Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Biomed Pharmacother ; 173: 116351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422660

RESUMEN

Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve. We also demonstrated that the autophagy inducer Rapamycin (RAPA) can partially reinstate the wild type (WT) phenotype in KD primary cells by decreasing the number of p62 aggregates. In this study, we tested RAPA in the Twitcher (TWI) mouse, a spontaneous KD mouse model. We administered the drug ad libitum via drinking water (15 mg/L) starting from post-natal day (PND) 21-23. We longitudinally monitored the mouse motor performance through grip strength and rotarod tests, and a set of biochemical parameters related to the KD pathogenesis (i.e. autophagy markers expression, PSY accumulation, astrogliosis and myelination). Our findings demonstrate that RAPA significantly enhances motor functions at specific treatment time points and reduces astrogliosis in TWI brain, spinal cord, and sciatic nerves. Utilizing western blot and immunohistochemistry, we observed a decrease in p62 aggregates in TWI nervous tissues, corroborating our earlier in-vitro results. Moreover, RAPA treatment partially removes PSY in the spinal cord. In conclusion, our results advocate for considering RAPA as a supportive therapy for KD. Notably, as RAPA is already available in pharmaceutical formulations for clinical use, its potential for KD treatment can be rapidly evaluated in clinical trials.


Asunto(s)
Agua Potable , Leucodistrofia de Células Globoides , Animales , Ratones , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Sirolimus/farmacología , Gliosis , Modelos Animales de Enfermedad , Psicosina/metabolismo , Fenotipo , Autofagia
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 215-220, 2024 Feb 10.
Artículo en Chino | MEDLINE | ID: mdl-38311562

RESUMEN

OBJECTIVE: To explore the clinical features and genetic etiology of a patient with Adult-onset globoid cell leukodystrophy/Krabbe disease (KD). METHODS: A patient who was admitted to the Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology on February 15, 2022 due to exacerbation of right leg weakness for over 4 years was selected as the study subject. Clinical data and results of medical imaging and genetic analysis were analyzed. Candidate variants were verified by family analysis. RESULTS: The patient, a 36-year-old woman, had spasmodic gait as the primary presentation. Cranial magnetic resonance imaging (MRI) revealed symmetrical abnormalities in the bilateral corticospinal tracts, and the activity of ß-galactocerebrosidase (GALC) in her white blood cells was significantly decreased. The patient was found to harbor compound heterozygous variants of the GALC gene, namely c.461C>A (p.Pro154His) and c.1901T>C (p.Leu634Ser). Her mother, sister and nephew were heterozygous carriers of the c.461C>A (p.Pro154His) variant, whilst her father was heterozygous for the c.1901T>C (p.Leu634Ser) variant. CONCLUSION: The patient was ultimately diagnosed with adult-onset KD, for which the compound heterozygous variants of the GALC gene may be accountable.


Asunto(s)
Leucodistrofia de Células Globoides , Humanos , Adulto , Femenino , Leucodistrofia de Células Globoides/genética , Galactosilceramidasa/genética , Imagen por Resonancia Magnética , Hermanos , Madres , Mutación
3.
Dev Growth Differ ; 66(1): 21-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239149

RESUMEN

Inherited leukodystrophies are genetic disorders characterized by abnormal white matter in the central nervous system. Although individually rare, there are more than 400 distinct types of leukodystrophies with a cumulative incidence of 1 in 4500 live births. The pathophysiology of most leukodystrophies is poorly understood, there are treatments for only a few, and there is significant morbidity and mortality, suggesting a critical need for improvements in this field. A variety of animal, cell, and induced pluripotent stem cell-derived models have been developed for leukodystrophies, but with significant limitations in all models. Many leukodystrophies lack animal models, and extant models often show no or mixed recapitulation of key phenotypes. Zebrafish (Danio rerio) have become increasingly used as disease models for studying leukodystrophies due to their early onset of disease phenotypes and conservation of molecular and neurobiological mechanisms. Here, we focus on reviewing new zebrafish disease models for leukodystrophy or models with recent progress. This includes discussion of leukodystrophy with vanishing white matter disease, X-linked adrenoleukodystrophy, Zellweger spectrum disorders and peroxisomal disorders, PSAP deficiency, metachromatic leukodystrophy, Krabbe disease, hypomyelinating leukodystrophy-8/4H leukodystrophy, Aicardi-Goutières syndrome, RNASET2-deficient cystic leukoencephalopathy, hereditary diffuse leukoencephalopathy with spheroids-1 (CSF1R-related leukoencephalopathy), and ultra-rare leukodystrophies. Zebrafish models offer important potentials for the leukodystrophy field, including testing of new variants in known genes; establishing causation of newly discovered genes; and early lead compound identification for therapies. There are also unrealized opportunities to use humanized zebrafish models which have been sparsely explored.


Asunto(s)
Adrenoleucodistrofia , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Leucoencefalopatías , Animales , Pez Cebra/genética , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Adrenoleucodistrofia/genética , Leucoencefalopatías/terapia
4.
Mol Ther ; 32(1): 44-58, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37952085

RESUMEN

Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucodistrofia de Células Globoides , Perros , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Galactosilceramidasa/genética , Psicosina , Trasplante de Células Madre Hematopoyéticas/métodos , Terapia Genética/métodos , Modelos Animales de Enfermedad
5.
Adv Drug Deliv Rev ; 203: 115132, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918668

RESUMEN

The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades por Almacenamiento Lisosomal , Humanos , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Nanomedicina , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico
6.
Biomolecules ; 13(10)2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37892244

RESUMEN

Krabbe disease is a rare neurodegenerative disease with an autosomal recessive character caused by a mutation in the GALC gene. The mutation leads to an accumulation of psychosine and a subsequent degeneration of oligodendrocytes and Schwann cells. Psychosine is the main biomarker of the disease. The Twitcher mouse is the most commonly used animal model to study Krabbe disease. Although there are many references to this model in the literature, the lipidomic study of nervous system tissues in the Twitcher model has received little attention. This study focuses on the comparison of the lipid profiles of four nervous system tissues (brain, cerebellum, spinal cord, and sciatic nerve) in the Twitcher mouse compared to the wild-type mouse. Altogether, approximately 230 molecular species belonging to 19 lipid classes were annotated and quantified. A comparison at the levels of class, molecular species, and lipid building blocks showed significant differences between the two groups, particularly in the sciatic nerve. The in-depth study of the lipid phenotype made it possible to hypothesize the genes and enzymes involved in the changes. The integration of metabolic data with genetic data may be useful from a systems biology perspective to gain a better understanding of the molecular basis of the disease.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades Neurodegenerativas , Ratones , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Psicosina/metabolismo , Modelos Animales de Enfermedad , Lipidómica , Enfermedades Neurodegenerativas/metabolismo , Encéfalo/metabolismo
7.
J Vet Intern Med ; 37(5): 1710-1715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593836

RESUMEN

BACKGROUND: Globoid cell leukodystrophy (GCL) is a fatal autosomal recessive disease caused by variants in the galactosylceramidase (GALC) gene. Two dog breed-specific variants are reported. OBJECTIVES: Characterize the putatively causative GALC variant for GCL in a family of dogs and determine population allele frequency. ANIMALS: Four related mixed-breed puppies with signs of neurologic disease were evaluated. Subsequently, 33 related dogs were tested for genetic markers for parentage and the identified GALC variant. Additional GALC genotyping was performed on 278 banked samples from various breeds. METHODS: The 4 affected puppies had neurological exams and necropsies. DNA was isolated from blood samples. Variants in GALC were identified via Sanger sequencing. Parentage testing was performed using short tandem repeat markers. Prevalence of the GALC variant of interest was investigated in other breeds. RESULTS: GCL was confirmed histopathologically. A novel missense variant in GALC (NC_006590.4:g.58893972G>A) was homozygous in all affected animals (n = 4). A recessive mode of inheritance was confirmed by parentage testing as was variant linkage with the phenotype (LOD = 3.36). Among the related dogs (n = 33), 3 dogs were homozygous and 7 heterozygous. The variant allele was not detected in screening 278 dogs from 5 breeds. The novel variant is either unique to this family or has an extremely low allele frequency in the general population. CONCLUSIONS AND CLINICAL IMPORTANCE: A novel GALC variant was identified that likely explains GCL in this cohort. The identification of multiple causal variants for GCL in dogs is consistent with findings in humans.


Asunto(s)
Enfermedades de los Perros , Leucodistrofia de Células Globoides , Humanos , Perros , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/veterinaria , Galactosilceramidasa/genética , ADN , Frecuencia de los Genes , Homocigoto , Enfermedades de los Perros/genética
8.
Genes (Basel) ; 14(8)2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37628569

RESUMEN

Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken ß-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.


Asunto(s)
Leucodistrofia de Células Globoides , Sustancia Blanca , Animales , Ratones , Galactosilceramidasa , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Psicosina , Longevidad/genética , Hidrolasas , Prosencéfalo , Peso Corporal
9.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37310382

RESUMEN

Globoid cell leukodystrophy (GLD) or Krabbe's disease is a fatal genetic demyelinating disease of the central nervous system caused by loss-of-function mutations in the galactosylceramidase (galc) gene. While the metabolic basis for disease is known, the understanding of how this results in neuropathology is not well understood. Herein, we report that the rapid and protracted elevation of CD8+ cytotoxic T lymphocytes occurs coincident with clinical disease in a mouse model of GLD. Administration of a function-blocking antibody against CD8α effectively prevented disease onset, reduced morbidity and mortality, and prevented CNS demyelination in mice. These data indicate that subsequent to the genetic cause of disease, neuropathology is driven by pathogenic CD8+ T cells, thus offering novel therapeutic potential for treatment of GLD.


Asunto(s)
Leucodistrofia de Células Globoides , Animales , Ratones , Leucodistrofia de Células Globoides/genética , Sistema Nervioso Central , Modelos Animales de Enfermedad , Anticuerpos Bloqueadores , Linfocitos T CD8-positivos
10.
J Neurochem ; 166(4): 720-746, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37337846

RESUMEN

Krabbe disease is an inherited demyelinating disease caused by a genetic deficiency of the lysosomal enzyme galactosylceramide (GalCer) ß-galactosidase (GALC). The Twitcher (Twi) mouse is a naturally occurring, genetically and enzymatically authentic mouse model that mimics infantile-onset Krabbe disease. The major substrate for GALC is the myelin lipid GalCer. However, the pathogenesis of Krabbe disease has long been explained by the accumulation of psychosine, a lyso-derivative of GalCer. Two metabolic pathways have been proposed for the accumulation of psychosine: a synthetic pathway in which galactose is transferred to sphingosine and a degradation pathway in which GalCer is deacylated by acid ceramidase (ACDase). Saposin-D (Sap-D) is essential for the degradation of ceramide by ACDase in lysosome. In this study, we generated Twi mice with a Sap-D deficiency (Twi/Sap-D KO), which are genetically deficient in both GALC and Sap-D and found that very little psychosine accumulated in the CNS or PNS of the mouse. As expected, demyelination with the infiltration of multinucleated macrophages (globoid cells) characteristic of Krabbe disease was milder in Twi/Sap-D KO mice than in Twi mice both in the CNS and PNS during the early disease stage. However, at the later disease stage, qualitatively and quantitatively comparable demyelination occurred in Twi/Sap-D KO mice, particularly in the PNS, and the lifespans of Twi/Sap-D KO mice were even shorter than that of Twi mice. Bone marrow-derived macrophages from both Twi and Twi/Sap-D KO mice produced significant amounts of TNF-α upon exposure to GalCer and were transformed into globoid cells. These results indicate that psychosine in Krabbe disease is mainly produced via the deacylation of GalCer by ACDase. The demyelination observed in Twi/Sap-D KO mice may be mediated by a psychosine-independent, Sap-D-dependent mechanism. GalCer-induced activation of Sap-D-deficient macrophages/microglia may play an important role in the neuroinflammation and demyelination in Twi/Sap-D KO mice.


Asunto(s)
Leucodistrofia de Células Globoides , Ratones , Animales , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Saposinas/genética , Psicosina/metabolismo , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Modelos Animales de Enfermedad
11.
BMC Genomics ; 24(1): 210, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076788

RESUMEN

BACKGROUND: Globoid cell leukodystrophy (GLD) is a devastating neurodegenerative disease characterized by widespread demyelination caused by galactocerebrosidase defects. Changes in GLD pathogenesis occurring at the molecular level have been poorly studied in human-derived neural cells. Patient-derived induced pluripotent stem cells (iPSCs) are a novel disease model for studying disease mechanisms and allow the generation of patient-derived neuronal cells in a dish. RESULTS: In this study, we identified gene-expression changes in iPSCs and iPSC-derived neural stem cells (NSCs) from a patient with GLD (K-iPSCs/NSCs) and normal control (AF-iPSCs/NSCs), in order to investigate the potential mechanism underlying GLD pathogenesis. We identified 194 (K-iPSCs vs. AF-iPSCs) and 702 (K-NSCs vs. AF-NSCs) significantly dysregulated mRNAs when comparing the indicated groups. We also identified dozens of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway terms that were enriched for the differentially expressed genes. Among them, 25 differentially expressed genes identified by RNA-sequencing analysis were validated using real-time quantitative polymerase chain reaction analysis. Dozens of pathways involved in neuroactive ligand-receptor interactions, synaptic vesicle cycle signaling, serotonergic synapse signaling, phosphatidylinositol-protein kinase B signaling, and cyclic AMP signaling were identified as potential contributors to GLD pathogenesis. CONCLUSIONS: Our results correspond to the fact that mutations in the galactosylceramidase gene may disrupt the identified signaling pathways during neural development, suggesting that alterations in signaling pathways contribute to GLD pathogenesis. At the same time, our results demonstrates that the model based on K-iPSCs is a novel tool that can be used to study the underlying molecular basis of GLD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucodistrofia de Células Globoides , Células-Madre Neurales , Enfermedades Neurodegenerativas , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Perfilación de la Expresión Génica
12.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983059

RESUMEN

Autophagic impairment was identified in many lysosomal storage diseases and adult neurodegenerative diseases. It seems that this defect could be directly related to the appearance of a neurodegenerative phenotype and could contribute to worsen metabolite accumulation and lysosomal distress. Thus, autophagy is becoming a promising target for supportive therapies. Autophagy alterations were recently identified also in Krabbe disease. Krabbe disease is characterized by extensive demyelination and dysmyelination and it is due to the genetic loss of function of the lysosomal enzyme galactocerebrosidase (GALC). This enzyme leads to the accumulation of galactosylceramide, psychosine, and secondary substrates such as lactosylceramide. In this paper, we induced autophagy through starvation and examined the cellular response occurring in fibroblasts isolated from patients. We demonstrated that the inhibitory AKT-mediated phosphorylation of beclin-1 and the BCL2-beclin-1 complex concur to reduce autophagosomes formation in response to starvation. These events were not dependent on the accumulation of psychosine, which was previously identified as a possible player in autophagic impairment in Krabbe disease. We believe that these data could better elucidate the capability of response to autophagic stimuli in Krabbe disease, in order to identify possible molecules able to stimulate the process.


Asunto(s)
Leucodistrofia de Células Globoides , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Psicosina , Fosforilación , Autofagia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
Hum Mol Genet ; 32(8): 1361-1379, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36519759

RESUMEN

Infantile Krabbe disease is a rapidly progressive and fatal disorder of myelin, caused by inherited deficiency of the lysosomal enzyme ß-galactocerebrosidase. Affected children lose their motor skills and other faculties; uncontrolled seizures are a frequent terminal event. Overexpression of the sphingolipid metabolite psychosine is a pathogenic factor, but does not fully account for the pleiotropic manifestations and there is a clear need to investigate additional pathological mechanisms. We examined innate immunity, caspase-11 and associated inflammatory pathways in twitcher mice, an authentic model of Krabbe disease. Combined use of molecular tools, RNAscope in situ hybridization and immunohistochemical staining established that the expression of pro-inflammatory non-canonical caspase-11, canonical caspase-1, gasdermin D and cognate genes is induced in nervous tissue. Early onset and progressive upregulation of these genes accompany demyelination and gliosis and although the molecules are scant in healthy tissue, abundance of the respective translation products is greatly increased in diseased animals. Caspase-11 is found in reactive microglia/macrophages as well as astrocytes but caspase-1 and gasdermin D are restricted to reactive microglia/macrophages. The inflammasome signature is not unique to Krabbe disease; to varying degrees, this signature is also prominent in other lysosomal diseases, Sandhoff and Niemann-Pick Type-C1, and the lysolecithin toxin model of focal demyelination. Given the potent inflammatory response here identified in Krabbe disease and the other neurodegenerative disorders studied, a broad induction of inflammasomes is likely to be a dominant factor in the pathogenesis, and thus represents a platform for therapeutic exploration.


Asunto(s)
Leucodistrofia de Células Globoides , Ratones , Animales , Leucodistrofia de Células Globoides/genética , Inflamasomas/metabolismo , Regulación hacia Arriba , Gasderminas , Modelos Animales de Enfermedad , Psicosina/metabolismo , Psicosina/farmacología , Caspasas/metabolismo
15.
Mol Ther ; 31(1): 7-23, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36196048

RESUMEN

Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades por Almacenamiento Lisosomal , Niño , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Leucodistrofia de Células Globoides/patología , Terapia Combinada , Mutación , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/terapia
16.
Curr Probl Pediatr Adolesc Health Care ; 52(12): 101311, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36470810

RESUMEN

Leukodystrophies are defined as differences in normal myelin development and maintenance in the central nervous system. They typically present as white matter imaging abnormalities in young children with delayed developmental milestones. As the scientific community begins to better understand and research the mechanisms underlying leukodystrophies, clinical trials and approved therapies for specific disorders are becoming available. These interventions, ranging from repurposing of existing small molecules to recently approved gene therapies, are highly dependent on early diagnosis. It is essential for pediatricians to identify affected individuals promptly, but they face challenges including lack of awareness of the disorders and nonspecific symptom presentation (e.g., cognitive or motor developmental delay). This review provides five hypothetical clinical presentations and describes the disease mechanisms, typical symptoms, and treatments currently available for common leukodystrophies: Krabbe Disease, Aicardi Goutières Syndrome (AGS), Metachromatic leukodystrophy (MLD), Alexander Disease (AxD), Pelizaeus-Merzbacher Disease (PMD), and X-Linked Adrenoleukodystrophy (X-ALD.) This review educates pediatricians to recognize the presentation of leukodystrophies in affected children. These clinical vignettes can serve as a framework for pediatricians to identify potentially treatable rare disorders among their patients.


Asunto(s)
Adrenoleucodistrofia , Enfermedades Autoinmunes del Sistema Nervioso , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Malformaciones del Sistema Nervioso , Niño , Humanos , Preescolar , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética
17.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362324

RESUMEN

Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system (NS). KD shares some similar features with other neuropathies and heterozygous carriers of GALC mutations are emerging with an increased risk in developing NS disorders. In this work, we set out to identify possible variations in the proteomic profile of KD-carrier brain to identify altered pathways that may imbalance its homeostasis and that may be associated with neurological disorders. The differential analysis performed on whole brains from 33-day-old twitcher (galc -/-), heterozygous (galc +/-), and wild-type mice highlighted the dysregulation of several multifunctional factors in both heterozygous and twitcher mice. Notably, the KD-carrier mouse, despite its normal phenotype, presents the deregulation of vimentin, receptor of activated protein C kinase 1 (RACK1), myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), transitional endoplasmic reticulum ATPase (VCP), and N-myc downstream regulated gene 1 protein (NDRG1) as well as changes in the ubiquitinated-protein pattern. Our findings suggest the carrier may be affected by dysfunctions classically associated with neurodegeneration: (i) alteration of (mechano) signaling and intracellular trafficking, (ii) a generalized affection of proteostasis and lipid metabolism, with possible defects in myelin composition and turnover, and (iii) mitochondrion and energy supply dysfunctions.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades Neurodegenerativas , Animales , Ratones , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Proteómica , Modelos Animales de Enfermedad , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo
18.
Pathol Int ; 72(11): 558-565, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36200664

RESUMEN

Krabbe disease is a lysosomal storage disease caused by a deficiency of the galactocerebrosidase (GALC) enzyme, which leads to demyelination of the central and peripheral nervous systems. Almost all patients with Krabbe disease are infants, and this is the first report of adult-onset cases that describe pathological findings. Here, we present two autopsy cases: a 73-year-old female and a 2-year-old male. The adult-onset case developed symptoms in her late thirties and was diagnosed by the identification of GALC D528N and L634S mutations and by T2-weighted magnetic resonance imaging; she had increased signal in the white matter along the pyramidal tract to the bilateral precentral gyrus, as well as from the triangular part to the posterior horn of the lateral ventricle. Microscopically, Klüver-Barrera staining was pale in the white matter of the precentral gyrus and occipito-thalamic radiation, and a few globoid cells were observed. The GALC mutations that were identified in the present adult-onset case do not completely inactivate GALC enzyme activity, resulting in focal demyelination of the brain.


Asunto(s)
Leucodistrofia de Células Globoides , Humanos , Adulto , Lactante , Masculino , Femenino , Anciano , Preescolar , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Autopsia , Galactosilceramidasa/genética , Mutación , Imagen por Resonancia Magnética
19.
J Peripher Nerv Syst ; 27(4): 320-324, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36057781

RESUMEN

Krabbe disease is a rare autosomal recessive neurodegenerative disease, caused by mutations in the GALC gene, which encodes for the lysosomal enzyme galactocerebrosidase. Typical clinical manifestations of Krabbe include psychomotor deterioration, visual loss, seizures, and spasticity, that result from central nervous system demyelination. We report a case of a 35-year-old male with Krabbe who presented in adulthood with isolated severe, upper extremity predominant demyelinating sensorimotor polyneuropathy and did not develop other distinguishing clinical or radiological features of Krabbe until the later stages of the disease. The patient's diagnostic odyssey lasted 13 years from presentation to diagnosis, which was ultimately determined with the use of whole exome sequencing (WES) at the age of 48 years. The expanding phenotypic spectrum of adult-onset Krabbe Disease (AOKD) presents a diagnostic challenge that can lead to diagnostic delays and potentially affect treatment options. Our patient's case underscores the importance of pursuing WES in those with undiagnosed progressive neuromuscular disorders.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades Neurodegenerativas , Polineuropatías , Adulto , Masculino , Humanos , Persona de Mediana Edad , Leucodistrofia de Células Globoides/complicaciones , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Galactosilceramidasa , Mutación
20.
Neurobiol Dis ; 174: 105862, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113749

RESUMEN

Krabbe Disease (KD) is an autosomal recessive disorder that results from loss-of-function mutations in the GALC gene, which encodes lysosomal enzyme galactosylceramidase (GALC). Functional deficiency of GALC is toxic to myelin-producing cells, which leads to progressive demyelination in both the central and peripheral nervous systems. It is hypothesized that accumulation of psychosine, which can only be degraded by GALC, is a primary initiator of pathologic cascades. Despite the central role of GALC in KD pathomechanism, investigations of GALC deficiency at a protein level are largely absent, due in part, to the lack of sensitive antibodies in the field. Leveraging two custom antibodies that can detect GALC at endogenous levels, we demonstrated that GALC protein is predominantly localized to oligodendrocytes in cerebral white matter of an infant brain, consistent with its functional role in myelination. Mature GALC could also be quantitatively detected as a 26 kDa band by western blotting and correlated to enzyme activity in brain tissues. The p.Ile562Thr polymorphic variant, which is over-represented in the KD population, was associated with reduced mature GALC protein and activity. In three infantile KD cases, homozygous null mutations in GALC lead to deficiency in total GALC protein and activity. Interestingly, although GALC activity was absent, normal levels of total GALC protein were detected by a sandwich ELISA using our custom antibodies in a later-onset KD brain, which suggests that the assay has the potential to differentiate infantile- and later-onset KD cases. Among the infantile KD cases, we quantified a 5-fold increase in psychosine levels, and observed increased levels of acid ceramidase, a key enzyme for psychosine production, and hyperglycosylated lysosomal-associated membrane protein 1, a marker for lysosomal activation, in periventricular white matter, a major pathological brain region, when compared with age-matched normal controls. While near complete demyelination was observed in these cases, we quantified that an early-infantile case (age of death at 10 months) had about 3-fold increases in both globoid cells, a pathological hallmark for KD, and CD8-positive T lymphocytes, a pathological marker for multiple sclerosis, in the white matter when compared with a slower progressing infantile case (age of death at 21 months), which suggests a positive correlation between clinical severity and neuropathology. Taken together, our findings have advanced the understanding of GALC protein biology in the context of normal and KD brain white matter. We also revealed new neuropathological changes that may provide insights to understand KD pathogenesis.


Asunto(s)
Leucodistrofia de Células Globoides , Sustancia Blanca , Humanos , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Psicosina/metabolismo , Sustancia Blanca/patología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...