Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 977
Filtrar
1.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38774451

RESUMEN

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
4.
Sci Rep ; 14(1): 7863, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570586

RESUMEN

Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.


Asunto(s)
Linfoma de Células del Manto , Humanos , Adulto , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Resistencia a Antineoplásicos/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Oxidación-Reducción , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
5.
Cancer Lett ; 591: 216877, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615930

RESUMEN

Mantle cell lymphoma (MCL) is an incurable and aggressive subtype of non-Hodgkin B-cell lymphoma. Increased lipid uptake, storage, and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. However, no data has been explored for the roles of lipid metabolism reprogramming in MCL. Here, we identified aberrant lipid metabolism reprogramming and PRMT5 as a key regulator of cholesterol and fatty acid metabolism reprogramming in MCL patients. High PRMT5 expression predicts adverse outcome prognosis in 105 patients with MCL and GEO database (GSE93291). PRMT5 deficiency resulted in proliferation defects and cell death by CRISPR/Cas9 editing. Moreover, PRMT5 inhibitors including SH3765 and EPZ015666 worked through blocking SREBP1/2 and FASN expression in MCL. Furthermore, PRMT5 was significantly associated with MYC expression in 105 MCL samples and the GEO database (GSE93291). CRISPR MYC knockout indicated PRMT5 can promote MCL outgrowth by inducing SREBP1/2 and FASN expression through the MYC pathway.


Asunto(s)
Proliferación Celular , Acido Graso Sintasa Tipo I , Metabolismo de los Lípidos , Linfoma de Células del Manto , Proteína-Arginina N-Metiltransferasas , Proteínas Proto-Oncogénicas c-myc , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Humanos , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Acido Graso Sintasa Tipo I/metabolismo , Acido Graso Sintasa Tipo I/genética , Línea Celular Tumoral , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Regulación Neoplásica de la Expresión Génica , Animales , Ratones , Masculino , Pronóstico , Femenino , Colesterol/metabolismo , Sistemas CRISPR-Cas , Reprogramación Metabólica
6.
Hematol Oncol ; 42(3): e3268, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676394

RESUMEN

Mantle cell lymphoma (MCL) is an uncommon and incurable B-cell lymphoma subtype that has an aggressive course. Hepatitis B virus (HBV) infection has been associated with an increased risk for B-cell lymphomas, and is characterized by distinct clinical and genetic features. Here, we showed that 9.5% of MCL Chinese patients were hepatitis B surface antigen positive (HBsAg+). Compared to HBsAg-negative (HBsAg-) patients, HBsAg+ MCL patients had a greater incidence of elevated lactate dehydrogenase (LDH), but no difference was observed in the other clinical characteristics, including sex, age, ECOG ps, Ann Arbor stage, MIPI, extranodal involvement and Ki-67. The HD-AraC (high-dose cytarabine) regimen was the main first-line induction regimen for younger HBsAg+ patients, and cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) were used for elderly patients. HBsAg seropositivity was associated with a significantly shorter PFS than HBsAg seronegativity when patients were treated with rituximab or CHOP-based regimens. Compared with CHOP, the HD-AraC regimen was associated with longer PFS in HBsAg+ patients. Treatment with a Bruton tyrosine kinase inhibitor (BTKi) alone can also cause HBV reactivation. Among the 74 patients who underwent targeted deep sequencing (TDS), the nonsynonymous mutation load of HBsAg+ MCL patients was greater than that of HBsAg- MCL patients. HDAC1, TRAF5, FGFR4, SMAD2, JAK3, SMC1A, ZAP70, BLM, CDK12, PLCG2, SMO, TP63, NF1, PTPR, EPHA2, RPTOR and FIP1L1 were significantly enriched in HBsAg+ MCL patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Virus de la Hepatitis B , Hepatitis B , Linfoma de Células del Manto , Mutación , Humanos , Masculino , Femenino , Persona de Mediana Edad , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Anciano , Virus de la Hepatitis B/genética , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Hepatitis B/complicaciones , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Hepatitis B/patología , Anciano de 80 o más Años , Antígenos de Superficie de la Hepatitis B/sangre , Vincristina/uso terapéutico , Vincristina/administración & dosificación , Ciclofosfamida/uso terapéutico , Ciclofosfamida/administración & dosificación , Doxorrubicina/uso terapéutico , Doxorrubicina/administración & dosificación , Resultado del Tratamiento
7.
Cell Rep Med ; 5(4): 101484, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38554704

RESUMEN

The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.


Asunto(s)
Adenina/análogos & derivados , Linfoma de Células del Manto , Piperidinas , Proteínas Tirosina Quinasas , Humanos , Animales , Ratones , Adulto , Agammaglobulinemia Tirosina Quinasa/metabolismo , Resistencia a Antineoplásicos/genética , ADN Metiltransferasa 3A , Fosforilación Oxidativa , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Decitabina/metabolismo , Decitabina/uso terapéutico
8.
Hum Pathol ; 146: 1-7, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460798

RESUMEN

Enhancer of zeste homolog 2 (EZH2) expression is found in about 40% of mantle cell lymphoma (MCL) patients, which is associated with aggressive histology, high Ki-67 proliferation rate, p53 mutant pattern and inferior overall survival (OS). We conducted 11-gene (ATM, BIRC3, CCND1, KMT2C, KMT2D, NOTCH1, NOTCH2, RB1, TP53, TRAF2 and UBR5) next generation sequencing panel to shed more light on MCL with EZH2 expression (EZH2+ MCL). EZH2+ MCL more frequently harbor TP53 mutation compared to EZH2(-) MCL (41.2% vs. 19.1%, respectively, p = 0.045). TP53 mutation and EZH2 expression demonstrated overlapping features including aggressive histology, high Ki-67 proliferation rate and p53 mutant pattern by immunohistochemistry. Comparative analysis disclosed that EZH2 expression correlates with high Ki-67 proliferation rate irrespective of TP53 mutation. Aggressive histology is associated with EZH2 expression or TP53 mutation, possibly via independent mechanisms. p53 mutant pattern is due to TP53 mutation. MCL patients with EZH2 expression or TP53 mutation show inferior outcome and when both are present, patients have dismal outcome.


Asunto(s)
Biomarcadores de Tumor , Proteína Potenciadora del Homólogo Zeste 2 , Linfoma de Células del Manto , Mutación , Proteína p53 Supresora de Tumor , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/análisis , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/mortalidad , Proteína p53 Supresora de Tumor/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Anciano de 80 o más Años , Adulto , Análisis Mutacional de ADN , Inmunohistoquímica , Antígeno Ki-67/análisis , Antígeno Ki-67/metabolismo , Proliferación Celular
9.
Oncology (Williston Park) ; 38(2): 51-67, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38421601

RESUMEN

Mantle cell lymphoma (MCL) is an aggressive subtype of non-Hodgkin lymphoma characterized by the t(11;14) chromosomal translocation, which leads to the dysregulation of the cell cycle through overexpression of cyclin D1. Although advances in treatment have improved outcomes, in particular the introduction of Bruton tyrosine kinase inhibitors to the treatment armamentarium and more recently chimeric antigen receptor T-cell therapy, MCL often rapidly develops resistance and has a high rate of relapse. In addition, MCL is clinically heterogeneous. Response to treatment can vary, making it difficult to establish a standard treatment approach. Thus, there remains a significant need for more research on MCL biology, including those molecular mechanisms underpinning treatment response or lack thereof, so that novel agents may be identified and/or the use of existing agents may be optimized. At the Lymphoma Research Foundation's 20th MCL Scientific Consortium and Workshop, researchers gathered to discuss recent developments in both basic scientific and clinical research to continue to develop an understanding of MCL and improve outcomes for patients. This report, which includes a summary of each presentation, reviews the findings presented at the workshop and highlights opportunities, open questions, and areas for future study that would pave the way for a cure for this disease in the coming decades.


Asunto(s)
Linfoma de Células del Manto , Linfoma no Hodgkin , Humanos , Adulto , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/terapia , Inmunoterapia Adoptiva
10.
Curr Med Sci ; 44(1): 134-143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38273178

RESUMEN

OBJECTIVE: SUMO-specific protease 3 (SENP3), a member of the SUMO-specific protease family, reverses the SUMOylation of SUMO-2/3 conjugates. Dysregulation of SENP3 has been proven to be involved in the development of various tumors. However, its role in mantle cell lymphoma (MCL), a highly aggressive lymphoma, remains unclear. This study was aimed to elucidate the effect of SENP3 in MCL. METHODS: The expression of SENP3 in MCL cells and tissue samples was detected by RT-qPCR, Western blotting or immunohistochemistry. MCL cells with stable SENP3 knockdown were constructed using short hairpin RNAs. Cell proliferation was assessed by CCK-8 assay, and cell apoptosis was determined by flow cytometry. mRNA sequencing (mRNA-seq) was used to investigate the underlying mechanism of SENP3 knockdown on MCL development. A xenograft nude mouse model was established to evaluate the effect of SENP3 on MCL growth in vivo. RESULTS: SENP3 was upregulated in MCL patient samples and cells. Knockdown of SENP3 in MCL cells inhibited cell proliferation and promoted cell apoptosis. Meanwhile, the canonical Wnt signaling pathway and the expression of Wnt10a were suppressed after SENP3 knockdown. Furthermore, the growth of MCL cells in vivo was significantly inhibited after SENP3 knockdown in a xenograft nude mouse model. CONCLUSION: SENP3 participants in the development of MCL and may serve as a therapeutic target for MCL.


Asunto(s)
Linfoma de Células del Manto , Adulto , Animales , Humanos , Ratones , Apoptosis/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , Ratones Desnudos , Proteínas del Tejido Nervioso , Péptido Hidrolasas/uso terapéutico , ARN Mensajero , Proteínas Wnt/uso terapéutico
11.
Blood ; 143(19): 1953-1964, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38237141

RESUMEN

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Asunto(s)
Linfoma de Células del Manto , Proteína 1 que Contiene Dominios SAM y HD , Factores de Transcripción SOXC , Linfoma de Células del Manto/metabolismo , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Humanos , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Animales , Ratones , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Unión Proteica , Línea Celular Tumoral , Citarabina/farmacología
12.
Virchows Arch ; 484(3): 521-526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37962684

RESUMEN

Large B-cell lymphoma with IRF4 rearrangement (LBCL-IRF4) is a rare lymphoid neoplasm, usually occurring in the pediatric/young-adult age. Despite this, subsets of cases occur in elderly patients and express CD5, possibly entering the differential diagnosis with adult aggressive lymphomas, such as blastoid/pleomorphic mantle cell lymphoma (MCL-B/P). To better characterize the clinical-pathological features and differential diagnosis of LBCL-IRF4, we conducted a multi-centric study on 12 cases, focusing on CD5, Cyclin D1, and SOX11 expression. While most cases had typical presentation, adult-to-elderly age at diagnosis and unusual anatomic locations were reported in 3/12 (25.0%) and 2/12 (16.7%) patients, respectively. Histologically, CD5 was positive in 4/12 (33.3%) cases, Cyclin D1 was invariably negative, and SOX11 was weakly/partially expressed in 1/12 (8.3%) case. In conclusion, LBCL-IRF4 can have unconventional clinical presentations that may challenge its recognition. Although CD5 is frequently expressed, negativity for Cyclin D1 and SOX11 contributes to the differential diagnosis with MCL-B/P.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Adulto , Humanos , Niño , Anciano , Ciclina D1/genética , Linfoma de Células del Manto/diagnóstico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Linfoma de Células B Grandes Difuso/patología , Diagnóstico Diferencial , Fenotipo
13.
Cancer Treat Rev ; 122: 102651, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976759

RESUMEN

Over the past decades, significant strides have been made in understanding the pathobiology, prognosis, and treatment options for mantle cell lymphoma (MCL). The heterogeneity observed in MCL's biology, genomics, and clinical manifestations, including indolent and aggressive forms, is intricately linked to factors such as the mutational status of the variable region of the immunoglobulin heavy chain gene, epigenetic profiling, and Sox11 expression. Several intriguing subtypes of MCL, such as Cyclin D1-negative MCL, in situ mantle cell neoplasm, CCND1/IGH FISH-negative MCL, and the impact of karyotypic complexity on prognosis, have been explored. Notably, recent immunochemotherapy regimens have yielded long-lasting remissions in select patients. The therapeutic landscape for MCL is continuously evolving, with a shift towards nonchemotherapeutic agents like ibrutinib, acalabrutinib, and venetoclax. The introduction of BTK inhibitors has brought about a transformative change in MCL treatment. Nevertheless, the challenge of resistance to BTK inhibitors persists, prompting ongoing efforts to discover strategies for overcoming this resistance. These strategies encompass non-covalent BTK inhibitors, immunomodulatory agents, BCL2 inhibitors, and CAR-T cell therapy, either as standalone treatments or in combination regimens. Furthermore, developing novel drugs holds promise for further improving the survival of patients with relapsed or refractory MCL. In this comprehensive review, we methodically encapsulate MCL's clinical and pathological attributes and the factors influencing prognosis. We also undertake an in-depth examination of stratified treatment alternatives. We investigate conceivable resistance mechanisms in MCL from a genetic standpoint and offer precise insights into various therapeutic approaches for relapsed or refractory MCL.


Asunto(s)
Antineoplásicos , Linfoma de Células del Manto , Humanos , Adulto , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Pronóstico , Genómica
14.
Blood Adv ; 8(1): 150-163, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37782774

RESUMEN

ABSTRACT: Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or < 0.3). Single-cell RNA sequencing analysis demonstrated a strong shift in global gene expression, with upregulation of mTOR signaling in resistant PDX MCL samples. Targeted blockade of mTORC1 with temsirolimus overcame the PRMT5 inhibitor-resistant phenotype, displayed therapeutic synergy in resistant MCL cell lines, and improved survival of a resistant PDX.


Asunto(s)
Linfoma de Células del Manto , Humanos , Ratones , Animales , Adulto , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Transducción de Señal , Inhibidores Enzimáticos/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
15.
Virchows Arch ; 484(1): 15-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37530792

RESUMEN

Aggressive B-cell non-Hodgkin lymphomas are a heterogeneous group of diseases and our concepts are evolving as we learn more about their clinical, pathologic, molecular genetic features. Session IV of the 2020 EAHP Workshop covered aggressive, predominantly high-grade B-cell lymphomas, many that were difficult to classify. In this manuscript, we summarize the features of the submitted cases and highlight differential diagnostic difficulties. We specifically review issues related to high-grade B-cell lymphomas (HGBCLs) with MYC and BCL2 and/or BCL6 rearrangements including TdT expression in these cases, HGBCL, not otherwise specified, large B-cell lymphomas with IRF4 rearrangement, high-grade/large B-cell lymphomas with 11q aberration, Burkitt lymphoma, and pleomorphic mantle cell lymphoma. Since the workshop, the 5th edition of the WHO Classification for Haematolymphoid Tumours (WHO-HAEM5) and International Consensus Classification (ICC) 2022 were published. We endeavor to use the updated terminology.


Asunto(s)
Linfoma de Burkitt , Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Humanos , Adulto , Linfoma de Burkitt/genética , Linfoma de Células B Grandes Difuso/patología , Aberraciones Cromosómicas , Linfoma de Células del Manto/genética , Fenotipo , Proteínas Proto-Oncogénicas c-myc/genética , Reordenamiento Génico , Proteínas Proto-Oncogénicas c-bcl-2/genética
16.
Haematologica ; 109(4): 1171-1183, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646663

RESUMEN

The transcription factor MYC is a well-described oncogene with an important role in lymphomagenesis, but its significance for clinical outcome in mantle cell lymphoma (MCL) remains to be determined. We performed an investigation of the expression of MYC protein in a cohort of 251 MCL patients complemented by analyses of structural aberrations and mRNA, in a sub-cohort of patients. Fourteen percent (n=35) of patients showed high MYC protein expression with >20% positive cells (MYChigh), among whom only one translocation was identified, and 86% (n=216) of patients showed low MYC protein expression. Low copy number gains of MYC were detected in ten patients, but with no correlation to MYC protein levels. However, MYC mRNA levels correlated significantly to MYC protein levels with a R2 value of 0.76. Patients with a MYChigh tumor had both an independent inferior overall survival and an inferior progression-free survival (hazard ratio [HR]=2.03, 95% confidence interval [95% CI]: 1.2-3.4 and HR=2.2, 95% CI: 1.04-4.6, respectively) when adjusted for additional high-risk features. Patients with MYChigh tumors also tended to have additional high-risk features and to be older at diagnosis. A subgroup of 13 patients had concomitant MYChigh expression and TP53/p53 alterations and a substantially increased risk of progression (HR=16.9, 95% CI: 7.4-38.3) and death (HR=7.8, 95% CI: 4.4-14.1) with an average overall survival of only 0.9 years. In summary, we found that at diagnosis a subset of MCL patients (14%) overexpressed MYC protein, and had a poor prognosis but that MYC rearrangements were rare. Tumors with concurrent MYC overexpression and TP53/p53 alterations pinpointed MCL patients with a dismal prognosis with a median overall survival of less than 3 years. We propose that MYC needs to be assessed beyond the current high-risk factors in MCL in order to identify cases in need of alternative treatment.


Asunto(s)
Linfoma de Células del Manto , Adulto , Humanos , Proliferación Celular , Linfoma de Células del Manto/diagnóstico , Linfoma de Células del Manto/genética , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero , Translocación Genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Cancer Sci ; 115(2): 452-464, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050664

RESUMEN

B-cell receptor (BCR) signaling is critically activated and stable for mantle cell lymphoma (MCL), but the underlying mechanism of the activated BCR signaling pathway is not clear. The pathogenic basis of miR-17-92 cluster remains unclear although the oncogenic microRNA (miRNA) miR-17-92 cluster is highly expressed in patients with MCL. We revealed that miR-17-92 cluster overexpression is partly dependent on SOX11 expression and chromatin acetylation of MIR17HG enhancer regions. Moreover, miR-17-92 cluster regulates not only cell proliferation but BCR signaling activation in MCL cell lines. To comprehensively identify miR-17-92 cluster target genes, we performed pulldown-seq, where target RNA of miRNA was captured using the biotinylated miRNA mimics and magnetic bead-coated streptavidin, and quantified using next-generation sequencing. The pulldown-seq identified novel miRNA target genes, including tumor suppressors such as BTG2 (miR-19b), CDKN2A (miR-17), SYNE1 (miR-20a), TET2 (miR-18, miR-19b, and miR-92a), TNFRSF10A (miR-92a), and TRAF3 (miR-17). Notably, the gene expression profile data of patients with MCL revealed that BTG2 expression was negatively associated with that of BCR signature genes, and low BTG2 expression was associated with poor overall survival. Moreover, BTG2 silencing in MCL cell lines significantly induced BCR signaling overactivation and cell proliferation. Our results suggest an oncogenic role of miR-17-92 cluster-activating BCR signaling throughout BTG2 deregulation in MCL. Furthermore, this may contribute to the prediction of the therapeutic efficacy and improved outcomes of MCL.


Asunto(s)
Proteínas Inmediatas-Precoces , Linfoma de Células del Manto , MicroARNs , Humanos , Adulto , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , MicroARNs/metabolismo , Transducción de Señal/genética , Línea Celular , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Inmediatas-Precoces/genética , Proteínas Supresoras de Tumor/metabolismo
20.
Leuk Lymphoma ; 65(1): 1-13, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37800170

RESUMEN

Mantle cell lymphoma (MCL) primarily affects older adults, accounting for 3-10% of all non-Hodgkin lymphoma (NHL) in western countries. The disease course of MCL is heterogenous; driven by clinical, cytogenetics, and molecular features that shape differences in outcomes, including proliferation index, MIPI scores, and mutational profile such as TP53 aberration. The advent of novel agents has fundamentally evolved the treatment landscape for MCL with treatment strategies that can now be more effectively tailored based on both patient- and disease-specific factors. In this review, we discuss the major classes of novel agents used for the treatment of MCL, focusing on efficacy and notable toxicities of BTK inhibitors. We further examine effective novel combination regimens and, lastly, discuss future directions for the evolution of targeted approaches for the treatment of MCL.


Asunto(s)
Linfoma de Células del Manto , Humanos , Adulto , Anciano , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...