Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354704

RESUMEN

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Asunto(s)
Antígenos CD28 , Redes Reguladoras de Genes , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transducción de Señal , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ligando CD27/genética , Ligando CD27/metabolismo , Linfocitos T CD8-positivos
2.
J Immunol Res ; 2024: 2875635, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38314087

RESUMEN

Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.


Asunto(s)
Vacunas contra el Cáncer , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/terapia , Ligando CD27/genética , Biología Computacional/métodos , Epítopos de Linfocito B , Epítopos de Linfocito T , Inmunoinformática , Neoplasias Renales/terapia , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Vacunas de Subunidades Proteicas , Receptores del Factor de Necrosis Tumoral
3.
J Autoimmun ; 142: 103137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38064919

RESUMEN

BACKGROUND: Environmental factors can influence epigenetic regulation, including DNA methylation, potentially contributing to systemic lupus erythematosus (SLE) development and progression. We compared methylation of the B cell costimulatory CD70 gene, in persons with lupus and controls, and characterized associations with age. RESULTS: In 297 adults with SLE and 92 controls from the Michigan Lupus Epidemiology and Surveillance (MILES) Cohort, average CD70 methylation of CD4+ T cell DNA across 10 CpG sites based on pyrosequencing of the promoter region was higher for persons with SLE compared to controls, accounting for covariates [ß = 2.3, p = 0.011]. Using Infinium MethylationEPIC array data at 18 CD70-annoted loci (CD4+ and CD8+ T cell DNA), sites within the promoter region tended to be hypomethylated in SLE, while those within the gene region were hypermethylated. In SLE but not controls, age was significantly associated with pyrosequencing-based CD70 methylation: for every year increase in age, methylation increased by 0.14 percentage points in SLE, accounting for covariates. Also within SLE, CD70 methylation approached a significantly higher level in Black persons compared to White persons (ß = 1.8, p = 0.051). CONCLUSIONS: We describe altered CD70 methylation patterns in T lymphocyte subsets in adults with SLE relative to controls, and report associations particular to SLE between methylation of this immune-relevant gene and both age and race, possibly a consequence of "weathering" or accelerated aging which may have implications for SLE pathogenesis and potential intervention strategies.


Asunto(s)
Epigénesis Genética , Lupus Eritematoso Sistémico , Adulto , Humanos , Linfocitos T CD4-Positivos/metabolismo , Michigan/epidemiología , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/genética , Metilación de ADN , ADN , Ligando CD27/genética , Ligando CD27/metabolismo
4.
J Pathol ; 262(2): 189-197, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37933684

RESUMEN

Primary cutaneous CD4+ small or medium T-cell lymphoproliferative disorder (PCSM-LPD) is a clonal T-cell proliferation disease confined to the skin. PCSM-LPD shares expression of T follicular helper (Tfh) cell markers with various mature T-cell lymphomas. However, the benign presentation of PCSM-LPD contrasts the clinical behavior of other Tfh-lymphomas. The aim of our study was to delineate the molecular similarities and differences between PCSM-LPD and other Tfh-derived lymphomas to explain the clinical behavior and unravel possible pathological mechanisms. We performed targeted next-generation sequencing of 19 genes recurrently mutated in T-cell neoplasms in n = 17 PCSM-LPD with high and in n = 21 PCSM-LPD with low tumor cell content. Furthermore, gene expression profiling was used to identify genes potentially expressed in the PD1-positive (PD1+) neoplastic cells. Expression of some of these genes was confirmed in situ using multistain immunofluorescence. We found that PCSM-LPD rarely harbored mutations recurrently detected in other T-cell neoplasms. PCSM-LPD is characterized by the invariable expression of the T-cell-receptor-associated LCK protein. CD70 and its ligand CD27 are co-expressed on PD1+ PCSM-LPD cells, suggestive of autoactivation of the CD70 pathway. In conclusion, PCSM-LPD differs from disseminated lymphomas of Tfh origin by their mutation profile. Activation of CD70 signaling also found in cutaneous T-cell lymphoma represents a potential driver of neoplastic proliferation of this benign neoplasia of Tfh. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Linfoma Cutáneo de Células T , Trastornos Linfoproliferativos , Enfermedades de la Piel , Neoplasias Cutáneas , Humanos , Linfocitos T CD4-Positivos/patología , Enfermedades de la Piel/patología , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/patología , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Ligando CD27/genética
5.
Emerg Microbes Infect ; 12(2): 2271068, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37824079

RESUMEN

Immune overactivation is a hallmark of chronic HIV infection, which is critical to HIV pathogenesis and disease progression. The imbalance of helper T cell (Th) differentiation and subsequent cytokine dysregulation are generally considered to be the major drivers of excessive activation and inflammatory disorders in HIV infection. However, the accurate factors driving HIV-associated Th changes remained to be established. CD70, which was a costimulatory molecule, was found to increase on CD4+ T cells during HIV infection. Overexpression of CD70 on CD4+ T cells was recently reported to associate with highly pathogenic proinflammatory Th1/Th17 polarization in multiple sclerosis. Thus, the role of CD70 in the imbalance of Th polarization and immune overactivation during HIV infection needs to be investigated. Here, we found that the elevated frequency of CD70 + CD4+ T cells was negatively correlated with CD4 count and positively associated with immune activation in treatment-naïve people living with HIV (PLWH). More importantly, CD70 expression defined a population of proinflammatory Th1/17/22/GM subsets in PLWH. Blocking CD70 decreased the mRNA expression of subset-specific markers during Th1/17/22/GM polarization. Furthermore, we demonstrated that CD70 influenced the differentiation of these Th cells through STAT pathway. Finally, it was revealed that patients with a high baseline level of CD70 on CD4+ T cells exhibited a greater risk of poor immune reconstitution after antiretroviral therapy (ART) than those with low CD70. In general, our data highlighted the role of CD70 in Th1/17/22/GM differentiation during HIV infection and provided evidence for CD70 as a potential biomarker for predicting immune recovery.


Asunto(s)
Infecciones por VIH , Reconstitución Inmune , Humanos , Linfocitos T CD4-Positivos , Progresión de la Enfermedad , Diferenciación Celular , Ligando CD27/genética , Ligando CD27/metabolismo
6.
Nat Commun ; 14(1): 1912, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024479

RESUMEN

Despite the intense CD8+ T-cell infiltration in the tumor microenvironment of nasopharyngeal carcinoma, anti-PD-1 immunotherapy shows an unsatisfactory response rate in clinical trials, hindered by immunosuppressive signals. To understand how microenvironmental characteristics alter immune homeostasis and limit immunotherapy efficacy in nasopharyngeal carcinoma, here we establish a multi-center single-cell cohort based on public data, containing 357,206 cells from 50 patient samples. We reveal that nasopharyngeal carcinoma cells enhance development and suppressive activity of regulatory T cells via CD70-CD27 interaction. CD70 blocking reverts Treg-mediated suppression and thus reinvigorate CD8+ T-cell immunity. Anti-CD70+ anti-PD-1 therapy is evaluated in xenograft-derived organoids and humanized mice, exhibiting an improved tumor-killing efficacy. Mechanistically, CD70 knockout inhibits a collective lipid signaling network in CD4+ naïve and regulatory T cells involving mitochondrial integrity, cholesterol homeostasis, and fatty acid metabolism. Furthermore, ATAC-Seq delineates that CD70 is transcriptionally upregulated by NFKB2 via an Epstein-Barr virus-dependent epigenetic modification. Our findings identify CD70+ nasopharyngeal carcinoma cells as a metabolic switch that enforces the lipid-driven development, functional specialization and homeostasis of Tregs, leading to immune evasion. This study also demonstrates that CD70 blockade can act synergistically with anti-PD-1 treatment to reinvigorate T-cell immunity against nasopharyngeal carcinoma.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Animales , Ratones , Linfocitos T Reguladores , Carcinoma Nasofaríngeo/genética , Ligando CD27/genética , Ligando CD27/metabolismo , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/genética , Lípidos , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral
7.
Cancer Cell ; 41(2): 340-355.e6, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36787696

RESUMEN

Effective therapeutic strategies are needed for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations that acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) mediated by epithelial-to-mesenchymal transition (EMT). We investigate cell surface proteins that could be targeted by antibody-based or adoptive cell therapy approaches and identify CD70 as being highly upregulated in EMT-associated resistance. Moreover, CD70 upregulation is an early event in the evolution of resistance and occurs in drug-tolerant persister cells (DTPCs). CD70 promotes cell survival and invasiveness, and stimulation of CD70 triggers signal transduction pathways known to be re-activated with acquired TKI resistance. Anti-CD70 antibody drug conjugates (ADCs) and CD70-targeting chimeric antigen receptor (CAR) T cell and CAR NK cells show potent activity against EGFR TKI-resistant cells and DTPCs. These results identify CD70 as a therapeutic target for EGFR mutant tumors with acquired EGFR TKI resistance that merits clinical investigation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Ligando CD27/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , /uso terapéutico
8.
J Pathol Clin Res ; 9(3): 195-207, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36754859

RESUMEN

Diffuse pleural mesothelioma (PM) is a highly aggressive tumour typically associated with short survival. Recently, the effectiveness of first-line immune checkpoint inhibitors in patients with unresectable PM was reported. CD70-CD27 signalling plays a co-stimulatory role in promoting T cell expansion and differentiation through the nuclear factor κB (NF-κB) pathway. Conversely, the PD-L1 (CD274)-PD-1 (PDCD1) pathway is crucial for the modulation of immune responses in normal conditions. Nevertheless, pathological activation of both the CD70-CD27 and PD-L1-PD-1 pathways by aberrantly expressed CD70 and PD-L1 participates in the immune evasion of tumour cells. In this study, 171 well-characterised PMs including epithelioid (n = 144), biphasic (n = 15), and sarcomatoid (n = 12) histotypes were evaluated immunohistochemically for CD70, PD-L1, and immune cell markers such as CD3, CD4, CD8, CD56, PD-1, FOXP3, CD68, and CD163. Eight percent (14/171) of mesotheliomas simultaneously expressed CD70 and PD-L1 on the tumour cell membrane. PMs co-expressing CD70 and PD-L1 contained significantly higher numbers of CD8+ (p = 0.0016), FOXP3+ (p = 0.00075), and CD163+ (p = 0.0011) immune cells within their microenvironments. Overall survival was significantly decreased in the cohort of patients with PM co-expressing CD70 and PD-L1 (p < 0.0001). In vitro experiments revealed that PD-L1 and CD70 additively enhanced the motility and invasiveness of PM cells. In contrast, PM cell proliferation was suppressed by PD-L1. PD-L1 enhanced mesenchymal phenotypes such as N-cadherin up-regulation. Collectively, these findings suggest that CD70 and PD-L1 both enhance the malignant phenotypes of PM and diminish anti-tumour immune responses. Based on our observations, combination therapy targeting these signalling pathways might be useful in patients with PM.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/genética , Neoplasias Pulmonares/patología , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología , Factores de Transcripción Forkhead , Microambiente Tumoral , Ligando CD27/genética
9.
Funct Integr Genomics ; 23(1): 48, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36700974

RESUMEN

The immune checkpoint molecule CD70 and its receptor CD27 constitute the signal transduction axis, which is abnormally expressed in many solid tumors and is crucial for T cell co-stimulation and immune escape. Tumor cells regulate CD27 expression in the tumor microenvironment by expressing CD70, which promotes immune escape. Although current research evidence suggests a link between CD70 and tumors, no pan-cancer analysis is available. Using the Cancer Genome Atlas, Gene Expression Omnibus datasets, and online databases, we first explored the potential carcinogenic role of the CD70-CD27 signaling axis in human malignancies. Furthermore, qRT-PCR, Western blot, immunohistochemistry, and a T cell-mediated tumor cell killing assay were used to assess the biological function of the CD70-CD27 signaling axis. CD70 expression is upregulated in most cancers and has an obvious correlation with the prognosis of tumor patients. The expression of CD70 and CD27 is associated with the level of regulatory T cell (Treg) infiltration. In addition, T cell receptor signaling pathways, PI3K-AKT, NF-κB, and TNF signaling pathways are also involved in CD70-mediated immune escape. CD70 mainly regulates tumor immune escape by regulating T cell-mediated tumor killing, with Tregs possibly being its primary T cell subset. Our first pan-cancer study provides a relatively comprehensive understanding of the carcinogenic role of the CD70-CD27 signaling axis in different tumors.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Ligando CD27/genética , Ligando CD27/metabolismo , Inmunidad , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Microambiente Tumoral , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
10.
Molecules ; 27(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500549

RESUMEN

The majority of clear cell renal cell carcinomas (ccRCCs) are characterized by mutations in the Von Hippel−Lindau (VHL) tumor suppressor gene, which leads to the stabilization and accumulation of the HIF2α transcription factor that upregulates key oncogenic pathways that promote glucose metabolism, cell cycle progression, angiogenesis, and cell migration. Although FDA-approved HIF2α inhibitors for treating VHL disease-related ccRCC are available, these therapies are associated with significant toxicities such as anemia and hypoxia. To improve ccRCC-specific drug delivery, peptide amphiphile micelles (PAMs) were synthesized incorporating peptides targeted to the CD70 marker expressed by ccRCs and anti-HIF2α siRNA, and the ability of HIF2α-CD27 PAMs to modulate HIF2α and its downstream targets was evaluated in human ccRCC patient-derived cells. Cell cultures were derived from eight human ccRCC tumors and the baseline mRNA expression of HIF2A and CD70, as well as the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 were first determined. As expected, each gene was overexpressed by at least 63% of all samples compared to normal kidney proximal tubule cells. Upon incubation with HIF2α-CD27 PAMs, a 50% increase in ccRCC-binding was observed upon incorporation of a CD70-targeting peptide into the PAMs, and gel shift assays demonstrated the rapid release of siRNA (>80% in 1 h) under intracellular glutathione concentrations, which contributed to ~70% gene knockdown of HIF2α and its downstream genes. Further studies demonstrated that knockdown of the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 led to inhibition of their oncogenic functions of glucose transport, cell proliferation, angiogenic factor release, and cell migration by 50−80%. Herein, the development of a nanotherapeutic strategy for ccRCC-specific siRNA delivery and its potential to interfere with key oncogenic pathways is presented.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , ARN Interferente Pequeño/genética , Micelas , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ligando CD27/genética , Ligando CD27/metabolismo
11.
Clin Transl Med ; 12(12): e1118, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471481

RESUMEN

BACKGROUND: CD70 is a costimulatory molecule that is transiently expressed on a small set of activated lymphocytes and is involved in T-cell-mediated immunity. However, the role of CD70 in B-cell malignancies remains controversial. METHODS: We investigated the clinical relevance of CD70 genetic alterations and its protein expression in two diffuse large B-cell lymphoma (DLBCL) cohorts with different ethnic backgrounds. We also performed transcriptomic analysis to explore the role of CD70 alterations in tumour microenvironment. We further tested the blockade of CD70 in combination with PD-L1 inhibitor in a murine lymphoma model. RESULTS: We showed that CD70 genetic aberrations occurred more frequently in the Chinese DLBCL cohort (56/233, 24.0%) than in the Swedish cohort (9/84, 10.8%), especially in those with concomitant hepatitis B virus (HBV) infection. The CD70 genetic changes in DLBCL resulted in a reduction/loss of protein expression and/or CD27 binding, which might impair T cell priming and were independently associated with poor overall survival. Paradoxically, we observed that over-expression of CD70 protein was also associated with a poor treatment response, as well as an advanced disease stage and EBV infection. More exhausted CD8+ T cells were furthermore identified in CD70 high-expression DLBCLs. Finally, in a murine lymphoma model, we demonstrated that blocking the CD70/CD27 and/or PD1/PD-L1 interactions could reduce CD70+ lymphoma growth in vivo, by directly impairing the tumour cell proliferation and rescuing the exhausted T cells. CONCLUSIONS: Our findings suggest that CD70 can play a role in either tumour suppression or oncogenesis in DLBCL, likely via distinct immune evasion mechanisms, that is, impairing T cell priming or inducing T cell exhaustion. Characterisation of specific dysfunction of CD70 in DLBCL may thus provide opportunities for the development of novel targeted immuno-therapeutic strategies.


Asunto(s)
Ligando CD27 , Infecciones por Virus de Epstein-Barr , Linfoma de Células B Grandes Difuso , Animales , Humanos , Ratones , Linfocitos B/patología , Ligando CD27/genética , Linfocitos T CD8-positivos/patología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Microambiente Tumoral
12.
Clin Cancer Res ; 28(22): 4983-4994, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36067339

RESUMEN

PURPOSE: CD70 is a costimulatory molecule known to activate CD27-expressing T cells. CD27-CD70 interaction leads to the release of soluble CD27 (sCD27). Clear-cell renal cell carcinoma (ccRCC) expresses the highest levels of CD70 among all solid tumors; however, the clinical consequences of CD70 expression remain unclear. EXPERIMENTAL DESIGN: Tumor tissue from 25 patients with ccRCC was assessed for the expression of CD27 and CD70 in situ using multiplex immunofluorescence. CD27+ T-cell phenotypes in tumors were analyzed by flow cytometry and their gene expression profile were analyzed by single-cell RNA sequencing then confirmed with public data. Baseline sCD27 was measured in 81 patients with renal cell carcinoma (RCC) treated with immunotherapy (35 for training cohort and 46 for validation cohort). RESULTS: In the tumor microenvironment, CD27+ T cells interacted with CD70-expressing tumor cells. Compared with CD27- T cells, CD27+ T cells exhibited an apoptotic and dysfunctional signature. In patients with RCC, the intratumoral CD27-CD70 interaction was significantly correlated with the plasma sCD27 concentration. High sCD27 levels predicted poor overall survival in patients with RCC treated with anti-programmed cell death protein 1 in both the training and validation cohorts but not in patients treated with antiangiogenic therapy. CONCLUSIONS: In conclusion, we demonstrated that sCD27, a surrogate marker of T-cell dysfunction, is a predictive biomarker of resistance to immunotherapy in RCC. Given the frequent expression of CD70 and CD27 in solid tumors, our findings may be extended to other tumors.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Ligando CD27/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Inmunoterapia , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Microambiente Tumoral
13.
Bosn J Basic Med Sci ; 22(6): 992-1004, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35765945

RESUMEN

Phospholipase C epsilon 1 (PLCE1) is involved in the pathogenesis of many cancers. However, the biological role of PLCE1 in osteosarcoma (OS) is still poorly understood. The prognostic survival analysis was performed on the PLCE1gene in the TARGET data set and the differential expression of PLCE1 in OS tissue and normal bone tissue on the tissue chip was detected by immunohistochemistry. Spearman's rank correlation coefficient analysis was implemented to explore the relationship between PLCE1 and immune genes. Finally, PLCE1 was silenced to explore its biological function in OS cells. The results of tissue chip immunohistochemistry showed that PLCE1 expression in OS tissue was higher than in normal bone tissue. The survival curve of PLCE1 and its corresponding receiver operating characteristic curve (ROC) showed that PLCE1 had a significant effect on the survival status of patients with OS and that the prognosis of patients with high PLCE1 expression was relatively poor. Spearman's rank correlation coefficient analysis and qRT-PCR assays found that PLCE1 may promote immune escape from OS via CD70-CD27 signaling pathway. Silencing of PLCE1 causes the following biological behaviors of OS cells: it promotes apoptosis, inhibits proliferation of OS cells, and inhibits the ability of cell migration and invasion. PLCE1 is a poor prognostic marker and a potential key factor affecting the immune status of the OS tumor microenvironment.


Asunto(s)
Osteosarcoma , Transducción de Señal , Humanos , Pronóstico , Fosfoinositido Fosfolipasa C/metabolismo , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Ligando CD27/genética , Ligando CD27/metabolismo
14.
Eur J Cancer ; 169: 106-122, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35550950

RESUMEN

INTRODUCTION: Epithelial-to-mesenchymal transition (EMT) is associated with tumor aggressiveness, drug resistance, and poor survival in non-small cell lung cancer (NSCLC) and other cancers. The identification of immune-checkpoint ligands (ICPLs) associated with NSCLCs that display a mesenchymal phenotype (mNSCLC) could help to define subgroups of patients who may benefit from treatment strategies using immunotherapy. METHODS: We evaluated ICPL expression in silico in 130 NSCLC cell lines. In vitro, CRISPR/Cas9-mediated knockdown and lentiviral expression were used to assess the impact of ZEB1 expression on CD70. Gene expression profiles of lung cancer samples from the TCGA (n = 1018) and a dataset from MD Anderson Cancer Center (n = 275) were analyzed. Independent validation was performed by immunohistochemistry and targeted-RNA sequencing in 154 NSCLC whole sections, including a large cohort of pulmonary sarcomatoid carcinomas (SC, n = 55). RESULTS: We uncover that the expression of CD70, a regulatory ligand from the tumor necrosis factor ligand family, is enriched in mNSCLC in vitro models. Mechanistically, the EMT-inducer ZEB1 impacted CD70 expression and fostered increased activity of the CD70 promoter. CD70 overexpression was also evidenced in mNSCLC patient tumor samples and was particularly enriched in SC, a lung cancer subtype associated with poor prognosis. In these tumors, CD70 expression was associated with decreased CD3+ and CD8+ T-cell infiltration and increased T-cell exhaustion markers. CONCLUSION: Our results provide evidence on the pivotal roles of CD70 and ZEB1 in immune escape in mNSCLC, suggesting that EMT might promote cancer progression and metastasis by not only increasing cancer cell plasticity but also reprogramming the immune response in the local tumor microenvironment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ligando CD27/genética , Ligando CD27/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Ligandos , Neoplasias Pulmonares/patología , Microambiente Tumoral
15.
Cell Rep Med ; 3(5): 100639, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584621

RESUMEN

Using a multimodal approach toward developing a new CD70-targeted Chimeric antigen receptor (CAR) T cell in acute myeloid leukemia, Leick et al.1 report on their synergetic strategy, which incorporates both CAR T cell construct modifications with enhancement of leukemia antigen expression to improve CAR T cell functionality.


Asunto(s)
Ligando CD27 , Inmunoterapia Adoptiva , Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Ligando CD27/genética , Ligando CD27/inmunología , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología
16.
Fetal Pediatr Pathol ; 41(1): 58-67, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32427516

RESUMEN

INTRODUCTION: Epigenetic alterations in pathogenesis of systemic lupus erythematosus (SLE) have gained more attention recently in adults. We assessed the methylation of CD70 promoter, a costimulatory molecule on T cells, in juvenile SLE (JSLE), and compared this to that found in controls and the literature of adult SLE patients. METHODS: DNA methylation status was evaluated on peripheral blood from JSLE patients and healthy controls. RESULTS: Twenty-five patients with JSLE and 24 healthy controls were compared. JSLE patients had lower unmethylated CpG islands compared to the control group (mean ± SD; 0.78 ± 0.42 vs 10503.80 ± 39796.95). However, the difference was not significant (P-value; 0.22). CONCLUSION: Despite hypomethylation of CD70 gene promoter in CD4+ T-cells from adult patients with SLE, no statistically significant differences observed in patients with JSLE compared with healthy controls. This may suggest a mechanism different in JSLE patients than in adults.


Asunto(s)
Metilación de ADN , Lupus Eritematoso Sistémico , Ligando CD27/genética , Ligando CD27/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Niño , Humanos , Lupus Eritematoso Sistémico/genética , Regiones Promotoras Genéticas , Factores de Transcripción
17.
J Biol Chem ; 297(4): 101102, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34419446

RESUMEN

CD27 is a tumor necrosis factor (TNF) receptor, which stimulates lymphocytes and promotes their differentiation upon activation by TNF ligand CD70. Activation of the CD27 receptor provides a costimulatory signal to promote T cell, B cell, and NK cell activity to facilitate antitumor and anti-infection immunity. Aberrant increased and focused expression of CD70 on many tumor cells renders CD70 an attractive therapeutic target for direct tumor killing. However, despite their use as drug targets to treat cancers, the molecular basis and atomic details of CD27 and CD70 interaction remain elusive. Here we report the crystal structure of human CD27 in complex with human CD70. Analysis of our structure shows that CD70 adopts a classical TNF ligand homotrimeric assembly to engage CD27 receptors in a 3:3 stoichiometry. By combining structural and rational mutagenesis data with reported disease-correlated mutations, we identified the key amino acid residues of CD27 and CD70 that control this interaction. We also report increased potency for plate-bound CD70 constructs compared with solution-phase ligand in a functional activity to stimulate T-cells in vitro. These findings offer new mechanistic insight into this critical costimulatory interaction.


Asunto(s)
Ligando CD27/química , Complejos Multiproteicos/química , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/química , Ligando CD27/genética , Ligando CD27/inmunología , Cristalografía por Rayos X , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/inmunología , Estructura Cuaternaria de Proteína , Linfocitos T/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
18.
Cancer Sci ; 112(9): 3655-3668, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34117815

RESUMEN

This study aimed to investigate the cytotoxicity of a cluster of differentiation 70 antibody-drug conjugate (CD70-ADC) against ovarian cancer in in vitro and in vivo xenograft models. CD70 expression was assessed in clinical samples by immunohistochemical analysis. Western blotting and fluorescence-activated cell sorting analyses were used to determine CD70 expression in the ovarian cancer cell lines A2780 and SKOV3, and in the cisplatin-resistant ovarian cancer cell lines A2780cisR and SKOV3cisR. CD70 expression after cisplatin exposure was determined in A2780 cells transfected with mock- or nuclear factor (NF)-κB-p65-small interfering RNA. We developed an ADC with an anti-CD70 monoclonal antibody linked to monomethyl auristatin F and investigated its cytotoxic effect. We examined 63 ovarian cancer clinical samples; 43 (68.3%) of them expressed CD70. Among patients with advanced stage disease (n = 50), those who received neoadjuvant chemotherapy were more likely to exhibit high CD70 expression compared to those who did not (55.6% [15/27] vs 17.4% [4/23], P < .01). CD70 expression was confirmed in A2780cisR, SKOV3, and SKOV3cisR cells. Notably, CD70 expression was induced after cisplatin treatment in A2780 mock cells but not in A2780-NF-κB-p65-silenced cells. CD70-ADC was cytotoxic to A2780cisR, SKOV3, and SKOV3cisR cells, with IC50 values ranging from 0.104 to 0.341 nmol/L. In A2780cisR and SKOV3cisR xenograft models, tumor growth in CD70-ADC treated mice was significantly inhibited compared to that in the control-ADC treated mice (A2780cisR: 32.0 vs 1639.0 mm3 , P < .01; SKOV3cisR: 232.2 vs 584.9 mm3 , P < .01). Platinum treatment induced CD70 expression in ovarian cancer cells. CD70-ADC may have potential therapeutic implications in the treatment of CD70 expressing ovarian cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Ligando CD27/metabolismo , Cisplatino/administración & dosificación , Inmunoconjugados/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Anciano , Animales , Ligando CD27/antagonistas & inhibidores , Ligando CD27/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Silenciador del Gen , Humanos , Ratones , Persona de Mediana Edad , Neoplasias Ováricas/patología , Transducción de Señal , Factor de Transcripción ReIA/deficiencia , Factor de Transcripción ReIA/genética , Transfección , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Immunol ; 205(7): 1763-1777, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32868408

RESUMEN

The CD27-CD70 costimulatory pathway is essential for the full activation of T cells, but some studies show that blocking this pathway exacerbates certain autoimmune disorders. In this study, we report on the impact of CD27-CD70 signaling on disease progression in the NOD mouse model of type 1 diabetes (T1D). Specifically, our data demonstrate that CD70 ablation alters thymocyte selection and increases circulating T cell levels. CD27 signaling was particularly important for the thymic development and peripheral homeostasis of Foxp3+Helios+ regulatory T cells, which likely accounts for our finding that CD70-deficient NOD mice develop more-aggressive T1D onset. Interestingly, we found that CD27 signaling suppresses the thymic development and effector functions of T1D-protective invariant NKT cells. Thus, rather than providing costimulatory signals, the CD27-CD70 axis may represent a coinhibitory pathway for this immunoregulatory T cell population. Moreover, we showed that a CD27 agonist Ab reversed the effects of CD70 ablation, indicating that the phenotypes observed in CD70-deficient mice were likely due to a lack of CD27 signaling. Collectively, our results demonstrate that the CD27-CD70 costimulatory pathway regulates the differentiation program of multiple T cell subsets involved in T1D development and may be subject to therapeutic targeting.


Asunto(s)
Ligando CD27/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Células T Asesinas Naturales/inmunología , Linfocitos T Reguladores/inmunología , Animales , Ligando CD27/genética , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunomodulación , Activación de Linfocitos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Transducción de Señal , Factores de Transcripción/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
20.
Commun Biol ; 3(1): 375, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665635

RESUMEN

Regulatory T cells (Tregs) are critical mediators of immune homeostasis. The co-stimulatory molecule CD27 is a marker of highly suppressive Tregs, although the role of the CD27-CD70 receptor-ligand interaction in Tregs is not clear. Here we show that after prolonged in vitro stimulation, a significant proportion of human Tregs gain stable CD70 expression while losing CD27. The expression of CD70 in expanded Tregs is associated with a profound loss of regulatory function and an unusual ability to provide CD70-directed co-stimulation to TCR-activated conventional T cells. Genetic deletion of CD70 or its blockade prevents Tregs from delivering this co-stimulatory signal, thus maintaining their regulatory activity. High resolution targeted single-cell RNA sequencing of human peripheral blood confirms the presence of CD27-CD70+ Treg cells. These findings have important implications for Treg-based clinical studies where cells are expanded over extended periods in order to achieve sufficient treatment doses.


Asunto(s)
Ligando CD27/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Ligando CD27/genética , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Femenino , Citometría de Flujo , Factores de Transcripción Forkhead/metabolismo , Edición Génica , Técnicas de Inactivación de Genes , Humanos , Ratones Endogámicos BALB C , Análisis de Secuencia de ARN , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/trasplante , Transcriptoma , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...