Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.609
Filtrar
1.
Aging (Albany NY) ; 16(9): 8142-8154, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728253

RESUMEN

The specific mechanism of 4-hydroxysesamin (4-HS), a modification of Sesamin, on right ventricular failure due to pulmonary hypertension (PH) is ominous. By creating a rat model of PH in vivo and a model of pulmonary artery smooth muscle cell (PASMC) hypoxia and inflammation in vitro, the current work aimed to investigate in depth the molecular mechanism of the protective effect of 4-HS. In an in vitro model of hypoxia PASMC, changes in cell proliferation and inflammatory factors were detected after treatment with 4-HS, followed by changes in the JNK/p38 MAPK signaling pathway as detected by Western blot signaling pathway. The findings demonstrated that 4-HS was able to minimize PASMC cell death, block the JNK/p38 MAPK signaling pathway, and resist the promoting effect of hypoxia on PASMC cell proliferation. Following that, we found that 4-HS could both mitigate the right ventricular damage brought on by MCT and had a protective impact on rats Monocrotaline (MCT)-induced PH in in vivo investigations. The key finding of this study is that 4-HS may protect against PH by inhibiting the JNK/p38 MAPK signaling pathway.


Asunto(s)
Proliferación Celular , Hipertensión Pulmonar , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proliferación Celular/efectos de los fármacos , Disfunción Ventricular Derecha/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Lignanos/farmacología , Lignanos/uso terapéutico , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Insuficiencia Cardíaca/metabolismo , Ratas Sprague-Dawley , Monocrotalina , Modelos Animales de Enfermedad
2.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726747

RESUMEN

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Asunto(s)
Productos Biológicos , Fosfolipasas de Tipo C , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/aislamiento & purificación , Fosfolipasas de Tipo C/metabolismo , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión , Simulación del Acoplamiento Molecular , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/aislamiento & purificación , Humanos , Compuestos Alílicos , Fenoles
3.
Eur J Med Chem ; 271: 116445, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701715

RESUMEN

Lignans are widely distributed in nature, primarily found in the xylem and resins of plants, with the constituent units C6-C3, and their dimers are the most common in plants. In recent years, the trimeric sesquilignans have also received increasing attention from scholars. More than 200 derivatives have been isolated and identified from nearly 50 families, most of which are different types (monoepoxy lignans, bisepoxy lignans, benzofuran lignans) connected with simple phenylpropanoids through ether bonds, C-C bonds, and oxygen-containing rings to constitute sesquilignans. Some of them also possess pharmacological properties, including antioxidants, hepatoprotectives, antitumors, anti-inflammatory properties, and other properties. In addition, the chemical structure of sesquilignans is closely related to the pharmacological activity, and chemical modification of methoxylation enhances the pharmacological activity. In contrast, phenolic hydroxyl and hydroxyl glycosides reduce the pharmacological activity. Therefore, the present review aims to summarize the chemical diversity, bioactivities, and constitutive relationships to provide a theoretical basis for the more profound development and utilization of sesquilignans.


Asunto(s)
Lignanos , Lignanos/química , Lignanos/farmacología , Lignanos/aislamiento & purificación , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Estructura Molecular , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología
5.
Bioorg Chem ; 147: 107392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723423

RESUMEN

Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Lignanos , alfa-Amilasas , alfa-Glucosidasas , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Lignanos/farmacología , Lignanos/química , Lignanos/síntesis química , Relación Estructura-Actividad , Humanos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 409-415, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660844

RESUMEN

OBJECTIVE: To study the effect of arctigenin(ARG) on adriamycin(ADM) resistance of leukemia cell line K562/A02 and the underlying mechanism. METHODS: Human leukemia cell line K562 and ADM-resistant cell line K562/A02 were cultured and treated with 2.5-50 µmol/L ADM. Cell proliferation was measured using CCK-8 method, and half maximal inhibitory concentration (IC50) was calculated. K562/A02 cells were treated with different concentrations of ARG (1, 2, 4, 8, 16 mmol/L) to detect the effect of ARG on K562/A02 cells, and a suitable concentration (2 mmol/L) was selected for subsequent experiments. K562/A02 cells were treated with 2 mmol/L ARG and 5 µmol/L ADM, and cell apoptosis was detected by flow cytometry, the expression of P-gp, MRP, cleaved caspase-3, Bax, Bcl-2 proteins and the TLR4/NF-κB signaling pathway-related proteins were measured by Western blot. TLR4 overexpression plasmid was transfected into K562/A02 cells which were co-treated with ARG and ADM, then drug sensitivity and cell apoptosis were measured. RESULTS: The IC50 value of ADM on K562/A02 cells was 36.57 µmol/L, which was significantly higher than that on K562 cells (1.30 µmol/L). ARG with a concentration of ≤2 mmol/L did not have a significant effect on K562/A02 cells. 2 mmol/L ARG significantly reduced the IC50 of ADM on K562/A02 cells. In 5 µmol/L ADM-treated K562/A02 cells, compared with the control group, the apoptosis rate of K562/A02 cells in the ARG group was significantly increased, the expressions of cleaved caspase-3, Bax proteins were significantly upregulated, the expressions of P-gp, MRP, Bcl-2, TLR4, MyD88, and p-NF-κB proteins were significantly downregulated, and the differences were statistically significant (P < 0.05). After transfection with TLR4 overexpression plasmid, the sensitivity of ARG-treated K562/A02 cells to ADM was reduced (P < 0.05), the cell apoptosis was decreased, and the expressions of P-gp, MRP, Bcl-2 and TLR4/NF-κB signaling pathway-related proteins were significantly elevated, while the expressions of cleaved caspase-3 and Bax proteins were significantly decreased (all P < 0.05). CONCLUSION: ARG may reverse the resistance of human leukemia cell line K562/A02 to ADM by inhibiting TLR4/NF-κB signaling pathway.


Asunto(s)
Apoptosis , Proliferación Celular , Doxorrubicina , Resistencia a Antineoplásicos , Furanos , Lignanos , Humanos , Lignanos/farmacología , Células K562 , Apoptosis/efectos de los fármacos , Doxorrubicina/farmacología , Furanos/farmacología , Proliferación Celular/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal , Caspasa 3/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Leucemia , Proteína X Asociada a bcl-2/metabolismo , Línea Celular Tumoral
7.
J Nat Prod ; 87(4): 1067-1074, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38631020

RESUMEN

A search for anti-trypanosomal natural compounds from plants collected in El Salvador, a country particularly endemic for Chagas disease, resulted in the isolation of five lignan-type compounds (1-5) from Peperomia pseudopereskiifolia. The lignan derivatives 1, 2, and 4 are new. Their absolute configuration was determined by chemical derivatization. Compounds 1, 5, 6, and 8 exhibited anti-trypanosomal activity against the amastigote form of T. cruzi comparable to that of the existing drug benznidazole.


Asunto(s)
Lignanos , Peperomia , Tripanocidas , Trypanosoma cruzi , Lignanos/farmacología , Lignanos/química , Lignanos/aislamiento & purificación , Trypanosoma cruzi/efectos de los fármacos , El Salvador , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/aislamiento & purificación , Estructura Molecular , Peperomia/química , Nitroimidazoles/farmacología , Nitroimidazoles/química , Enfermedad de Chagas/tratamiento farmacológico
8.
J Asian Nat Prod Res ; 26(5): 604-615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634612

RESUMEN

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.


Asunto(s)
Apoptosis , Isoproterenol , Estrés Oxidativo , Compuestos Policíclicos , Schisandra , Animales , Isoproterenol/farmacología , Ratones , Estructura Molecular , Schisandra/química , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Lignanos/farmacología , Lignanos/química , Cardiotónicos/farmacología , Línea Celular , Miocitos Cardíacos/efectos de los fármacos , Ciclooctanos/farmacología , Ciclooctanos/química
9.
Int Immunopharmacol ; 133: 112098, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626551

RESUMEN

Lung cancer is a serious health issue globally, and current treatments have proven to be inadequate. Therefore, immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway have become a viable treatment option in lun cancer. Honokiol, a lignan derived from Magnolia officinalis, has been found to possess anti-inflammatory, antioxidant, and antitumor properties. Our research found that honokiol can effectively regulate PD-L1 through network pharmacology and transcriptome analysis. Cell experiments showed that honokiol can significantly reduce PD-L1 expression in cells with high PD-L1 expression. Molecular docking, cellular thermal shift assay (CETSA) and Bio-Layer Interferometry (BLI)indicated that Honokiol can bind to PD-L1. Co-culture experiments on lung cancer cells and T cells demonstrated that honokiol mediates PD-L1 degradation, stimulates T cell activation, and facilitates T cell killing of tumor cells. Moreover, honokiol activates CD4 + and CD8 + T cell infiltration in vivo, thus suppressing tumor growth in C57BL/6 mice. In conclusion, this study has demonstrated that honokiol can inhibit the growth of lung cancer by targeting tumor cell PD-L1, suppressing PD-L1 expression, blocking the PD-1/PD-L1 pathway, and enhancing anti-tumor immunity.


Asunto(s)
Antígeno B7-H1 , Compuestos de Bifenilo , Lignanos , Neoplasias Pulmonares , Ratones Endogámicos C57BL , Lignanos/farmacología , Lignanos/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Antígeno B7-H1/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Compuestos Alílicos , Fenoles
10.
Chem Biol Interact ; 395: 110999, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38608999

RESUMEN

Bruceantinol (BOL), isolated from the dried fruit of the Brucea javanica (L.) Merr., exhibits cytotoxic effects on breast cancer cells. However, the underlying mechanism remains to be fully addressed. In this paper, the MCF-7 and MDA-MB-231 human breast cancer cell lines were used as experimental models to uncover how BOL inhibits breast cancer cell growth. The effects of BOL on cell growth, proliferation, the cell cycle, and apoptosis were investigated using the MTT assays, EdU incorporation assays, and flow cytometry, respectively. Bioinformatics techniques were applied to predict the key targets of BOL in breast cancer. Subsequent validation of these targets and the anti-breast cancer mechanism of BOL was conducted through Western blotting, RT-PCR, siRNA transfection, and molecular docking analysis. The results demonstrated that BOL dose- and time-dependently reduced the growth of both cell lines, impeded cell proliferation, disrupted the cell cycle, and induced necrosis in MCF-7 cells and apoptosis in MDA-MB-231 cells. Furthermore, CDK2/4/6 were identified as BOL targets, and their knockdown reduced cell sensitivity to BOL. BOL was found to potentially bind with CDK2/4/6 to facilitate protein degradation through the proteasome pathway. Additionally, BOL activated ERK in MDA-MB-231 cells, and this activation was required for BOL's functions in these cells. Collectively, BOL may act as an inhibitor of CDK2/4/6 to exert anti-breast cancer effects. Its effects on cell growth and CDK2/4/6 expression may also depend on ERK activation in HRs-HER2- breast cancer cells. These results suggest the potential of using BOL for treating breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Simulación del Acoplamiento Molecular , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Femenino , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Células MCF-7 , Lignanos/farmacología , Lignanos/química , Ciclo Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química
11.
Biochem Pharmacol ; 224: 116240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679210

RESUMEN

Hepatic steatosis is a critical factor in the development of nonalcoholic steatohepatitis (NASH). Sesamin (Ses), a functional lignan isolated from Sesamum indicum, possesses hypolipidemic, liver-protective, anti-hypertensive, and anti-tumor properties. Ses has been found to improve hepatic steatosis, but the exact mechanisms through which Ses achieves this are not well understood. In this study, we observed the anti-hepatic steatosis effects of Ses in palmitate/oleate (PA/OA)-incubated primary mouse hepatocytes, AML12 hepatocytes, and HepG2 cells, as well as in high-fat, high-cholesterol diet-induced NASH mice. RNA sequencing analysis revealed that cluster of differentiation 36 (CD36), a free fatty acid (FA) transport protein, was involved in the Ses-mediated inhibition of hepatic fat accumulation. Moreover, the overexpression of CD36 significantly increased hepatic steatosis in both Ses-treated PA/OA-incubated HepG2 cells and NASH mice. Furthermore, Ses treatment suppressed insulin-induced de novo lipogenesis in HepG2 cells, which was reversed by CD36 overexpression. Mechanistically, we found that Ses ameliorated NASH by inhibiting CD36-mediated FA uptake and upregulation of lipogenic genes, including FA synthase, stearoyl-CoA desaturase 1, and sterol regulatory element-binding protein 1. The findings of our study provide novel insights into the potential therapeutic applications of Ses in the treatment of NASH.


Asunto(s)
Antígenos CD36 , Dioxoles , Hepatocitos , Lignanos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Lignanos/farmacología , Lignanos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones , Humanos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Células Hep G2 , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Dioxoles/farmacología , Dioxoles/uso terapéutico , Dieta Alta en Grasa/efectos adversos
12.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38431110

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Asunto(s)
Lignanos , Compuestos Policíclicos , Schisandra , Receptores de Glicina , Lignanos/farmacología , Dolor , Canales de Calcio Tipo N , Analgésicos/farmacología , Analgésicos/uso terapéutico , Canales de Sodio , Ciclooctanos
13.
J Agric Food Chem ; 72(10): 5133-5144, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427577

RESUMEN

Botanical insecticides are considered an environmentally friendly approach to insect control because they are easily biodegraded and cause less environmental pollution compared to traditional chemical pesticides. In this study, we reported the insecticidal activities of the ingredients from Taiwania flousiana Gaussen (T. flousiana). Five compounds, namely helioxanthin (C1), taiwanin E (C2), taiwanin H (C3), 7,4'-dimethylamentoflavone (C4), and 7,7″-di-O-methylamentoflavone (C5), were isolated and tested against the second, third, and fourth instar larvae of Aedes aegypti. Our results indicated that all five compounds showed insecticidal activities, and helioxanthin, which is an aryltetralin lignan lactone, was the most effective with LC50 values of 0.60, 2.82, and 3.12 mg/L, respectively, 48 h after application, with its activity against the second instar larvae similar to that of pyrethrin and better than that of rotenone. Further studies found that helioxanthin accumulated in the gastric cecum and the midgut and caused swelling of mitochondria with shallow matrices and fewer or disappeared crista. Additionally, our molecular mechanisms studies indicated that the significantly differentially expressed genes (DEGs) were mainly associated with mitochondria and the cuticle, among which the voltage-dependent anion-selective channel (VDAC) gene was the most down-regulated by helioxanthin, and VDAC is the potential target of helioxanthin by binding to specific amino acid residues (His 122 and Glu 147) via hydrogen bonds. We conclude that aryltetralin lignan lactone is a potential class of novel insecticides by targeting VDAC.


Asunto(s)
Aedes , Insecticidas , Lignanos , Animales , Insecticidas/química , Simulación del Acoplamiento Molecular , Lignanos/farmacología , Extractos Vegetales/química , Larva
14.
Chem Biol Drug Des ; 103(3): e14486, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38448286

RESUMEN

Targeting pro-inflammatory cytokines and their production is found to be of therapeutic benefit for the regulation of inflammation in various chronic autoimmune diseases. Our continued efforts to discover small molecular-weight pro-inflammatory cytokine inhibitors resulted in identifying a novel natural lignan molecule named polonilignan, isolated from the culture broth extract of an endophytic fungus Penicillium polonicum. An in silico study (molecular docking, ADME predictions, binding free energy calculation and molecular dynamics simulation) of the polonilignan over the pro-inflammatory cytokines proteins TNF-α, IL-6 and IL-1ß was performed using Schrodinger LLC software to understand the binding interactions, drug-like properties, and stability of the ligand-protein complex. Further, in-vitro testing of inhibition of TNF-α, IL-6 and IL-1ß by polonilignan was carried out using ELISA and RT-PCR on LPS-induced RAW 264.7 cell lines along with the testing of nitrite production effect (Griess assay) and cytotoxicity (MTT) analysis. Under the computational study, polonilignan revealed good docking scores, binding interactions, and stability under MDS and desirable in silico ADME results over the proteins TNF-α, IL-1ß and IL-6. Poloniligan showed significant inhibition of IL-1ß, IL-6 and TNF-α with IC50 values of 2.01 µM, 6.59 µM and 42.10 µM, respectively. Also, it reduced the translocation of the NF-κB subunit p65 to the nucleus (confocal microscopy). The mRNA expression levels of pro-inflammatory markers IL-1ß, TNF-α and IL-6 levels were lowered significantly (p < .001) by the compound, and the diminution was higher with IL-1ß. Further, the lignan was non-cytotoxic and effective in attenuating nitrite release (IC50 48.56 µM). Thus, polonilignan has been identified as a new pan-cytokine and NO inhibitor, it is recommended to optimise a method for the synthesis of this small molecular weight lignan and explore its pharmacokinetic characteristics, toxicity and therapeutic effect under various chronic inflammatory disease models.


Asunto(s)
Lignanos , Factor de Necrosis Tumoral alfa , Citocinas , Interleucina-6 , Simulación del Acoplamiento Molecular , Nitritos , Interleucina-1beta , Lignanos/farmacología
15.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480613

RESUMEN

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Asunto(s)
Lino , Glucósidos , Lignanos , Lino/química , Lino/metabolismo , Fermentación , Lignanos/farmacología , Lignanos/química , Lignanos/metabolismo , Glicósidos , Butileno Glicoles/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología
16.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542438

RESUMEN

Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (-)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (-)-gomisin J.


Asunto(s)
Lignanos , Compuestos Policíclicos , Schisandra , Lignanos/farmacología , Ciclooctanos/farmacología , Antiinflamatorios/farmacología
17.
Theriogenology ; 220: 26-34, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460201

RESUMEN

Endoplasmic reticulum (ER) stress induced by agents such as tunicamycin (TM) substantially impedes the developmental progression of porcine embryos. Lignan compounds such as Schisandrin B (Sch-B), may have the potential to mitigate this stress. However, there are few studies on the effects of Sch-B on embryo development. To address this research gap, this study evaluates the protective efficacy of Sch-B against TM-induced ER stress during pivotal stages of porcine embryogenesis. Notably, embryos treated with Sch-B exhibited pronounced resistance to TM-induced developmental arrest, particularly at the 4-cell stage, facilitating progression to the 8-cell stage and subsequent blastocyst formation. It was also observed that Sch-B effectively reduced reactive oxygen species (ROS) levels and improved mitochondrial membrane potential (MMP). Furthermore, Sch-B positively influenced the expression of several stress-related genes. These findings highlight the promising role of Sch-B in improving porcine embryo development and mitigating ER stress.


Asunto(s)
Apoptosis , Lignanos , Compuestos Policíclicos , Porcinos , Animales , Estrés del Retículo Endoplásmico , Embrión de Mamíferos/metabolismo , Lignanos/farmacología , Desarrollo Embrionario , Tunicamicina , Especies Reactivas de Oxígeno/metabolismo , Ciclooctanos
18.
Phytomedicine ; 128: 155491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489894

RESUMEN

BACKGROUND: Dengue and chikungunya, caused by dengue virus (DENV) and chikungunya virus (CHIKV) respectively, are the most common arthropod-borne viral diseases worldwide, for which there are no FDA-approved antivirals or effective vaccines. Arctigenin, a phenylpropanoid lignan from the seeds of Arctium lappa L. is known for its anti-inflammatory, anti-cancer, antibacterial, and immunomodulatory properties. Arctigenin's antimicrobial and immunomodulatory capabilities make it a promising candidate for investigating its potential as an anti-DENV and anti-CHIKV agent. PURPOSE: The aim of the study was to explore the anti-DENV and anti-CHIKV effects of arctigenin and identify the possible mechanisms of action. METHODS: The anti-DENV or anti-CHIKV effects of arctigenin was assessed using various in vitro and in silico approaches. Vero CCL-81 cells were infected with DENV or CHIKV and treated with arctigenin at different concentrations, temperature, and time points to ascertain the effect of the compound on virus entry or replication. In silico molecular docking was performed to identify the interactions of the compound with viral proteins. RESULTS: Arctigenin had no effects on DENV. Various time- and temperature-dependent assays revealed that arctigenin significantly reduced CHIKV RNA copy number and infectious virus particles and affected viral entry. Entry bypass assay revealed that arctigenin inhibited the initial steps of viral replication. In silico docking results revealed the high binding affinity of the compound with the E1 protein and the nsp3 macrodomain of CHIKV. CONCLUSION: This study demonstrates the in-vitro anti-CHIKV potential of arctigenin and suggests that the compound might affect CHIKV entry and replication. Further preclinical and clinical studies are needed to identify its safety and efficacy as an anti-CHIKV drug.


Asunto(s)
Antivirales , Arctium , Virus Chikungunya , Virus del Dengue , Furanos , Lignanos , Simulación del Acoplamiento Molecular , Replicación Viral , Furanos/farmacología , Lignanos/farmacología , Arctium/química , Virus Chikungunya/efectos de los fármacos , Animales , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Células Vero , Chlorocebus aethiops , Virus del Dengue/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Semillas/química
19.
J Obstet Gynaecol Res ; 50(5): 864-872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480480

RESUMEN

BACKGROUND: Ovarian cancer (OVCA) is prevalent in female reproductive organs. Despite recent advances, clinical outcomes remain poor, warranting fresh treatment avenues. Honokiol has an inhibitory effect on proliferation, invasion, and survival of cancer cells in vitro and in vivo. Therefore, this study intended to explore specific molecular mechanism by which honokiol affected OVCA progression. METHODS: Bioinformatics analyzed the drug honokiol that bound to OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2). Cellular thermal shift assay (CETSA) verified the binding relationship between honokiol and OTUB2. Cell counting kit 8 (CCK-8) tested the IC50 value and cell viability of OVCA cells after honokiol treatment. Corresponding assay kits determined malonic dialdehyde (MDA) and Fe2+ levels in OVCA cells. Flow cytometry measured reactive oxygen species levels. Western blot detected OTUB2, SLC7A11, and transcriptional co-activators Yes-associated protein (YAP) expression, and quantitative polymerase chain reaction (qPCR) detected OTUB2 expression. Immunohistochemistry (IHC) detected the expression level of Ki67 protein in tumor tissues. RESULTS: Honokiol was capable of inducing ferroptosis in OVCA cells. CETSA confirmed that honokiol could bind to OTUB2. Further cell functional and molecular experiments revealed that honokiol induced ferroptosis in OVCA cells via repression of YAP signaling pathway through binding to OTUB2. In addition, in vivo experiments have confirmed that honokiol could inhibit the growth of OVCA. CONCLUSION: Honokiol induced ferroptosis in OVCA cells via repression of YAP signaling pathway through binding to OTUB2, implicating that OTUB2 may be an effective target for OVCA treatment, and our study results may provide new directions for development of more effective OVCA treatment strategies.


Asunto(s)
Compuestos Alílicos , Compuestos de Bifenilo , Ferroptosis , Lignanos , Neoplasias Ováricas , Fenoles , Humanos , Femenino , Lignanos/farmacología , Ferroptosis/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Compuestos de Bifenilo/farmacología , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
20.
Phytother Res ; 38(5): 2462-2481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444049

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder where oxidative stress, induced by ferroptosis, has been linked to neuronal damage and cognitive deficits. The objective of this study is to investigate if the potential therapeutic agent, Curculigoside (CUR), could ameliorate AD by inhibiting ferroptosis. The potential therapeutic targets, such as GPX4 and SLC7A11, were identified using weighted gene co-expression network analysis (WGCNA). Concurrently, CUR was also screened against these potential targets using various analytical methods. For the in vivo studies, intragastric administration of CUR significantly ameliorated cognitive impairment in AD model mice induced by scopolamine and okadaic acid (OA). In vitro, CUR protected neuronal cells by altering the levels of ferroptosis-related specific markers in OA and scopolamine-induced neurotoxicity. The administration of CUR through intragastric route significantly reduced the levels of AD-promoting factors (such as Aß1-42, p-tau) and ferroptosis-promoting factors in the hippocampus and cortex of AD mice. Furthermore, CUR up-regulated the expression of GPX4 and decreased the expression of SLC7A11 in the ferroptosis signaling pathway, thereby increasing the ratio of glutathione (GSH)/oxidized glutathione (GSSG) in vivo and vitro. In conclusion, the cumulative results suggest that the natural compound CUR may serve as a promising therapeutic agent to ameliorate AD by inhibiting ferroptosis.


Asunto(s)
Enfermedad de Alzheimer , Benzoatos , Modelos Animales de Enfermedad , Ferroptosis , Glucósidos , Lignanos , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones , Glucósidos/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Masculino , Lignanos/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Medicina Tradicional China , Ratones Endogámicos C57BL , Medicamentos Herbarios Chinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...