Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 399
Filtrar
1.
J Clin Invest ; 134(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747287

RESUMEN

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Asunto(s)
Angiopoyetina 2 , Proteína Forkhead Box O1 , Canales Iónicos , Linfangiogénesis , Linfedema , Receptor TIE-1 , Transducción de Señal , Canales Iónicos/metabolismo , Canales Iónicos/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Animales , Angiopoyetina 2/metabolismo , Angiopoyetina 2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patología , Ratones , Linfangiogénesis/genética , Receptor TIE-1/metabolismo , Receptor TIE-1/genética , Células Endoteliales/metabolismo , Mecanotransducción Celular , Proteína ADAM17/metabolismo , Proteína ADAM17/genética
2.
PLoS One ; 19(5): e0302926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718095

RESUMEN

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of ZMIZ1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.


Asunto(s)
Proliferación Celular , Células Endoteliales , Proteínas de Homeodominio , Vasos Linfáticos , Ratones Noqueados , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Células Endoteliales/metabolismo , Humanos , Ratones , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/citología , Movimiento Celular/genética , Regulación de la Expresión Génica , Linfangiogénesis/genética
3.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722096

RESUMEN

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Asunto(s)
Células Endoteliales , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Vasos Linfáticos , Proteínas Supresoras de Tumor , Proteínas de Pez Cebra , Pez Cebra , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Pez Cebra/genética , Pez Cebra/embriología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Elementos de Facilitación Genéticos/genética , Vasos Linfáticos/metabolismo , Vasos Linfáticos/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células Endoteliales/metabolismo , Linfangiogénesis/genética , Sistemas CRISPR-Cas/genética , Regiones Promotoras Genéticas/genética , Ratones
4.
Cancer Commun (Lond) ; 44(3): 361-383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407929

RESUMEN

BACKGROUND: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.


Asunto(s)
Proteínas 14-3-3 , Carcinoma de Células Renales , Proteínas Portadoras , Neoplasias Renales , Acetiltransferasas N-Terminal , Proteínas Señalizadoras YAP , Animales , Ratones , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Linfangiogénesis/genética , Procesos Neoplásicos , Proteínas Portadoras/metabolismo , Acetiltransferasas N-Terminal/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Señalizadoras YAP/metabolismo
5.
Tissue Cell ; 87: 102314, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309204

RESUMEN

Lymphatic metastasis is a common metastasis of lung adenocarcinoma (LUAD). The current study illustrated the action of lncRNA NKX2-1-AS1 in lymphangiogenesis in LUAD and the underlying mechanisms. Clinical tissue samples were collected for determining NKX2-1-AS1 expression. Then, H441 and H661 cells were selected to perform gain- and loss-of-function assays for dissecting the roles of NKX2-1-AS1 in LUAD cell proliferation and migration. Besides, H441 and H661 cell supernatant was harvested to stimulate HLECs for assessing tube formation ability. Interaction among NKX2-1-AS1, ERG, and fatty acid binding protein 4 (FABP4) was validated through luciferase and RIP assays. NKX2-1-AS1 was highly-expressed in LUAD tissues. Silencing NKX2-1-AS1 suppressed H441 and H661 cell proliferation and migration, reduced expression levels of lymphangiogenesis-related factors (LYVE-1, VEGF-C, VEGFR3, VEGF-A, VEGFR2, and CCR7), and inhibited HLEC tube formation. Interaction validation demonstrated that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG. Overexpression of FABP4 could effectively block the inhibition role of NKX2-1-AS1 silencing in lymphangiogenesis in H441 and H661 cells. This study provided evidence that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG to facilitate the proliferation and migration of LUAD cells and tube formation of HLECs, thus participating in lymphangiogenesis.


Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , Adenocarcinoma/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfangiogénesis/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
6.
Cell Commun Signal ; 22(1): 67, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273312

RESUMEN

Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae. Specifically, CuNPs stress induced hypermethylation of E2F7/8 binding sites on CCBE1 promoters via their producing ROS, thereby leading to the reduction of binding enrichment of E2F7/8 on CCBE1 promoter and its subsequently reduced expression, then resulting in defective lymphatic vessel formation. Differently, AgNPs stress induced down-regulated CCBE1 expression via down-regulating mRNA and protein levels of E2F7/8 transcription factors, thereby resulting in defective lymphatic vessel formation. This study may be the first to demonstrate that CuNPs and AgNPs damaged lymphangiogenesis during zebrafish embryogenesis, mechanistically, CuNPs epigenetically regulated the expression of lymphangiogenesis regulator CCBE1 via hypermethylating its promoter binding sites of E2F7/8, while AgNPs via regulating E2F7/8 expression. Meanwhile, overexpression of ccbe1 mRNA effectively rescued the lymphangiogenesis defects in both AgNPs and CuNPs stressed larvae, while overexpression of e2f7/8 mRNA effectively rescued the lymphangiogenesis defects in AgNPs rather than CuNPs stressed larvae. The results in this study will shed some light on the safety assessment of nanomaterials applied in medicine and on the ecological security assessments of nanomaterials. Video Abstract.


Asunto(s)
Nanopartículas del Metal , Pez Cebra , Animales , Pez Cebra/metabolismo , Linfangiogénesis/genética , Cobre/química , Plata/farmacología , Plata/química , Plata/metabolismo , ARN Mensajero/metabolismo
7.
Signal Transduct Target Ther ; 9(1): 9, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172098

RESUMEN

Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.


Asunto(s)
Vasos Linfáticos , Humanos , Vasos Linfáticos/patología , Vasos Linfáticos/fisiología , Linfangiogénesis/genética , Transducción de Señal/genética
8.
BMC Med Genomics ; 17(1): 2, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167072

RESUMEN

BACKGROUND: Lymphangiogenesis plays an important role in tumor progression and is significantly associated with tumor immune infiltration. However, the role and mechanisms of lymphangiogenesis in colorectal cancer (CRC) are still unknown. Thus, the objective is to identify the lymphangiogenesis-related genes associated with immune infiltration and investigation of their prognosis value. METHODS: mRNA expression profiles and corresponding clinical information of CRC samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The lymphangiogenesis-related genes (LymRGs) were collected from the Molecular Signatures database (MSigDB). Lymphangiogenesis score (LymScore) and immune cell infiltrating levels were quantified using ssGSEA. LymScore) and immune cell infiltrating levels-related hub genes were identified using weighted gene co-expression network analysis (WGCNA). Univariate Cox and LASSO regression analyses were performed to identify the prognostic gene signature and construct a risk model. Furthermore, a predictive nomogram was constructed based on the independent risk factor generated from a multivariate Cox model. RESULTS: A total of 1076 LymScore and immune cell infiltrating levels-related hub genes from three key modules were identified by WGCNA. Lymscore is positively associated with natural killer cells as well as regulator T cells infiltrating. These modular genes were enriched in extracellular matrix and structure, collagen fibril organization, cell-substrate adhesion, etc. NUMBL, TSPAN11, PHF21A, PDGFRA, ZNF385A, and RIMKLB were eventually identified as the prognostic gene signature in CRC. And patients were divided into high-risk and low-risk groups based on the median risk score, the patients in the high-risk group indicated poor survival and were predisposed to metastasis and advanced stages. NUMBL and PHF21A were upregulated but PDGFRA was downregulated in tumor samples compared with normal samples in the Human Protein Atlas (HPA) database. CONCLUSION: Our finding highlights the critical role of lymphangiogenesis in CRC progression and metastasis and provides a novel gene signature for CRC and novel therapeutic strategies for anti-lymphangiogenic therapies in CRC.


Asunto(s)
Neoplasias Colorrectales , Linfangiogénesis , Humanos , Linfangiogénesis/genética , Biología Computacional , Bases de Datos de Proteínas , Perfilación de la Expresión Génica , Neoplasias Colorrectales/genética , Pronóstico , Tetraspaninas
9.
Cancer Res ; 84(3): 434-448, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991737

RESUMEN

Aberrant gene expression is a prominent feature of metastatic cancer. Translational initiation is a vital step in fine-tuning gene expression. Thus, exploring translation initiation regulators may identify therapeutic targets for preventing and treating metastasis. Herein, we identified that DHCR24 was overexpressed in lymph node (LN) metastatic bladder cancer and correlated with poor prognosis of patients. DHCR24 promoted lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Mechanistically, DHCR24 mediated and recognized the SUMO2 modification at lysine 108 of hnRNPA2B1 to foster TBK1 mRNA circularization and eIF4F initiation complex assembly by enhancing hnRNPA2B1-eIF4G1 interaction. Moreover, DHCR24 directly anchored to TBK1 mRNA 3'-untranslated region to increase its stability, thus forming a feed forward loop to elevate TBK1 expression. TBK1 activated PI3K/Akt signaling to promote VEGFC secretion, resulting in lymphangiogenesis and LN metastasis. DHCR24 silencing significantly impeded bladder cancer lymphangiogenesis and lymphatic metastasis in a patient-derived xenograft model. Collectively, these findings elucidate DHCR24-mediated translation machinery that promotes lymphatic metastasis of bladder cancer and supports the potential application of DHCR24-targeted therapy for LN-metastatic bladder cancer. SIGNIFICANCE: DHCR24 is a SUMOylation regulator that controls translation initiation complex assembly and orchestrates TBK1 mRNA circularization to activate Akt/VEGFC signaling, which stimulates lymphangiogenesis and promotes lymph node metastasis in bladder cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Vejiga Urinaria , Humanos , Metástasis Linfática , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sumoilación , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/patología , Linfangiogénesis/genética
10.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068914

RESUMEN

The lymphatic vascular system plays a key role in cancer progression. Indeed, the activation of lymphatic endothelial cells (LECs) through the lymphangiogenic process allows for the formation of new lymphatic vessels (LVs) that represent the major route for the dissemination of solid tumors. This process is governed by a plethora of cancer-derived and microevironmental mediators that strictly activate and control specific molecular pathways in LECs. In this work we used an in vitro model of LEC activation to trigger lymphangiogenesis using a mix of recombinant pro-lymphangiogenic factors (VFS) and a co-culture system with human melanoma cells. Both systems efficiently activated LECs, and under these experimental conditions, RNA sequencing was exploited to unveil the transcriptional profile of activated LECs. Our data demonstrate that both recombinant and tumor cell-mediated activation trigger significant molecular pathways associated with endothelial activation, morphogenesis, and cytokine-mediated signaling. In addition, this system provides information on new genes to be further investigated in the lymphangiogenesis process and open the possibility for further exploitation in other tumor contexts where lymphatic dissemination plays a relevant role.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Humanos , Células Endoteliales/metabolismo , Metástasis Linfática/patología , Vasos Linfáticos/metabolismo , Linfangiogénesis/genética , Morfogénesis
11.
Front Biosci (Landmark Ed) ; 28(11): 277, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-38062830

RESUMEN

BACKGROUND: The dilation of lymphatic vessels plays a critical role in maintaining heart function, while a lack thereof could contribute to heart failure (HF), and subsequently to an acute myocardial infarction (AMI). Macrophages participate in the induction of lymphangiogenesis by secreting vascular endothelial cell growth factor C (VEGF-C), although the precise mechanism remains unclear. METHODS: Intramyocardial injections of adeno-associated viruses (AAV9) to inhibit the expression of VEGFR3 (VEGFR3 shRNA) or promote the expression of VEGFR3 (VEGFR3 ORF) in the heart; Myh6-mCherry B6 D2-tg mice and flow cytometry were used to evaluate the number of myocellular debris in the mediastinal lymph nodes; fluorescence staining and qPCR were used to evaluate fluorescence analysis; seahorse experiment was used to evaluate the level of glycolysis of macrophages; Lyz2𝐶𝑟𝑒, VEGFCfl/fl, and PFKFB3fl/fl mice were used as a model to knock out the expression of VEGF-C and PFKFB3 in macrophages. RESULTS: The escalation of VEGFR3 in cardiac tissue can facilitate the drainage of myocardial debris to the mediastinal lymph nodes, thereby improving cardiac function and reducing fibrosis after reperfusion injury. Conversely, myeloid VEGF-C deficiency displayed an increase in macrophage counts and inflammation levels following reperfusion injury. The inhibition of the critical enzyme PFKFB3 in macrophage glycolysis can stimulate the manifestation of VEGF-C in macrophages. A deficiency in myeloid PFKFB3 is associated with induced lymphangiogenesis following reperfusion injury. CONCLUSIONS: Our initial investigations suggest that the suppression of PFKFB3 expression in macrophages could potentially stimulate the production of VEGF-C in these immune cells, which in turn may facilitate lymphangiogenesis and mitigate the inflammatory effects of I/R injury.


Asunto(s)
Linfangiogénesis , Infarto del Miocardio , Fosfofructoquinasa-2 , Daño por Reperfusión , Animales , Ratones , Linfangiogénesis/genética , Linfangiogénesis/fisiología , Macrófagos/metabolismo , Infarto del Miocardio/genética , Daño por Reperfusión/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo
12.
Mol Biol Rep ; 51(1): 14, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085375

RESUMEN

Typically associated with solid tumors, hypoxia contributes to tumor angiogenesis and lymphangiogenesis through various molecular mechanisms. Accumulating studies indicate that hypoxia-inducible factor is the key transcription factor coordinating endothelial cells to respond to hypoxia in urological cancers, mainly renal cell carcinoma, prostate cancer, and bladder cancer. Moreover, it has been suggested that tumor hypoxia in tumor microenvironment simultaneously recruits stromal cells to suppress immune activities. This review summarizes the mechanisms by which HIF regulates tumorigenesis and elaborates on the associations between HIF and angiogenesis, lymphangiogenesis, and tumor microenvironment in urological cancers.


Asunto(s)
Linfangiogénesis , Neoplasias de la Vejiga Urinaria , Masculino , Humanos , Linfangiogénesis/genética , Microambiente Tumoral/genética , Células Endoteliales , Angiogénesis , Hipoxia , Neoplasias de la Vejiga Urinaria/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
13.
Cancer Commun (Lond) ; 43(12): 1289-1311, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37483113

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a vital role in facilitating tumor progression through extensive reciprocal interplay with cancer cells. Tumor-derived extracellular vesicles (EVs) are the critical mediators involved in the crosstalk between cancer cells and stromal cells, contributing to the metastasis of cancers. Yet, the biological mechanisms of tumor-derived EVs in triggering CAFs phenotype to stimulate the lymph node (LN) metastasis of bladder cancer (BCa) are largely unknown. Here, we aimed to explore the effects and molecular mechanisms of tumor-derived EV-mediated CAFs phenotype in regulating BCa LN metastasis. METHODS: The high-throughput sequencing was utilized to identify the crucial long non-coding RNA (lncRNA) associated with CAF enrichment in BCa. The functional role of the transition of fibroblasts to CAFs induced by LINC00665-mediated EVs was investigated through the in vitro and in vivo assays. Chromatin isolation by RNA purification assays, fluorescence resonance energy transfer assays, cytokine profiling and patient-derived xenograft (PDX) model were performed to explore the underlying mechanism of LINC00665 in the LN metastasis of BCa. RESULTS: We found that CAFs are widely enriched in the tumor microenvironment of BCa, which correlated with BCa lymphangiogenesis and LN metastasis. We then identified a CAF-associated long non-coding RNA, LINC00665, which acted as a crucial mediator of CAF infiltration in BCa. Clinically, LINC00665 was associated with LN metastasis and poor prognosis in patients with BCa. Mechanistically, LINC00665 transcriptionally upregulated RAB27B expression and induced H3K4me3 modification on the promoter of RAB27B through the recruitment of hnRNPL. Moreover, RAB27B-induced EVs secretion endowed fibroblasts with the CAF phenotype, which reciprocally induced LINC00665 overexpression to form a RAB27B-HGF-c-Myc positive feedback loop, enhancing the lymphangiogenesis and LN metastasis of BCa. Importantly, we demonstrated that blocking EV-transmitted LINC00665 or HGF broke this loop and impaired BCa lymphangiogenesis in a PDX model. CONCLUSION: Our study uncovers a precise mechanism that LINC00665 sustains BCa LN metastasis by inducing a RAB27B-HGF-c-Myc positive feedback loop between BCa cells and fibroblasts, suggesting that LINC00665 could be a promising therapeutic target for patients with LN metastatic BCa.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Metástasis Linfática , Linfangiogénesis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Retroalimentación , Neoplasias de la Vejiga Urinaria/patología , Fibroblastos/metabolismo , Modelos Animales de Enfermedad , Microambiente Tumoral/genética , Factor de Crecimiento de Hepatocito/metabolismo
14.
Melanoma Res ; 33(5): 375-387, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37307530

RESUMEN

Melanoma is one of the most common cancers in the world. The main routes of tumor progression are related to angiogenesis and lymphangiogenesis. These routes can occur by local invasion, which is called angiolymphatic invasion (ALI). In this study, we assess gene expression of relevant biomarkers of angiogenesis and lymphangiogenesis in 80 FFPE melanoma samples to determine a molecular profile that correlates with ALI, tumor progression, and disease-free survival. The results were enhanced by a posttranscriptional analysis by an immunofluorescence assay. Three SNPs in the VEGFR-2 gene were genotyped in 237 malignant melanoma (MM) blood DNA samples by qPCR. A significant correlation was found for LYVE -1 and ALI, qualitative ( P  = 0.017) and quantitative ( P  = 0.005). An increased expression of protein LIVE-1 in ALI samples supported these results ( P  = 0.032). VEGFR2 was lower in patients who showed disease progression ( P  = 0.005) and protein VEGFR2 posttranscriptional expression decreased ( P  = 0.016). DFS curves showed differences ( P  = 0.023) for VEGFR2 expression detected versus the absence of VEGFR2 expression. No significant influence on DFS was detected for the remaining analyzed genes. Cox regression analysis suggested that VEGFR2 expression has a protective role (HR = 0.728; 95% CI = 0.552-0.962; P  = 0.025) on disease progression. No significant association was found between any of the studied SNPs of VEGFR2 and DFS or progression rate. Our main results suggest that LYVE-1 gene expression is closely related to ALI; the relationship with the development of metastases in MM deserves further studies. Low expression of VEGFR2 was associated with disease progression and the expression of VEGFR2 correlates with an increased DFS.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/genética , Supervivencia sin Enfermedad , Linfangiogénesis/genética , Progresión de la Enfermedad , Melanoma Cutáneo Maligno
15.
Aging (Albany NY) ; 15(11): 4774-4793, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286356

RESUMEN

Lymph node metastasis is a recognized prognostic factor in esophageal cancer. Adipokines, including visfatin, and the molecule vascular endothelial growth factor (VEGF)-C, are implicated in lymphangiogenesis, but whether any association exists between esophageal cancer, adipokines and VEGF-C is unknown. We examined the relevance of adipokines and VEGF-C in esophageal squamous cell carcinoma (ESCC) in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We found significantly higher levels of visfatin and VEGF-C expression in esophageal cancer tissue than in normal tissue. Immunohistochemistry (IHC) staining identified that higher levels of visfatin and VEGF-C expression were correlated with advanced stage ESCC. Visfatin treatment of ESCC cell lines upregulated VEGF-C expression and VEGF-C-dependent lymphangiogenesis in lymphatic endothelial cells. Visfatin induced increases in VEGF-C expression by activating the mitogen-activated protein kinase kinases1/2-extracellular signal-regulated kinase (MEK1/2-ERK) and Nuclear Factor Kappa B (NF-κB) signaling cascades. Transfecting ESCC cells with MEK1/2-ERK and NF-κB inhibitors (PD98059, FR180204, PDTC, and TPCK) and siRNAs inhibited visfatin-induced increases in VEGF-C expression. It appears that visfatin and VEGF-C are promising therapeutic targets in the inhibition of lymphangiogenesis in esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , FN-kappa B/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Linfangiogénesis/genética , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Factor A de Crecimiento Endotelial Vascular , Adipoquinas
16.
Cancer Med ; 12(13): 14468-14483, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37184125

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC), an aggressive gastrointestinal tumor, often has high early lymphatic metastatic potential. Cancer-associated fibroblasts (CAFs) are primary components in tumor microenvironment (TME), and the impact of CAFs and its derived exosomes on lymphangiogenesis remains elusive. MATERIALS AND METHODS: CAFs and the microlymphatic vessel density (MLVD) in ESCC was examined. Exosomes were extracted from primary normal fibroblast (NFs) and CAFs. Subsequently, tumor-associated lymphatic endothelial cells (TLECs) were treated with these exosomes, and the effect on their biological behavior was examined. miR-100-5p was selected as the target miRNA, and its effect on TLECs was examined. The target of miR-100-5p was predicted and confirmed. Subsequently, IGF1R, PI3K, AKT, and p-AKT expression in TLECs and tumors treated with exosomes and miR-100-5p were examined. RESULTS: A large number of CAFs and microlymphatic vessels were present in ESCC, leading to a poor prognosis. CAF-derived exosomes promoted proliferation, migration, invasion, and tube formation in TLECs. Further, they also enhanced lymphangiogenesis in ESCC xenografts. miR-100-5p levels were significantly lower in CAF-derived exosomes than in NF-derived exosomes. miR-100-5p inhibited proliferation, migration, invasion, and tube formation in TLECs. Further, miR-100-5p inhibited lymphangiogenesis in ESCC xenografts. Mechanistic studies revealed that this inhibition was mediated by the miR-100-5p-induced inhibition of IGF1R/PI3K/AKT axis. CONCLUSION: Taken together, our study demonstrates that CAF-derived exosomes with decreased miR-100-5p levels exhibit pro-lymphangiogenesis capacity, suggesting a possibility of targeting IGF1R/PI3K/AKT axis as a strategy to inhibit lymphatic metastasis in ESCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Exosomas , MicroARNs , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Regulación hacia Abajo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Exosomas/metabolismo , Linfangiogénesis/genética , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Microambiente Tumoral/genética
17.
Funct Integr Genomics ; 23(2): 164, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37198330

RESUMEN

Interleukin-1 receptor antagonist (IL-1RA) has been shown to play an important role in cancer progression. However, its pathogenic effects and molecular mechanism in the malignant progression of esophageal squamous cell carcinoma (ESCC) remain largely unknown. This study was designed to explore the function of IL-1RA in ESCC and determine the relationship between IL-1RA and lymph node metastasis in ESCC patients. The clinical relevance of IL-1RA in relation to the clinicopathological features and prognosis of 100 ESCC patients was analyzed. The function and underlying mechanisms of IL-1RA in the growth, invasion, and lymphatic metastasis in ESCC were explored both in vitro and in vivo. The therapeutic effect of anakinra, an IL-1 receptor antagonist, on ESCC was also evaluated in animal experiments. Downregulation of IL-1RA was observed in ESCC tissues and cells and was found to be strongly correlated with pathological stage (P = 0.034) and lymphatic metastasis (P = 0.038). Functional assays demonstrated that upregulation of IL-1RA reduced cell proliferation, migration, and lymphangiogenesis both in vitro and in vivo. Mechanistic studies revealed that overexpression of IL-1RA activated the epithelial-to-mesenchymal transition (EMT) in the ESCC cells through activation of MMP9 and regulation of the expression and secretion of VEGF-C through the PI3K/NF-κB pathway. Anakinra treatment resulted in significant inhibition of tumor growth, lymphangiogenesis, and metastasis. IL-1RA inhibits lymph node metastasis of ESCC by regulating the EMT through activation of matrix metalloproteinase 9(MMP9) and lymphangiogenesis, driven by VEGF-C and the NF-κB signaling pathway. Anakinra may be an effective drug for the inhibition of ESCC tumor formation and lymph node metastasis.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Linfangiogénesis/genética , Metástasis Linfática , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/genética , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo
18.
Int J Med Sci ; 20(6): 754-770, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213667

RESUMEN

Background: Lymphangiogenesis represents a key event in the progression and metastasis of patients with clear cell renal cell carcinoma (ccRCC). Nevertheless, the prognostic value of lymphangiogenesis-related genes (LRGs) in ccRCC patients remains unknown. Method: Differential analyses were performed to identify differentially expressed LRGs between normal and tumor tissues. A univariate Cox analysis was performed to identify differently expressed LRGs associated with overall survival (OS). LASSO and multivariate Cox analyses were performed to construct and optimize the LRG signature. To further explore the molecular characterization of the LRG signature, a functional enrichment analysis, immune signature, somatic mutations, and drug sensitivity were assessed. Immunohistochemistry (IHC) and immunofluorescence staining were performed to validate the relationship between lymphangiogenesis and immunity using our ccRCC samples. Results: Four candidate genes (IL4, CSF2, PROX1, and TEK) were eventually available to construct the LRG signature in the training set. Patients in the high-risk group had a shorter survival than those in the low-risk group. The LRG signature was an independent prognostic factor of OS. These results were confirmed in the validation group. The LRG signature was correlated with immunosuppressive cell infiltration, T cell exhaustion markers, somatic mutations, and drug sensitivity. The IHC and immunofluorescence staining results confirmed the correlation between lymphangiogenesis and CD163+ macrophages, exhausted CD8+PD-1+, and CD8+ LAG3+ T cells. Conclusion: A novel prognostic signature based on LRGs could provide insight into the prognostic evaluation and treatment of ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Linfangiogénesis/genética , Pronóstico , Complejo CD3 , Inmunosupresores , Neoplasias Renales/genética , Microambiente Tumoral/genética
19.
J Biomater Appl ; 37(10): 1858-1873, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37082911

RESUMEN

BACKGROUND: Commercial fibrin glue is increasingly finding its way into clinical practice in surgeries to seal anastomosis, and initiate hemostasis or tissue repair. Human biological glue is also being discussed as a possible cell carrier. To date, there are only a few studies addressing the effects of fibrin glue on the cell-molecular level. This study examines the effects of fibrin glue on angiogenesis and lymphangiogenesis, as well as adipose-derived stem cells (ASCs) with a focus on gene and protein expression in scaffolds regularly used for tissue engineering approaches. METHODS: Collagen-based dermal regeneration matrices (DRM) were seeded with human umbilical vein endothelial cells (HUVEC), human dermal lymphatic endothelial cells (LECs), or adipose-derived stem cells (ASC) and fixed with or without fibrin glue according to the experimental group. Cultures were maintained for 1 and 7 days. Finally, angiogenic and lymphangiogenic gene and protein expression were measured with special regard to subtypes of vascular endothelial growth factor (VEGF) and corresponding receptors using Multiplex-qPCR and ELISA assays. In addition, the hypoxia-induced factor 1-alpha (HIF1a) mediated intracellular signaling pathways were included in assessments to analyze a hypoxic encapsulating effect of fibrin polymers. RESULTS: All cell types reacted to fibrin glue application with an alteration of gene and protein expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth receptor 1 (VEGFR1/FLT1), vascular endothelial growth receptor 2 (VEGFR2/KDR), vascular endothelial growth receptor 3 (VEGFR3/FLT4) and Prospero Homeobox 1 (PROX1) were depressed significantly depending on fibrin glue. Especially short-term fibrin effect led to a continuous downregulation of respective gene and protein expression in HUVECs, LECs, and ASCs. CONCLUSION: Our findings demonstrate the impact of fibrin glue application in dermal regeneration with special regard to angiogenesis and lymphangiogenesis. In particular, a short fibrin treatment of 24 hours led to a decrease in gene and protein levels of LECS, HUVECs, and ASCs. In contrast, the long-term application showed less effect on gene and protein expressions. Therefore, this work demonstrated the negative effects of fibrin-treated cells in tissue engineering approaches and could affect wound healing during dermal regeneration.


Asunto(s)
Linfangiogénesis , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Linfangiogénesis/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Adhesivo de Tejido de Fibrina/farmacología , Adhesivo de Tejido de Fibrina/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo
20.
J Cell Biol ; 222(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37036444

RESUMEN

Homeostatic maintenance and repair of lymphatic vessels are essential for health. We investigated the dynamics and the molecular mechanisms of lymphatic endothelial cell (LEC) renewal in adult mesenteric quiescent lymphatic vasculature using label-retention, lineage tracing, and cell ablation strategies. Unlike during development, adult LEC turnover and proliferation was confined to the valve regions of collecting vessels, with valve cells displaying the shortest lifespan. Proliferating valve sinus LECs were the main source for maintenance and repair of lymphatic valves. We identified mechanistic target of rapamycin complex 1 (mTORC1) as a mechanoresponsive pathway activated by fluid shear stress in LECs. Depending on the shear stress level, mTORC1 activity drives division of valve cells or dictates their mechanic resilience through increased protein synthesis. Overactivation of lymphatic mTORC1 in vivo promoted supernumerary valve formation. Our work provides insights into the molecular mechanisms of maintenance of healthy lymphatic vascular system.


Asunto(s)
Vasos Linfáticos , Diana Mecanicista del Complejo 1 de la Rapamicina , Células Endoteliales/metabolismo , Homeostasis , Linfangiogénesis/genética , Vasos Linfáticos/metabolismo , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...