Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33637573

RESUMEN

In many bacteria, cyclic diguanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclase (DGC), serves as a second messenger involved in the regulation of biofilm formation. Although studies have suggested that c-di-GMP also regulates the formation of electrochemically active biofilms (EABFs) by Shewanella oneidensis MR-1, DGCs involved in this process remained to be identified. Here, we report that the SO_1646 gene, hereafter named dgcS, is upregulated under medium flow conditions in electrochemical flow cells (EFCs), and its product (DgcS) functions as a major DGC in MR-1. In vitro assays demonstrated that purified DgcS catalyzed the synthesis of c-di-GMP from GTP. Comparisons of intracellular c-di-GMP levels in the wild-type strain and a dgcS deletion mutant (ΔdgcS mutant) showed that production of c-di-GMP was markedly reduced in the ΔdgcS mutant when cells were grown in batch cultures and on electrodes in EFCs. Cultivation of the ΔdgcS mutant in EFCs also revealed that the loss of DgcS resulted in impaired biofilm formation and decreased current generation. These findings demonstrate that MR-1 uses DgcS to synthesize c-di-GMP under medium flow conditions, thereby activating biofilm formation on electrodes.IMPORTANCE Bioelectrochemical systems (BESs) have attracted wide attention owing to their utility in sustainable biotechnology processes, such as microbial fuel cells and electrofermentation systems. In BESs, electrochemically active bacteria (EAB) form biofilms on electrode surfaces, thereby serving as effective catalysts for the interconversion between chemical and electric energy. It is therefore important to understand mechanisms for the formation of biofilm by EAB grown on electrodes. Here, we show that a model EAB, S. oneidensis MR-1, expresses DgcS as a major DGC, thereby activating the formation of biofilms on electrodes via c-di-GMP-dependent signal transduction cascades. The findings presented herein provide the molecular basis for improving electrochemical interactions between EAB and electrodes in BESs. The results also offer molecular insights into how Shewanella regulates biofilm formation on solid surfaces in the natural environment.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas , Proteínas de Escherichia coli/fisiología , Liasas de Fósforo-Oxígeno/fisiología , Shewanella/fisiología , Proteínas Bacterianas/genética , Fuentes de Energía Bioeléctrica , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Electrodos/microbiología , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , Shewanella/genética
2.
Microbiol Res ; 202: 61-70, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28647124

RESUMEN

The hallmark of the lifecycle of Vibrio cholerae is its ability to switch between two lifestyles - the sessile, non-pathogenic form and the motile, infectious form in human hosts. One of these changes is in the formation of surface biofilms, when in sessile aquatic habitats. The cell-cell interactions within a V. cholerae biofilm are stabilized by the production of an exopolysachharide (EPS) matrix, which in turn is regulated by the ubiquitous secondary messenger, cyclic di-GMP (c-di-GMP), synthesized by proteins containing GGD(/E)EF domains in all prokaryotic systems. Here, we report the functional role of the VC0395_0300 protein (Sebox3) encoded by the chromosome I of V. cholerae, with a GGEEF signature sequence, in the formation of surface biofilms. In our study, we have shown that Escherichia coli containing the full-length Sebox3 displays enhanced biofilm forming ability with cellulose production as quantified and visualized by multiple assays, most notably using FEG-SEM. This has also been corroborated with the lack of motility of host containing Sebox3 in semi-solid media. Searching for the reasons for this biofilm formation, we have demonstrated in vitro that Sebox3 can synthesize c-di-GMP from GTP. The homology derived model of Sebox3 displayed significant conservation of the GGD(/E)EF architecture as well. Hence, we propose that the putative protein VC0395_0300 from V. cholerae is a diguanylate cyclase which has an active role in biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/fisiología , Liasas de Fósforo-Oxígeno/fisiología , Vibrio cholerae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Secuencia de Bases , Celulosa/metabolismo , Clonación Molecular , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , ADN Bacteriano , Pruebas de Enzimas , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Guanosina Trifosfato/metabolismo , Locomoción , Microscopía Electrónica de Rastreo , Modelos Moleculares , Estructura Molecular , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Proteínas Recombinantes , Homología de Secuencia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
3.
Nucleic Acids Res ; 44(22): 10824-10833, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27683219

RESUMEN

Rev1 is a member of the Y-family of DNA polymerases and is known for its deoxycytidyl transferase activity that incorporates dCMP into DNA and its ability to function as a scaffold factor for other Y-family polymerases in translesion bypass events. Rev1 also is involved in mutagenic processes during somatic hypermutation of immunoglobulin genes. In light of the mutation pattern consistent with dCMP insertion observed earlier in mouse fibroblast cells treated with a base excision repair-inducing agent, we questioned whether Rev1 could also be involved in base excision repair (BER). Here, we uncovered a weak 5'-deoxyribose phosphate (5'-dRP) lyase activity in mouse Rev1 and demonstrated the enzyme can mediate BER in vitro The full-length Rev1 protein and its catalytic core domain are similar in their ability to support BER in vitro The dRP lyase activity in both of these proteins was confirmed by NaBH4 reduction of the Schiff base intermediate and kinetics studies. Limited proteolysis, mass spectrometry and deletion analysis localized the dRP lyase active site to the C-terminal segment of Rev1's catalytic core domain. These results suggest that Rev1 could serve as a backup polymerase in BER and could potentially contribute to AID-initiated antibody diversification through this activity.


Asunto(s)
Reparación del ADN , Nucleotidiltransferasas/fisiología , Secuencia de Aminoácidos , Animales , Dominio Catalítico , ADN Polimerasa Dirigida por ADN , Cinética , Ratones , Nucleotidiltransferasas/química , Mapeo Peptídico , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/fisiología , Proteolisis
4.
Biochim Biophys Acta ; 1864(7): 835-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27083533

RESUMEN

Biofilm-associated infections are hard to treat because of their high antibiotic resistance and the presence of a very persistent subpopulation of bacteria. The second messenger molecule cyclic di-guanosine monophosphate (c-di-GMP) plays a very important role in this biofilm physiology. Here, we evaluated the role of YddV, an enzyme with a c-di-GMP synthesis function, in the formation and maturation of Escherichia coli biofilms. Our results suggest that YddV stimulates biofilm growth via its role in the production of c-di-GMP and this likely by influencing the production of matrix (e.g. poly-N-acetylglucosamine (PGA)). However, lowering the YddV expression did not alter the biofilm formation since there was no significant difference between the biofilm phenotypes of WT E. coli and YddV-knockout bacteria. Additionally, YddV expression had no significant influence on the amount of persister cells within the biofilm population, questioning the use of YddV as therapeutic target.


Asunto(s)
Biopelículas , Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Liasas de Fósforo-Oxígeno/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/biosíntesis
5.
J Biol Chem ; 289(15): 10620-10636, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24569995

RESUMEN

Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈ 14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4'-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr(112) (hydrogen bonding of ATP adenine to K in the closed active center), His(221) (covalent anchoring of dihydroxyacetone to K), Asp(401) and Asp(403) (metal coordination to L), and Asp(556) (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His(221) point mutant acted specifically as a cyclase without kinase activity.


Asunto(s)
Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Animales , Catálisis , Dominio Catalítico , Dimerización , Flavina-Adenina Dinucleótido/química , Fructosa/química , Gliceraldehído/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Especificidad por Sustrato , Porcinos
6.
Environ Microbiol ; 16(4): 1202-16, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24192006

RESUMEN

Yersinia pestis, the cause of plague, forms a biofilm in the foregut of its flea vector to enhance transmission. Biofilm formation in Y. pestis is controlled by the intracellular levels of the second messenger molecule cyclic diguanylate (c-di-GMP). HmsT and Y3730, the two diguanylate cyclases (DGC) in Y. pestis, are responsible for the synthesis of c-di-GMP. Y3730, which we name here as HmsD, has little effect on in vitro biofilms, but has a major effect on biofilm formation in the flea. The mechanism by which HmsD plays differential roles in vivo and in vitro is not understood. In this study, we show that hmsD is part of a three-gene operon (y3729-31), which we designate as hmsCDE. Deletion of hmsC resulted in increased, hmsD-dependent biofilm formation, while deletion or overexpression of hmsE did not affect biofilm formation. Localization experiments suggest that HmsC resides in the periplasmic space. In addition, we provide evidence that HmsC might interact directly with the periplasmic domain of HmsD and cause the proteolysis of HmsD. We propose that HmsC senses the environmental signals, which in turn regulates HmsD, and controls the c-di-GMP synthesis and biofilm formation in Y. pestis.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/fisiología , Proteínas Periplasmáticas/fisiología , Liasas de Fósforo-Oxígeno/fisiología , Yersinia pestis/fisiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo
7.
Infect Immun ; 81(5): 1775-87, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23478317

RESUMEN

Life cycle alternation between arthropod and mammals forces the Lyme disease spirochete, Borrelia burgdorferi, to adapt to different host milieus by utilizing diverse carbohydrates. Glycerol and chitobiose are abundantly present in the Ixodes tick. B. burgdorferi can utilize glycerol as a carbohydrate source for glycolysis and chitobiose to produce N-acetylglucosamine (GlcNAc), a key component of the bacterial cell wall. A recent study reported that Rrp1, a response regulator that synthesizes cyclic diguanylate (c-di-GMP), governs glycerol utilization in B. burgdorferi. In this report, we found that the rrp1 mutant had growth defects and formed membrane blebs that led to cell lysis when GlcNAc was replaced by chitobiose in the growth medium. The gene chbC encodes a key chitobiose transporter of B. burgdorferi. We found that the expression level of chbC was significantly repressed in the mutant and that constitutive expression of chbC in the mutant successfully rescued the growth defect, indicating a regulatory role of Rrp1 in chitobiose uptake. Immunoblotting and transcriptional studies revealed that Rrp1 is required for the activation of bosR and rpoS and that its impact on chbC is most likely mediated by the BosR-RpoS regulatory pathway. Tick-mouse infection studies showed that although the rrp1 mutant failed to establish infection in mice via tick bite, exogenous supplementation of GlcNAc into unfed ticks partially rescued the infection. The finding reported here provides us with new insight into the regulatory role of Rrp1 in carbohydrate utilization and virulence of B. burgdorferi.


Asunto(s)
Proteínas Bacterianas/química , Borrelia burgdorferi/patogenicidad , GMP Cíclico/análogos & derivados , Disacáridos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiología , Enfermedad de Lyme/transmisión , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/fisiología , Animales , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/crecimiento & desarrollo , Borrelia burgdorferi/metabolismo , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Lyme/microbiología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Mutantes , ARN Bacteriano/análisis , Factor sigma/metabolismo , Garrapatas/microbiología
8.
PLoS Pathog ; 7(9): e1002217, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909268

RESUMEN

The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13-22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress.


Asunto(s)
Lipopolisacáridos/deficiencia , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Sistemas de Mensajero Secundario/genética , Staphylococcus aureus/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Tamaño de la Célula , Pared Celular/química , Pared Celular/efectos de los fármacos , Fosfatos de Dinucleósidos/metabolismo , Fosfatos de Dinucleósidos/fisiología , Staphylococcus aureus Resistente a Meticilina , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Hidrolasas Diéster Fosfóricas/fisiología , Liasas de Fósforo-Oxígeno/fisiología , Staphylococcus aureus/genética , Ácidos Teicoicos
9.
FEMS Immunol Med Microbiol ; 59(3): 477-84, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20553324

RESUMEN

In bacteria, intracellular amounts of the signal molecule cyclic di-GMP (c-di-GMP) are determined by biosynthetic enzymes, or diguanylate cyclases (DGCs), and degradative enzymes, or c-di-GMP phosphodiesterases (c-PDEs). In Escherichia coli, the production of curli fibers, an important adhesion factor, responds to c-di-GMP. The yddV-dos operon, which encodes a DGC and a c-PDE acting as a protein complex, is highly expressed at a low growth temperature and in the stationary phase, i.e. conditions that also stimulate curli production. We show that perturbations in the balance between YddV and Dos, obtained either through inactivation of the yddV gene or through overproduction of either YddV or Dos, strongly affect curli production. Both YddV and Dos proteins regulate the transcription of the csgBAC operon, which encodes curli structural subunits, while not affecting the expression of the regulatory operon csgDEFG. Consistent with the role of both YddV and Dos proteins as oxygen sensors, their effects on csgBAC gene expression were dramatically reduced in cells grown under anoxic conditions. Our results show that the yddV-dos operon plays an important role in the expression of curli-encoding genes in aerobically growing E. coli, and suggest that YddV and Dos, through their opposite activities, might finely tune curli production in response to oxygen availability.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/biosíntesis , Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Hidrolasas Diéster Fosfóricas/fisiología , Liasas de Fósforo-Oxígeno/fisiología , 3',5'-GMP Cíclico Fosfodiesterasas/genética , 3',5'-GMP Cíclico Fosfodiesterasas/fisiología , Aerobiosis , Anaerobiosis , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Operón , Liasas de Fósforo-Oxígeno/genética , Temperatura
10.
FEBS J ; 275(7): 1464-1473, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18279385

RESUMEN

Chorismate synthase is the last enzyme of the common shikimate pathway, which catalyzes the anti-1,4-elimination of the 3-phosphate group and the C-(6proR) hydrogen from 5-enolpyruvylshikimate 3-phosphate (EPSP) to generate chorismate, a precursor for the biosynthesis of aromatic compounds. Enzyme activity relies on reduced FMN, which is thought to donate an electron transiently to the substrate, facilitating C(3)-O bond breakage. The crystal structure of the enzyme with bound EPSP and the flavin cofactor highlighted two invariant serine residues interacting with a bound water molecule that is close to the C(3)-O of EPSP. In this article we present the results of a mutagenesis study where we replaced the two invariant serine residues at positions 16 and 127 of the Neurospora crassa chorismate synthase with alanine, producing two single-mutant proteins (Ser16Ala and Ser127Ala) and a double-mutant protein (Ser16AlaSer127Ala). The residual activity of the Ser127Ala and Ser16Ala single-mutant proteins was found to be six-fold and 70-fold lower, respectively, than that of the wild-type protein. No residual activity was detected for the Ser16AlaSer127Ala double-mutant protein, and formation of the typical transient intermediate, characteristic for the chorismate synthase-catalysed reaction, was not observed, in contrast to the single-mutant proteins. On the basis of the structure of the enzyme, we propose that Ser16 and Ser127 form part of a proton relay system among the isoalloxazine ring of FMN, histidine 106 and the phosphate group of EPSP that is essential for the formation of the transient intermediate and for substrate turnover.


Asunto(s)
Sustitución de Aminoácidos/genética , Neurospora crassa/enzimología , Liasas de Fósforo-Oxígeno/genética , Protones , Serina/química , Serina/genética , Alanina/genética , Catálisis , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Flavinas/química , Flavinas/genética , Flavinas/metabolismo , Histidina/metabolismo , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Neurospora crassa/genética , Liasas de Fósforo-Oxígeno/aislamiento & purificación , Liasas de Fósforo-Oxígeno/fisiología , Unión Proteica/genética , Serina/metabolismo , Ácido Shikímico/análogos & derivados , Ácido Shikímico/química , Ácido Shikímico/metabolismo , Especificidad por Sustrato/genética
11.
Adv Exp Med Biol ; 603: 201-10, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17966416

RESUMEN

Plague biofilm development is controlled by positive (HmsT) and negative (HmsP) regulators. The GGDEF-domain protein HmsT appears to have diguanylate cyclase activity to synthesize bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) from 2 GTP molecules. The EAL domain of HmsP has phosphodiesterase activity and likely degrades c-di-GMP. This second messenger molecule probably influences biofilm development by activating the glycosyl transferase activity of HmsR. Here we demonstrate the in vitro pH optimum for phosphodiesterase activity of HmsP and that an alanine substitution in residue L508, D626, or E686 within the EAL domain affects this enzymatic activity and the biological function of the protein. Finally, protein-protein interactions and the cytoplasmic location of the enzymatic domains of HmsT and HmsP are evaluated.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Yersinia pestis/fisiología , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas de Escherichia coli , Genes Bacterianos , Humanos , Insectos Vectores/microbiología , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/fisiología , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/fisiología , Peste/microbiología , Peste/transmisión , Dominios y Motivos de Interacción de Proteínas , Siphonaptera/microbiología , Virulencia/genética , Yersinia pestis/genética , Yersinia pestis/patogenicidad
12.
Mol Microbiol ; 62(4): 1014-34, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17010156

RESUMEN

Bis-(3'-5')-cyclic-di-guanosine monophosphate (c-di-GMP) is a bacterial signalling molecule produced by diguanylate cyclases (DGC, carrying GGDEF domains) and degraded by specific phosphodiesterases (PDE, carrying EAL domains). Neither its full physiological impact nor its effector mechanisms are currently understood. Also, the existence of multiple GGDEF/EAL genes in the genomes of most species raises questions about output specificity and robustness of c-di-GMP signalling. Using microarray and gene fusion analyses, we demonstrate that at least five of the 29 GGDEF/EAL genes in Escherichia coli are not only stationary phase-induced under the control of the general stress response master regulator sigma(S) (RpoS), but also exhibit differential control by additional environmental and temporal signals. Two of the corresponding proteins, YdaM (GGDEF only) and YciR (GGDEF + EAL), which in vitro show DGC and PDE activity, respectively, play an antagonistic role in the expression of the biofilm-associated curli fimbriae. This control occurs at the level of transcription of the curli and cellulose regulator CsgD. Moreover, we show that H-NS positively affects curli expression by inversely controlling the expression of ydaM and yciR. Furthermore, we demonstrate a temporally fine-tuned GGDEF cascade in which YdaM controls the expression of another GGDEF protein, YaiC. By genome-wide microarray analysis, evidence is provided that YdaM and YciR strongly and nearly exclusively control CsgD-regulated genes. We conclude that specific GGDEF/EAL proteins have very distinct expression patterns, and when present in physiological amounts, can act in a highly precise, non-global and perhaps microcompartmented manner on a few or even a single specific target(s).


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Transducción de Señal , Proteínas Bacterianas/genética , Biopelículas , GMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/ultraestructura , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Liasas de Fósforo-Oxígeno/fisiología , Estructura Terciaria de Proteína , Factor sigma/genética , Transactivadores/genética
13.
J Bacteriol ; 188(23): 8196-205, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16980460

RESUMEN

Flagellar biogenesis and hence motility of Vibrio fischeri depends upon the presence of magnesium. In the absence of magnesium, cells contain few or no flagella and are poorly motile or nonmotile. To dissect the mechanism by which this regulation occurs, we screened transposon insertion mutants for those that could migrate through soft agar medium lacking added magnesium. We identified mutants with insertions in two distinct genes, VF0989 and VFA0959, which we termed mifA and mifB, respectively, for magnesium-dependent induction of flagellation. Each gene encodes a predicted membrane-associated protein with diguanylate cyclase activity. Consistent with that activity, introduction into V. fischeri of medium-copy plasmids carrying these genes inhibited motility. Furthermore, multicopy expression of mifA induced other phenotypes known to be correlated with diguanylate cyclase activity, including cellulose biosynthesis and biofilm formation. To directly test their function, we introduced the wild-type genes on high-copy plasmids into Escherichia coli. We assayed for the production of cyclic di-GMP using two-dimensional thin-layer chromatography and found that strains carrying these plasmids produced a small but reproducible spot that migrated with an R(f) value consistent with cyclic di-GMP that was not produced by strains carrying the vector control. Disruptions of mifA or mifB increased flagellin levels, while multicopy expression decreased them. Semiquantitative reverse transcription-PCR experiments revealed no significant difference in the amount of flagellin transcripts produced in either the presence or absence of Mg(2+) by either vector control or mifA-overexpressing cells, indicating that the impact of magnesium and cyclic-di-GMP primarily acts following transcription. Finally, we present a model for the roles of magnesium and cyclic di-GMP in the control of motility of V. fischeri.


Asunto(s)
Aliivibrio fischeri/fisiología , Proteínas Bacterianas/fisiología , Regulación hacia Abajo , Regulación Bacteriana de la Expresión Génica , Magnesio/fisiología , Liasas de Fósforo-Oxígeno/fisiología , Aliivibrio fischeri/genética , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Celulosa/biosíntesis , GMP Cíclico/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Flagelos , Vectores Genéticos , Locomoción , Mutagénesis Insercional , Liasas de Fósforo-Oxígeno/genética , Plásmidos , Transfección
14.
J Biol Chem ; 278(30): 28303-11, 2003 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-12734191

RESUMEN

The tetrahydrobiopterin (BH4) cofactor is essential for the biosynthesis of catecholamines and serotonin and for nitric-oxide synthase (NOS). Alterations in BH4 metabolism are observed in various neurological and psychiatric diseases, and mutations in one of the human metabolic genes causes hyperphenylalaninemia and/or monoamine neurotransmitter deficiency. We report on a knockout mouse for the Pts gene, which codes for a BH4-biosynthetic enzyme. Homozygous Pts-/- mice developed with normal morphology but died after birth. Upon daily oral administration of BH4 and neurotransmitter precursors the Pts-/- mice eventually survived. However, at sexual maturity (6 weeks) the mice had only one-third of the normal body weight and were sexually immature. Biochemical analysis revealed no hyperphenylalaninemia, normal brain NOS activity, and almost normal serotonin levels, but brain dopamine was 3% of normal. Low dopamine leads to impaired food consumption as reflected by the severe growth deficiency and a 7-fold reduced serum insulin-like growth factor-1 (IGF-1). This is the first link shown between 6-pyruvoyltetrahydropterin synthase- or BH4-biosynthetic activity and IGF-1.


Asunto(s)
Biopterinas/análogos & derivados , Biopterinas/química , Dopamina/metabolismo , Enanismo/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/fisiología , 5-Hidroxitriptófano/farmacología , Animales , Biopterinas/metabolismo , Peso Corporal , División Celular , Eliminación de Gen , Vectores Genéticos , Genotipo , Heterocigoto , Homocigoto , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neurotransmisores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Fenotipo , Liasas de Fósforo-Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa , Tiroxina/sangre , Factores de Tiempo
15.
Artículo en Inglés | MEDLINE | ID: mdl-11554313

RESUMEN

DNA beta-polymerase (beta-pol) carries out two critical enzymatic reactions in mammalian single-nucleotide base excision repair (BER): DNA synthesis to fill the repair patch and lyase removal of the 5'-deoxyribose phosphate (dRP) group following cleavage of the abasic site by apurinic/apyrimidinic (AP) endonuclease (1). The requirement for beta-pol in single-nucleotide BER is exemplified in mouse fibroblasts with a null mutation in the beta-pol gene. These cells are hypersensitive to monofunctional DNA methylating agents such as methyl methane-sulfonate (MMS) (2). This hypersensitivity is associated with an abundance of chromosomal damage and induction of apoptosis and necrotic cell death (3). We have found that beta-pol null cells are defective in repair of MMS-induced DNA lesions, consistent with a cellular BER deficiency as a causative agent in the observed hypersensitivity. Further, the N-terminal 8-kDa domain of beta-pol, which contains the dRP lyase activity in the wild-type enzyme, is sufficient to reverse the methylating agent hypersensitivity in beta-pol null cells. These results indicate that lyase removal of the dRP group is a pivotal step in BER in vivo. Finally, we examined MMS-induced genomic DNA mutagenesis in two isogenic mouse cell lines designed for study of the role of BER. MMS exposure strongly increases mutant frequency in beta-pol null cells, but not in wild-type cells. With MMS treatment, beta-pol null cells have a higher frequency of all six base-pair substitutions, suggesting that BER plays a role in protecting the cell against methylation-induced mutations.


Asunto(s)
ADN Ligasas/fisiología , ADN Polimerasa beta/fisiología , Reparación del ADN , Alquilación , Animales , Ácido Aspártico/química , Bacteriófago lambda/genética , Liasas de Carbono-Oxígeno/fisiología , Daño del ADN , ADN Polimerasa beta/química , ADN Polimerasa beta/deficiencia , ADN Polimerasa beta/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Genotipo , Metilmetanosulfonato/toxicidad , Metilación , Ratones , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutágenos/toxicidad , Liasas de Fósforo-Oxígeno/fisiología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Ribosamonofosfatos/química
16.
J Biol Chem ; 276(44): 41150-60, 2001 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-11517215

RESUMEN

(6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for tyrosine hydroxylase (TH), tryptophan hydroxylase, phenylalanine hydroxylase, and nitric-oxide synthase. These enzymes synthesize neurotransmitters, e.g. catecholamines, serotonin, and nitric oxide (NO). We established mice unable to synthesize BH4 by disruption of the 6-pyruvoyltetrahydropterin synthase gene, the encoded protein of which catalyzes the second step of BH4 biosynthesis. Homozygous mice were born at the almost expected Mendelian ratio, but died within 48 h after birth. In the brain of homozygous mutant neonates, levels of biopterin, catecholamines, and serotonin were extremely low. The number of TH molecules was highly dependent on the intracellular concentration of BH4 at nerve terminals. Alteration of the TH protein level by modulation of the BH4 content is a novel regulatory mechanism. Our data showing that catecholaminergic, serotonergic, and NO systems were differently affected by BH4 starvation suggest the possible involvement of BH4 synthesis in the etiology of monoamine-based neurological and neuropsychiatric disorders.


Asunto(s)
Biopterinas/análogos & derivados , Biopterinas/fisiología , Catecolaminas/genética , Regulación de la Expresión Génica/fisiología , Liasas de Fósforo-Oxígeno/fisiología , Serotonina/genética , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Liasas de Fósforo-Oxígeno/genética
17.
J Biol Chem ; 276(37): 34659-63, 2001 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-11457865

RESUMEN

Base excision repair (BER) is a major repair pathway in eukaryotic cells responsible for repair of lesions that give rise to abasic (AP) sites in DNA. Pivotal to this process is the 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity of DNA polymerase beta (Pol beta). DNA polymerase lambda (Pol lambda) is a recently identified eukaryotic DNA polymerase that is homologous to Pol beta. We show here that human Pol lambda exhibits dRP lyase, but not AP lyase, activity in vitro and that this activity is consistent with a beta-elimination mechanism. Accordingly, a single amino acid substitution (K310A) eliminated more than 90% of the wild-type dRP lyase activity, thus suggesting that Lys(310) of Pol lambda is the main nucleophile involved in the reaction. The dRP lyase activity of Pol lambda, in coordination with its polymerization activity, efficiently repaired uracil-containing DNA in an in vitro reconstituted BER reaction. These results suggest that Pol lambda may participate in "single-nucleotide" base excision repair in mammalian cells.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , Liasas de Fósforo-Oxígeno/fisiología , ADN Polimerasa Dirigida por ADN/química , Humanos , Liasas de Fósforo-Oxígeno/análisis , Relación Estructura-Actividad
18.
Infect Immun ; 69(1): 547-50, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11119550

RESUMEN

The aroC gene of the facultative intracellular pathogen Brucella suis was cloned and sequenced. The cloned aroC gene complements Escherichia coli and Salmonella enterica serovar Typhimurium aroC mutants. A B. suis aroC mutant was found to be unable to grow in a defined medium without aromatic compounds. The mutant was highly attenuated in tissue culture (THP1 macrophages and HeLa cells) and murine virulence models.


Asunto(s)
Brucella/patogenicidad , Liasas de Fósforo-Oxígeno/fisiología , Animales , Brucella/crecimiento & desarrollo , Clonación Molecular , Medios de Cultivo , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Mutación , Liasas de Fósforo-Oxígeno/genética , Virulencia
19.
Nihon Yakurigaku Zasshi ; 118(6): 371-7, 2001 Dec.
Artículo en Japonés | MEDLINE | ID: mdl-11778454

RESUMEN

Tetrahydrobiopterin ((6R)-L-erythro-tetrahydrobiopterin, BH4) is de novo synthesized from GTP. Enzymes involved in its synthesis are the rate limiting enzyme GTP cyclohydrolase I, 6-pyruvoyl tetrahydropterin synthase (PTPS) and sepiapterin reductase. Abnormalities in the metabolism of BH4 have been demonstrated in some diseases affecting the central nervous systems such as atypical phenylketonuria, hereditary progressive dystonia (Segawa's disease). Furthermore, BH4 has been shown to be involved in vascular protection. It is suggested that the dysfunction of endothelial BH4 leads to atherosclerosis. Recently we established BH4-deficient mice by disrupting the PTPS gene to investigate the effects of BH4 depletion on the animals and the involvement of BH4 in regulating biological functions including neural systems. Investigation utilizing this model animal can contribute to the development of new therapeutic strategies toward various diseases involving neurological and vascular systems. Pterin derivatives other than biopterin may also be involved in the regulation of a variety of biological functions. We found that ciliated protozoan Tetrahymena pyriformis synthesizes tetrahydromonapterin, isomer of BH4, and its levels alter according to the progress of the cell cycle. How pterin derivatives are related to the human physiology and diseases is an interesting subject of investigation.


Asunto(s)
Biopterinas , Biopterinas/análogos & derivados , Animales , Arteriosclerosis/etiología , Biopterinas/deficiencia , Biopterinas/fisiología , Enfermedades del Sistema Nervioso Central/etiología , GTP Ciclohidrolasa/fisiología , Humanos , Ratones , Ratones Noqueados , Liasas de Fósforo-Oxígeno/fisiología
20.
Infect Immun ; 67(2): 700-7, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9916080

RESUMEN

The properties of two candidate Salmonella typhi-based live oral typhoid vaccine strains, BRD691 (S. typhi Ty2 harboring mutations in aroA and aroC) and BRD1116 (S. typhi Ty2 harboring mutations in aroA, aroC, and htrA), were compared in a number of in vitro and in vivo assays. BRD1116 exhibited an increased susceptibility to oxidative stress compared with BRD691, but both strains were equally resistant to heat shock. Both strains showed a similar ability to invade Caco-2 and HT-29 epithelial cells and U937 macrophage-like cells, but BRD1116 was less efficient at surviving in epithelial cells than BRD691. BRD1116 and BRD691 were equally susceptible to intracellular killing within U937 cells. Similar findings were demonstrated in vivo, with BRD1116 being less able to survive and translocate to secondary sites of infection when inoculated into the lumen of human intestinal xenografts in SCID mice. However, translocation of BRD1116 to spleens and livers in SCID mice occurred as efficiently as that of BRD691 when inoculated intraperitonally. The ability of BRD1116 to increase the secretion of interleukin-8 following infection of HT-29 epithelial cells was comparable to that of BRD691. Therefore, loss of the HtrA protease in S. typhi does not seem to alter its ability to invade epithelial cells or macrophages or to induce proinflammatory cytokines such as IL-8 but significantly reduces intracellular survival in human intestinal epithelial cells in vitro and in vivo.


Asunto(s)
Transferasas Alquil y Aril/genética , Vacunas Bacterianas/genética , Proteínas de Choque Térmico , Mutación , Proteínas Periplasmáticas , Liasas de Fósforo-Oxígeno/genética , Vacunas contra la Salmonella , Salmonella typhi/genética , Serina Endopeptidasas/genética , Vacunas Tifoides-Paratifoides , 3-Fosfoshikimato 1-Carboxiviniltransferasa , Administración Oral , Transferasas Alquil y Aril/fisiología , Animales , Células CACO-2 , Células Epiteliales , Células HT29 , Respuesta al Choque Térmico , Humanos , Interleucina-8 , Intestino Delgado/trasplante , Macrófagos/microbiología , Ratones , Ratones SCID , Monocitos/microbiología , Estrés Oxidativo , Liasas de Fósforo-Oxígeno/fisiología , Salmonella typhi/fisiología , Serina Endopeptidasas/fisiología , Células U937 , Vacunas Atenuadas/genética , Vacunas Sintéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...