncRNAs in the human K562 leukemia cell line and determined the impact of their knockdown (KD) on cell proliferation and chemotherapeutic drug response. We further performed transcriptomic analysis for candidate genes. Based on these findings, we assessed the lncRNA small nucleolar RNA host gene 6 (SNHG6) for its role in myeloid differentiation. Finally, we established a mouse K562 leukemia xenograft model to determine whether SNHG6 KD attenuates tumor growth in vivo. RESULTS: The INFLAMeR model successfully reconstituted CRISPRi screening data and predicted functional lncRNAs that were previously overlooked. Intensive cell-based and transcriptomic validation of nearly fifty genes in K562 revealed cell type-specific functionality for 85% of the predicted lncRNAs. In this respect, our cell-based and transcriptomic analyses predicted a role for SNHG6 in hematopoiesis and leukemia. Consistent with its predicted role in hematopoietic differentiation, SNHG6 transcription is regulated by hematopoiesis-associated transcription factors. SNHG6 KD reduced the proliferation of leukemia cells and sensitized them to differentiation. Treatment of K562 leukemic cells with hemin and PMA, respectively, demonstrated that SNHG6 inhibits red blood cell differentiation but strongly promotes megakaryocyte differentiation. Using a xenograft mouse model, we demonstrate that SNHG6 KD attenuated tumor growth in vivo. CONCLUSIONS: Our approach not only improved the identification and characterization of functional lncRNAs through genomic approaches in a cell type-specific manner, but also identified new lncRNAs with roles in hematopoiesis and leukemia. Such approaches can be readily applied to identify novel targets for precision medicine.


Asunto(s)
Leucemia , ARN Largo no Codificante , Animales , Humanos , Ratones , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Genómica , Leucemia/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
J Leukoc Biol ; 115(4): 723-737, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38323674

RESUMEN

The molecular mechanism of COVID-19's pathogenic effects in leukemia patients is still poorly known. Our study investigated the possible disease mechanism of COVID-19 and its associated risk factors in patients with leukemia utilizing differential gene expression analysis. We also employed network-based approaches to identify molecular targets that could potentially diagnose and treat COVID-19-infected leukemia patients. Our study demonstrated a shared set of 60 genes that are expressed differentially among patients with leukemia and COVID-19. Most of these genes are expressed in blood and bone marrow tissues and are predominantly implicated in the pathogenesis of different hematologic malignancies, increasingly imperiling COVID-19 morbidity and mortality among the affected patients. Additionally, we also found that COVID-19 may influence the expression of several cancer-associated genes in leukemia patients, such as CCR7, LEF1, and 13 candidate cancer-driver genes. Furthermore, our findings reveal that COVID-19 may predispose leukemia patients to altered blood homeostasis, increase the risk of COVID-19-related liver injury, and deteriorate leukemia-associated injury and patient prognosis. Our findings imply that molecular signatures, like transcription factors, proteins such as TOP21, and 25 different microRNAs, may be potential targets for diagnosing and treating COVID-19-infected leukemia patients. Nevertheless, additional experimental studies will contribute to further validating the study's findings.


Asunto(s)
COVID-19 , Leucemia , Humanos , COVID-19/genética , Perfilación de la Expresión Génica , Leucemia/genética , Biología Computacional , Factores de Riesgo , Expresión Génica
10.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397092

RESUMEN

Chimeric antigen receptor (CAR)-T-cell therapy has greatly improved outcomes for patients with relapsed or refractory hematological malignancies. However, challenges such as treatment resistance, relapse, and severe toxicity still hinder its widespread clinical application. Traditional transcriptome analysis has provided limited insights into the complex transcriptional landscape of both leukemia cells and engineered CAR-T-cells, as well as their interactions within the tumor microenvironment. However, with the advent of single-cell sequencing techniques, a paradigm shift has occurred, providing robust tools to unravel the complexities of these factors. These techniques enable an unbiased analysis of cellular heterogeneity and molecular patterns. These insights are invaluable for precise receptor design, guiding gene-based T-cell modification, and optimizing manufacturing conditions. Consequently, this review utilizes modern single-cell sequencing techniques to clarify the transcriptional intricacies of leukemia cells and CAR-Ts. The aim of this manuscript is to discuss the potential mechanisms that contribute to the clinical failures of CAR-T immunotherapy. We examine the biological characteristics of CAR-Ts, the mechanisms that govern clinical responses, and the intricacies of adverse events. By exploring these aspects, we hope to gain a deeper understanding of CAR-T therapy, which will ultimately lead to improved clinical outcomes and broader therapeutic applications.


Asunto(s)
Leucemia , Linfoma , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T , Inmunoterapia Adoptiva/métodos , Leucemia/genética , Leucemia/terapia , Linfoma/etiología , Microambiente Tumoral
11.
Genes (Basel) ; 15(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397141

RESUMEN

Reference genes are used as internal reaction controls for gene expression analysis, and for this reason, they are considered reliable and must meet several important criteria. In view of the absence of studies regarding the best reference gene for the analysis of acute leukemia patients, a panel of genes commonly used as endogenous controls was selected from the literature for stability analysis: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Abelson murine leukemia viral oncogene human homolog 1 (ABL), Hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Ribosomal protein lateral stalk subunit P0 (RPLP0), ß-actin (ACTB) and TATA box binding protein (TBP). The stability of candidate reference genes was analyzed according to three statistical methods of assessment, namely, NormFinder, GeNorm and R software (version 4.0.3). From this study's analysis, it was possible to identify that the endogenous set composed of ACTB, ABL, TBP and RPLP0 demonstrated good performances and stable expressions between the analyzed groups. In addition to that, the GAPDH and HPRT genes could not be classified as good reference genes, considering that they presented a high standard deviation and great variability between groups, indicating low stability. Given these findings, this study suggests the main endogenous gene set for use as a control/reference for the gene expression in peripheral blood and bone marrow samples from patients with acute leukemias is composed of the ACTB, ABL, TBP and RPLP0 genes. Researchers may choose two to three of these housekeeping genes to perform data normalization.


Asunto(s)
Perfilación de la Expresión Génica , Leucemia , Ratones , Animales , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Genes Esenciales , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Enfermedad Aguda , Leucemia/genética , Expresión Génica
13.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396779

RESUMEN

Cancer is a leading cause of death globally. The majority of cancer cases are only diagnosed in the late stages of cancer due to the use of conventional methods. This reduces the chance of survival for cancer patients. Therefore, early detection consequently followed by early diagnoses are important tasks in cancer research. Gene expression microarray technology has been applied to detect and diagnose most types of cancers in their early stages and has gained encouraging results. In this paper, we address the problem of classifying cancer based on gene expression for handling the class imbalance problem and the curse of dimensionality. The oversampling technique is utilized to overcome this problem by adding synthetic samples. Another common issue related to the gene expression dataset addressed in this paper is the curse of dimensionality. This problem is addressed by applying chi-square and information gain feature selection techniques. After applying these techniques individually, we proposed a method to select the most significant genes by combining those two techniques (CHiS and IG). We investigated the effect of these techniques individually and in combination. Four benchmarking biomedical datasets (Leukemia-subtypes, Leukemia-ALLAML, Colon, and CuMiDa) were used. The experimental results reveal that the oversampling techniques improve the results in most cases. Additionally, the performance of the proposed feature selection technique outperforms individual techniques in nearly all cases. In addition, this study provides an empirical study for evaluating several oversampling techniques along with ensemble-based learning. The experimental results also reveal that SVM-SMOTE, along with the random forests classifier, achieved the highest results, with a reporting accuracy of 100%. The obtained results surpass the findings in the existing literature as well.


Asunto(s)
Leucemia , Neoplasias , Humanos , Neoplasias/genética , Leucemia/genética , Expresión Génica
14.
Bull Cancer ; 111(3): 291-309, 2024 Mar.
Artículo en Francés | MEDLINE | ID: mdl-38267311

RESUMEN

The spectrum of childhood leukemia predisposition syndromes has grown significantly over last decades. These predisposition syndromes mainly involve CEBPA, ETV6, GATA2, IKZF1, PAX5, RUNX1, SAMD9/SAMD9L, TP53, RAS-MAPK pathway, DNA mismatch repair system genes, genes associated with Fanconi anemia, and trisomy 21. The clinico-biological features leading to the suspicion of a leukemia predisposition are highly heterogeneous and require varied exploration strategies. The study of the initial characteristics of childhood leukemias includes high-throughput sequencing techniques, which have increased the frequency of situations where a leukemia predisposing syndrome is suspected. Identification of a leukemia predisposition syndrome can have a major impact on the choice of chemotherapy, the indication for hematopoietic stem cell transplantation, and screening for associated malformations and pathologies. The diagnosis of a predisposition syndrome can also lead to the exploration of family members and genetic counseling. Diagnosis and management should be based on dedicated and multidisciplinary care networks.


Asunto(s)
Síndrome de Down , Leucemia , Neoplasias , Niño , Humanos , Leucemia/diagnóstico , Leucemia/genética , Leucemia/terapia , Familia , Predisposición Genética a la Enfermedad , Péptidos y Proteínas de Señalización Intracelular
16.
Mol Pharm ; 21(3): 1436-1449, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38291705

RESUMEN

Small interfering RNAs (siRNAs) have emerged as a powerful tool to manipulate gene expression in vitro. However, their potential therapeutic application encounters significant challenges, such as degradation in vivo, limited cellular uptake, and restricted biodistribution, among others. This study evaluates the siRNA delivery efficiency of three different lipid-substituted polyethylenimine (PEI)-based carriers, named Leu-Fect A-C, to different organs in vivo, including xenograft tumors, when injected into the bloodstream of mice. The siRNA analysis was undertaken by stem-loop RT-PCR, followed by qPCR or digital droplet PCR. Formulating siRNAs with a Leu-Fect series of carriers generated nanoparticles that effectively delivered the siRNAs into K652 and MV4-11 cells, both models of leukemia. The Leu-Fect carriers were able to successfully deliver BCR-Abl and FLT3 siRNAs into leukemia xenograft tumors in mice. All three carriers demonstrated significantly enhanced siRNA delivery into organs other than the liver, including the xenograft tumors. Preferential biodistribution of siRNAs was observed in the lungs and spleen. Among the delivery systems, Leu-Fect A exhibited the highest biodistribution into organs. In conclusion, lipid-substituted PEI-based delivery systems offer improvements in addressing pharmacokinetic challenges associated with siRNA-based therapies, thus opening avenues for their potential translation into clinical practice.


Asunto(s)
Leucemia , Neoplasias , Humanos , Ratones , Animales , ARN Interferente Pequeño/genética , Polietileneimina , Distribución Tisular , Leucemia/genética , Leucemia/terapia , Lípidos
17.
Methods Mol Biol ; 2773: 1-7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38236531

RESUMEN

Murine stem cell transplantation is a well-established method for the in vivo study of leukemic pathophysiology. Adoptive transfer of murine leukemic cells into lethally irradiated recipient mice leads to reconstitution of the hematopoietic system with malignant cells and eventually to leukemic progression in the recipient mice. Here, we describe the detailed protocol of the production of retroviral particles carrying the leukemic oncogene of interest as well as the isolation, retroviral transduction, and adoptive transfer of murine bone marrow cells.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia , Animales , Ratones , Trasplante de Células Madre , Leucemia/genética , Leucemia/terapia , Traslado Adoptivo , Células de la Médula Ósea
18.
Int J Biol Macromol ; 255: 128305, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992942

RESUMEN

Leukemia is a type of malignant hematological disease that is generally resistant to chemotherapy and has poor therapeutic outcomes. Werner (WRN) DNA helicase, an important member of the RecQ family of helicases, plays an important role in DNA repair and telomere stability maintenance. WRN gene dysfunction leads to premature aging and predisposes humans to various types of cancers. However, the biological function of WRN in cancer remains unknown. In this study, the expression of this RecQ family helicase was investigated in different types of leukemia cells, and the leukemia cell line K562 with high WRN expression was selected to construct a WRN knockdown cell line. The results showed that WRN knockdown inhibited leukemia occurrence and development by regulating the proliferation, cell cycle, differentiation, and aging of cells and other biological processes. The results of transcriptome sequencing revealed that WRN promoted the sensitivity of leukemia cells to the DNA damage inducer Etoposide by regulating cell cycle-related proteins, such as CDC2, cyclin B1, p16, and p21, as well as key proteins in DNA damage repair pathways, such as p53, RAD50, RAD51, and MER11. Our findings show that WRN helicase is a promising potential target for leukemia treatment, providing new ideas for the development of targeted drugs against leukemia.


Asunto(s)
Exodesoxirribonucleasas , Leucemia , Humanos , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Ciclo Celular/genética , Reparación del ADN , Daño del ADN , Leucemia/genética
19.
Cancer Res ; 84(4): 577-597, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967363

RESUMEN

RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE: Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.


Asunto(s)
Leucemia , Empalmosomas , Humanos , Empalmosomas/genética , Estructuras R-Loop , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN , Leucemia/tratamiento farmacológico , Leucemia/genética , Factores de Empalme de ARN/genética , Poli(ADP-Ribosa) Polimerasa-1/genética
20.
Chromosoma ; 133(1): 77-92, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256347

RESUMEN

Chromosome gains or losses often lead to copy number variations (CNV) and loss of heterozygosity (LOH). Both quantities are low in hematologic "liquid" cancers versus solid tumors in data of The Cancer Genome Atlas (TCGA) that also shows the fraction of a genome affected by LOH is ~ one-half of that with CNV. Suspension cultures of p53-null THP-1 leukemia-derived cells conform to these trends, despite novel evidence here of genetic heterogeneity and transiently elevated CNV after perturbation. Single-cell DNAseq indeed reveals at least 8 distinct THP-1 aneuploid clones with further intra-clonal variation, suggesting ongoing genetic evolution. Importantly, acute inhibition of the mitotic spindle assembly checkpoint (SAC) produces CNV levels that are typical of high-CNV solid tumors, with subsequent cell death and down-selection to novel CNV. Pan-cancer analyses show p53 inactivation associates with aneuploidy, but leukemias exhibit a weaker trend even though p53 inactivation correlates with poor survival. Overexpression of p53 in THP-1 does not rescue established aneuploidy or LOH but slightly increases cell death under oxidative or confinement stress, and triggers p21, a key p53 target, but without affecting net growth. Our results suggest that factors other than p53 exert stronger pressures against aneuploidy in liquid cancers, and identifying such CNV suppressors could be useful across liquid and solid tumor types.


Asunto(s)
Leucemia , Neoplasias , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Variaciones en el Número de Copia de ADN , Heterogeneidad Genética , Aneuploidia , Neoplasias/genética , Neoplasias/metabolismo , Leucemia/genética , Leucemia/metabolismo , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...