Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.452
Filtrar
1.
J Exp Med ; 221(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38842525

RESUMEN

The proliferation marker Ki67 has been attributed critical functions in maintaining mitotic chromosome morphology and heterochromatin organization during the cell cycle, indicating a potential role in developmental processes requiring rigid cell-cycle control. Here, we discovered that despite normal fecundity and organogenesis, germline deficiency in Ki67 resulted in substantial defects specifically in peripheral B and T lymphocytes. This was not due to impaired cell proliferation but rather to early lymphopoiesis at specific stages where antigen-receptor gene rearrangements occurred. We identified that Ki67 was required for normal global chromatin accessibility involving regulatory regions of genes critical for checkpoint stages in B cell lymphopoiesis. In line with this, mRNA expression of Rag1 was diminished and gene rearrangement was less efficient in the absence of Ki67. Transgenes encoding productively rearranged immunoglobulin heavy and light chains complemented Ki67 deficiency, completely rescuing early B cell development. Collectively, these results identify a unique contribution from Ki67 to somatic antigen-receptor gene rearrangement during lymphopoiesis.


Asunto(s)
Linfocitos B , Cromatina , Antígeno Ki-67 , Antígeno Ki-67/metabolismo , Animales , Cromatina/metabolismo , Cromatina/genética , Linfocitos B/metabolismo , Linfocitos B/inmunología , Linfopoyesis/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Ratones , Reordenamiento Génico , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Linfocitos T/metabolismo , Linfocitos T/inmunología , Ratones Endogámicos C57BL , Proliferación Celular/genética
2.
Trends Immunol ; 45(7): 495-510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38908962

RESUMEN

Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.


Asunto(s)
Envejecimiento , Linfopoyesis , Humanos , Envejecimiento/inmunología , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Linfoides/inmunología , Linfocitos B/inmunología , Animales , Diferenciación Celular , Células Asesinas Naturales/inmunología
3.
Nat Cell Biol ; 26(6): 991-1002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38866970

RESUMEN

The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.


Asunto(s)
Envejecimiento , Linfocitos B , Ensamble y Desensamble de Cromatina , Cadenas Pesadas de Inmunoglobulina , Linfopoyesis , Animales , Envejecimiento/genética , Envejecimiento/metabolismo , Linfocitos B/metabolismo , Linfopoyesis/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Cromatina/metabolismo , Cromatina/genética , Células Precursoras de Linfocitos B/metabolismo , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/inmunología , Ratones Endogámicos C57BL , Ratones , Diferenciación Celular , Ratones Noqueados
4.
Expert Rev Anticancer Ther ; 24(7): 493-512, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38690706

RESUMEN

INTRODUCTION: As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED: The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION: The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.


Asunto(s)
Desarrollo de Medicamentos , Linfoma , Linfopoyesis , Fosfatidilinositol 3-Quinasas , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/administración & dosificación , Linfoma/patología , Linfoma/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Progresión de la Enfermedad , Terapia Molecular Dirigida , Diseño de Fármacos , Diferenciación Celular
5.
Adv Immunol ; 161: 85-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763703

RESUMEN

Hematopoiesis, a process which generates blood and immune cells, changes significantly during mammalian development. Definitive hematopoiesis is marked by the emergence of long-term hematopoietic stem cells (HSCs). Here, we will focus on the post-transcriptional differences between fetal liver (FL) and adult bone marrow (ABM) HSCs. It remains unclear how or why exactly FL HSCs transition to ABM HSCs, but we aim to leverage their differences to revive an old idea: in utero HSC transplantation. Unexpectedly, the expression of certain RNA-binding proteins (RBPs) play an important role in HSC specification, and can be employed to convert or reprogram adult HSCs back to a fetal-like state. Among other features, FL HSCs have a broad differentiation capacity that includes the ability to regenerate both conventional B and T cells, as well as innate-like or unconventional lymphocytes such as B-1a and marginal zone B (MzB) cells. This chapter will focus on RNA binding proteins, namely LIN28B and IGF2BP3, that are expressed during fetal life and how they promote B-1a cell development. Furthermore, this chapter considers a potential clinical application of synthetic co-expression of LIN28B and IGF2BP3 in HSCs.


Asunto(s)
Linfocitos B , Células Madre Hematopoyéticas , Proteínas de Unión al ARN , Humanos , Animales , Proteínas de Unión al ARN/metabolismo , Células Madre Hematopoyéticas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Diferenciación Celular , Hematopoyesis , Procesamiento Postranscripcional del ARN , Linfopoyesis/genética , Trasplante de Células Madre Hematopoyéticas
6.
Nature ; 628(8006): 162-170, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538791

RESUMEN

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Asunto(s)
Inmunidad Adaptativa , Envejecimiento , Linaje de la Célula , Células Madre Hematopoyéticas , Linfocitos , Células Mieloides , Rejuvenecimiento , Animales , Femenino , Masculino , Ratones , Inmunidad Adaptativa/inmunología , Envejecimiento/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Inflamación/inmunología , Inflamación/patología , Linfocitos/citología , Linfocitos/inmunología , Linfopoyesis , Células Mieloides/citología , Células Mieloides/inmunología , Mielopoyesis , Fenotipo , Linfocitos T/citología , Linfocitos T/inmunología , Virus/inmunología
7.
Nature ; 627(8005): 839-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509363

RESUMEN

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Estrés Fisiológico , Animales , Femenino , Masculino , Ratones , Envejecimiento/fisiología , Infecciones Bacterianas/patología , Infecciones Bacterianas/fisiopatología , Vasos Sanguíneos/citología , Linaje de la Célula , Eritropoyesis , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemorragia/patología , Hemorragia/fisiopatología , Linfopoyesis , Megacariocitos/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Mielopoyesis , Cráneo/irrigación sanguínea , Cráneo/patología , Cráneo/fisiopatología , Esternón/irrigación sanguínea , Esternón/citología , Esternón/metabolismo , Estrés Fisiológico/fisiología , Tibia/irrigación sanguínea , Tibia/citología , Tibia/metabolismo
8.
J Leukoc Biol ; 116(1): 18-32, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38243586

RESUMEN

B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/etiología , Animales , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/genética , Linfopoyesis
10.
Fish Shellfish Immunol ; 144: 109273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072139

RESUMEN

Vaccination of farmed fish is the most effective prophylactic measure against contagious diseases but requires specific knowledge on when the adaptive immune system is fully developed. The present work describes kidney and spleen morphogenesis as well as B-cell development in the ballan wrasse (Labrus bergylta). The kidney was present at hatching (0 days pot hatching, dph) but was not lymphoid before larvae was 50-60 dph (stage 5), containing abundant Igµ+ cells. The spleen anlage was first observed in larvae at 20-30 dph and was later populated with B-cells. Unexpectedly, we found strong RAG1 signal together with abundant Igµ+ and IgM + cells in the exocrine pancreas of larvae from when the kidney was lymphoid and onwards, suggesting that B-cell lymphopoiesis occurs not only in the head kidney (HK) but also in pancreatic tissue. In this agastric fish, the pancreas is diffused along the intestine and the early presence of IgM+ B-cells in pancreatic tissue might have a role in maintain immune homeostasis in the peritoneal cavity, making a substantial contribution to early protection. IgM-secreting cells in HK indicate the presence of systemic IgM at stage 5, before the first IgM+ cells were identified in mucosal sites. This work together with our previous study on T-cell development in this species indicates that although T- and B-cells start to develop around the same time, B-cells migrate to mucosal tissues ahead of T-cells. This early migration likely involves the production of natural antibodies, contributing significantly to early protection. Moreover, a diet composed of barnacle nauplii did not result in an earlier onset of B-cell lymphopoiesis, as seen in the previous study analysing T-cell development. Nevertheless, components for adaptive immunity indicating putative immunocompetence is likely achieved in early juveniles (>100 dph). Additionally, maternal transfer of IgM to the offspring is also described. These findings provide important insights into the development of the immune system in ballan wrasse and lay the foundation for optimizing prophylactic strategies in the future. Furthermore, this work adds valuable information to broaden the knowledge on the immune system in lower vertebrates.


Asunto(s)
Linfopoyesis , Perciformes , Animales , Peces , Inmunoglobulina M , Páncreas
11.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38095286

RESUMEN

The spliceosome, a multi-megadalton ribonucleoprotein complex, is essential for pre-mRNA splicing in the nucleus and ensuring genomic stability. Its precise and dynamic assembly is pivotal for its function. Spliceosome malfunctions can lead to developmental abnormalities and potentially contribute to tumorigenesis. The specific role of the spliceosome in B cell development is poorly understood. Here, we reveal that the spliceosomal U2 snRNP component PHD finger protein 5A (Phf5a) is vital for early B cell development. Loss of Phf5a results in pronounced defects in B cell development, causing an arrest at the transition from pre-pro-B to early pro-B cell stage in the bone marrow of mutant mice. Phf5a-deficient B cells exhibit impaired immunoglobulin heavy (IgH) chain expression due to defective V-to-DJ gene rearrangement. Mechanistically, our findings suggest that Phf5a facilitates IgH gene rearrangement by regulating the activity of recombination-activating gene endonuclease and influencing chromatin interactions at the Igh locus.


Asunto(s)
Empalmosomas , Transactivadores , Animales , Ratones , Empalmosomas/metabolismo , Transactivadores/genética , Proteínas de Unión al ARN/metabolismo , Dedos de Zinc PHD , Linfopoyesis/genética
12.
Nat Immunol ; 24(12): 2080-2090, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957354

RESUMEN

Aberrant differentiation of progenitor cells in the hematopoietic system is known to severely impact host immune responsiveness. Here we demonstrate that NOD1, a cytosolic innate sensor of bacterial peptidoglycan, also functions in murine hematopoietic cells as a major regulator of both the generation and differentiation of lymphoid progenitors as well as peripheral T lymphocyte homeostasis. We further show that NOD1 mediates these functions by facilitating STAT5 signaling downstream of hematopoietic cytokines. In steady-state, loss of NOD1 resulted in a modest but significant decrease in numbers of mature T, B and natural killer cells. During systemic protozoan infection this defect was markedly enhanced, leading to host mortality. Lack of functional NOD1 also impaired T cell-dependent anti-tumor immunity while preventing colitis. These findings reveal that, in addition to its classical role as a bacterial ligand receptor, NOD1 plays an important function in regulating adaptive immunity through interaction with a major host cytokine signaling pathway.


Asunto(s)
Inmunidad Innata , Linfopoyesis , Animales , Ratones , Colitis , Ligandos , Transducción de Señal
13.
Leukemia ; 37(11): 2261-2275, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37670087

RESUMEN

The highly conserved MicroRNA-9 (miR-9) family consists of three members. We discovered that miR-9-1 deletion reduced mature miR-9 expression, causing 43% of the mice to display smaller size and postweaning lethality. MiR-9-1-deficient mice with growth defects experienced severe lymphopenia, but other blood cells were unaffected. The lymphopenia wasn't due to defects in hematopoietic progenitors, as mutant bone marrow (BM) cells underwent normal lymphopoiesis after transplantation into wild-type recipients. Additionally, miR-9-1-deficient mice exhibited impaired osteoblastic bone formation, as mutant mesenchymal stem cells (MSCs) failed to differentiate into osteoblastic cells (OBs). RNA sequencing revealed reduced expression of master transcription factors for osteoblastic differentiation, Runt-related transcription factor 2 (Runx2) and Osterix (Osx), and genes related to collagen formation, extracellular matrix organization, and cell adhesion, in miR-9-1-deficient MSCs. Follistatin (Fst), an antagonist of bone morphogenetic proteins (BMPs), was found to be a direct target of miR-9-1. Its deficiency led to the up-regulation of Fst, inhibiting BMP signaling in MSCs, and reducing IL-7 and IGF-1. Thus, miR-9-1 controls osteoblastic regulation of lymphopoiesis by targeting the Fst/BMP/Smad signaling axis.


Asunto(s)
Linfopenia , MicroARNs , Animales , Ratones , Linfopoyesis/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Osteoblastos/metabolismo
14.
Commun Biol ; 6(1): 996, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773433

RESUMEN

Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.


Asunto(s)
Linfopoyesis , Telómero , Animales , Ratones , Envejecimiento , Diferenciación Celular , Linfopoyesis/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
15.
Life Sci ; 331: 122043, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633415

RESUMEN

E3 ubiquitin ligases play an essential role in protein ubiquitination, which is involved in the regulation of protein degradation, protein-protein interactions and signal transduction. Increasing evidences have shed light on the emerging roles of E3 ubiquitin ligases in B-cell development and related malignances. This comprehensive review summarizes the current understanding of E3 ubiquitin ligases in B-cell development and their contribution to B-cell malignances, which could help explore the molecular mechanism of normal B-cell development and provide potential therapeutic targets of the related diseases.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Linfopoyesis , Ubiquitinación , Ubiquitinas/metabolismo
16.
Immunol Lett ; 261: 1-12, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37442242

RESUMEN

Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.


Asunto(s)
Células Madre Hematopoyéticas , Factores de Transcripción , Humanos , Ratones , Animales , Factores de Transcripción/metabolismo , Linfocitos B , Médula Ósea , Citocinas/metabolismo , Linfopoyesis , Diferenciación Celular
17.
Cell Rep ; 42(6): 112618, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294633

RESUMEN

Changes in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127-/+ early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127+ ELPs, which persists until puberty. A further developmental transition is observed in elderly individuals whereby B cell differentiation bypasses the CD127+ compartment and branches directly from CD10+ MLPs. Functional analyses indicate that these changes are determined at the level of hematopoietic stem cells. These findings provide insights for understanding identity and function of human MLPs and the establishment and maintenance of adaptative immunity.


Asunto(s)
Células Madre Hematopoyéticas , Linfopoyesis , Adulto , Humanos , Anciano , Diferenciación Celular , Linaje de la Célula , Hematopoyesis
18.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37092551

RESUMEN

Posttransplant cyclophosphamide (PTCy) is associated with a low incidence of chronic graft-versus-host disease (cGVHD) following hematopoietic stem cell (HSC) transplantation. Previous studies have shown the important roles of B cell immunity in cGVHD development. Here, we investigated the long-term reconstitution of B lymphopoiesis after PTCy using murine models. We first demonstrated that the immune homeostatic abnormality leading to cGVHD is characterized by an initial increase in effector T cells in the bone marrow and subsequent B and Treg cytopenia. PTCy, but not cyclosporine A or rapamycin, inhibits the initial alloreactive T cell response, which restores intra-bone marrow B lymphogenesis with a concomitant vigorous increase in Tregs. This leads to profound changes in posttransplant B cell homeostasis, including decreased B cell activating factors, increased transitional and regulatory B cells, and decreased germinal center B cells. To identify the cells responsible for PTCy-induced B cell tolerance, we selectively depleted Treg populations that were graft or HSC derived using DEREG mice. Deletion of either Treg population without PTCy resulted in critical B cytopenia. PTCy rescued B lymphopoiesis from graft-derived Treg deletion. In contrast, the negative effect of HSC-derived Treg deletion could not be overcome by PTCy, indicating that HSC-derived Tregs are essential for maintaining favorable B lymphopoiesis following PTCy. These findings define the mechanisms by which PTCy restores homeostasis of the B cell lineage and reestablishes immune tolerance.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Linfopoyesis , Ciclofosfamida/farmacología , Células Madre Hematopoyéticas
19.
Elife ; 122023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912771

RESUMEN

Acute lymphoblastic and myeloblastic leukemias (ALL and AML) have been known to modify the bone marrow microenvironment and disrupt non-malignant hematopoiesis. However, the molecular mechanisms driving these alterations remain poorly defined. Using mouse models of ALL and AML, here we show that leukemic cells turn off lymphopoiesis and erythropoiesis shortly after colonizing the bone marrow. ALL and AML cells express lymphotoxin α1ß2 and activate lymphotoxin beta receptor (LTßR) signaling in mesenchymal stem cells (MSCs), which turns off IL7 production and prevents non-malignant lymphopoiesis. We show that the DNA damage response pathway and CXCR4 signaling promote lymphotoxin α1ß2 expression in leukemic cells. Genetic or pharmacological disruption of LTßR signaling in MSCs restores lymphopoiesis but not erythropoiesis, reduces leukemic cell growth, and significantly extends the survival of transplant recipients. Similarly, CXCR4 blocking also prevents leukemia-induced IL7 downregulation and inhibits leukemia growth. These studies demonstrate that acute leukemias exploit physiological mechanisms governing hematopoietic output as a strategy for gaining competitive advantage.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Animales , Ratones , Leucemia Mieloide Aguda/patología , Receptor beta de Linfotoxina/metabolismo , Interleucina-7/metabolismo , Linfopoyesis , Heterotrímero de Linfotoxina alfa1 y beta2/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
20.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769284

RESUMEN

The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.


Asunto(s)
Proteínas Hedgehog , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Proteínas Hedgehog/metabolismo , Linfopoyesis , Linfocitos T/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...