Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.127
Filtrar
1.
J Diabetes Res ; 2024: 5511454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736904

RESUMEN

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo , Tejido Adiposo Blanco , Dieta Alta en Grasa , Lipasa , Ratones Endogámicos C57BL , Animales , Ratones , Masculino , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipasa/metabolismo , Lipasa/genética , Obesidad/metabolismo , Lipólisis , Proteína Desacopladora 1/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Adipocitos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Lipogénesis , Aciltransferasas
2.
BMC Gastroenterol ; 24(1): 151, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698325

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS: This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in Sprague‒Dawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS: Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS: These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.


Asunto(s)
Apoptosis , Caspasa 3 , Lipopolisacáridos , Pancreatitis , Ratas Sprague-Dawley , Transducción de Señal , Ácido Taurocólico , Vitamina B 6 , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/inducido químicamente , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Ratas , Vitamina B 6/farmacología , Vitamina B 6/uso terapéutico , Masculino , Amilasas/sangre , Páncreas/patología , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Enfermedad Aguda , Proteína X Asociada a bcl-2/metabolismo , Lipasa/metabolismo , Lipasa/sangre , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
3.
Nutrients ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794679

RESUMEN

Metabolic syndrome is a global health problem. The use of functional foods as dietary components has been increasing. One food of interest is forest onion extract (FOE). This study aimed to investigate the effect of FOE on lipid and glucose metabolism in silico and in vitro using the 3T3-L1 mouse cell line. This was a comprehensive study that used a multi-modal computational network pharmacology analysis and molecular docking in silico and 3T3-L1 mouse cells in vitro. The phytochemical components of FOE were analyzed using untargeted ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Next, an in silico analysis was performed to determine FOE's bioactive compounds, and a toxicity analysis, protein target identification, network pharmacology, and molecular docking were carried out. FOE's effect on pancreatic lipase, α-glucosidase, and α-amylase inhibition was determined. Finally, we determined its effect on lipid accumulation and MAPK8, PPARG, HMGCR, CPT-1, and GLP1 expression in the preadipocyte 3T3-L1 mouse cell line. We showed that the potential metabolites targeted glucose and lipid metabolism in silico and that FOE inhibited pancreatic lipase levels, α-glucosidase, and α-amylase in vitro. Furthermore, FOE significantly (p < 0.05) inhibits targeted protein expressions of MAPK8, PPARG, HMGCR, CPT-1, and GLP-1 in vitro in 3T3-L1 mouse cells in a dose-dependent manner. FOE contains several metabolites that reduce pancreatic lipase levels, α-glucosidase, α-amylase, and targeted proteins associated with lipid and glucose metabolism in vitro.


Asunto(s)
Células 3T3-L1 , Metabolismo de los Lípidos , Síndrome Metabólico , Simulación del Acoplamiento Molecular , Cebollas , Fitoquímicos , Extractos Vegetales , Animales , Ratones , Síndrome Metabólico/tratamiento farmacológico , Cebollas/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Alimentos Funcionales , Lipasa/metabolismo , alfa-Amilasas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , Glucosa/metabolismo , Farmacología en Red , PPAR gamma/metabolismo , Espectrometría de Masas en Tándem , alfa-Glucosidasas/metabolismo , Simulación por Computador
4.
Nat Commun ; 15(1): 4410, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782979

RESUMEN

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Asunto(s)
Encéfalo , Proteínas de Drosophila , Drosophila melanogaster , Secreción de Insulina , Insulina , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Eje Cerebro-Intestino/fisiología , Lipasa/metabolismo , Lipasa/genética , Grasas de la Dieta/metabolismo , Glucosa/metabolismo , Cuerpo Adiposo/metabolismo , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genética , Masculino
5.
Food Chem ; 452: 139518, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713983

RESUMEN

In this study, the initial focus was on exploring the simultaneous impact of the oil-based food matrix and the polarity of rosmarinic acid derivatives on the antioxidant properties. Rosmarinic acid (RA) showed remarkable DPPH, FRAP, and ABTS radical scavenging activities, followed by methyl rosmarinate (MR) and ethyl rosmarinate (ER). In bulk oil, both conjugated dienes and p-AnV values reached a peak in the following order after 30 days: ER > MR > RA = BHT > control (no antioxidant). In the oil structured using monoacylglycerol, MR was more effective than ER and RA. For ethyl cellulose oleogel, emulsion, and gelled emulsion systems, RA was more effective. Additionally, after confirming the importance of the food matrix on the antioxidant activity of RA derivatives, the lipophilization of RA with ethanol was optimized as a model with Lipozyme 435 in hexane. A conversion yield of as high as 85.59% for ER was achieved, as quantified by HPLC-UV and confirmed by HPLC-DAD-ESI-qTOFMS.


Asunto(s)
Antioxidantes , Cinamatos , Depsidos , Ácido Rosmarínico , Depsidos/química , Depsidos/farmacología , Cinamatos/química , Cinamatos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Lipasa/química , Lipasa/metabolismo
6.
Nat Commun ; 15(1): 2869, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693144

RESUMEN

Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.


Asunto(s)
Aciltransferasas , Metabolismo Energético , Hepatocitos , Células Madre Pluripotentes Inducidas , Lipasa , Gotas Lipídicas , Cirrosis Hepática Alcohólica , Mitocondrias , Fosfolipasas A2 Calcio-Independiente , Humanos , Hepatocitos/metabolismo , Hepatocitos/patología , Células Madre Pluripotentes Inducidas/metabolismo , Gotas Lipídicas/metabolismo , Cirrosis Hepática Alcohólica/metabolismo , Cirrosis Hepática Alcohólica/patología , Cirrosis Hepática Alcohólica/genética , Lipasa/metabolismo , Lipasa/genética , Mitocondrias/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Femenino , Persona de Mediana Edad , Adulto , Estrés Oxidativo
7.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731503

RESUMEN

This current article was dedicated to the determination of the composition of phenolic compounds in extracts of four species of the genus Filipendula in order to establish a connection between the composition of polyphenols and biological effects. A chemical analysis revealed that the composition of the extracts studied depended both on the plant species and its part (leaf or flower) and on the extractant used. All four species of Filipendula were rich sources of phenolic compounds and contained hydrolyzable tannins, condensed tannins, phenolic acids and their derivatives, and flavonoids. The activities included data on those that are most important for creating functional foods with Filipendula plant components: the influence on blood coagulation measured by prothrombin and activated partial thromboplastin time, and on the activity of the digestive enzymes (pancreatic amylase and lipase). It was established that plant species, their parts, and extraction methods contribute meaningfully to biological activity. The most prominent result is as follows: the plant organ determines the selective inhibition of either amylase or lipase; thus, the anticoagulant activities of F. camtschatica and F. stepposa hold promise for health-promoting food formulations associated with general metabolic disorders.


Asunto(s)
Fenoles , Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Flavonoides/química , Flavonoides/farmacología , Flavonoides/análisis , Polifenoles/química , Polifenoles/farmacología , Polifenoles/análisis , Amilasas/antagonistas & inhibidores , Amilasas/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Humanos , Anticoagulantes/farmacología , Anticoagulantes/química , Hojas de la Planta/química
8.
Proc Natl Acad Sci U S A ; 121(19): e2403049121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38691587

RESUMEN

Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones. We used model proteins such as cytochrome c, laccase, and lipase to screen polymeric monomers and identify the most effective formulations, offering tunable charge and hydrophobic properties. Utilizing a dispersed phase imprinting approach, we employed magnetic beads modified with destabilized whole-protein as solid-phase templates. This process involves medium exchange facilitated by magnetic pulldowns, resulting in the synthesis of nanoMIPs featuring imprinted sites that effectively mimic chaperone cavities. These nanoMIPs were able to selectively refold denatured enzymes, achieving up to 86.7% recovery of their activity, significantly outperforming control samples. Mechanistic studies confirmed that nanoMIPs preferentially bind denatured rather than native enzymes, mimicking natural chaperone interactions. Multifaceted analyses support the functionality of nanoMIPs, which emulate the protective roles of chaperones by selectively engaging with denatured proteins to inhibit aggregation and facilitate refolding. This approach shows promise for widespread use in protein recovery within biocatalysis and biomedicine.


Asunto(s)
Chaperonas Moleculares , Nanopartículas , Polímeros , Desnaturalización Proteica , Nanopartículas/química , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Polímeros/química , Replegamiento Proteico , Pliegue de Proteína , Citocromos c/química , Citocromos c/metabolismo , Lacasa/química , Lacasa/metabolismo , Lipasa/química , Lipasa/metabolismo
9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731918

RESUMEN

In the age of information technology and the additional computational search tools and software available, this systematic review aimed to identify potential therapeutic targets for obesity, evaluated in silico and subsequently validated in vivo. The systematic review was initially guided by the research question "What therapeutic targets have been used in in silico analysis for the treatment of obesity?" and structured based on the acronym PECo (P, problem; E, exposure; Co, context). The systematic review protocol was formulated and registered in PROSPERO (CRD42022353808) in accordance with the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis Protocols (PRISMA-P), and the PRISMA was followed for the systematic review. The studies were selected according to the eligibility criteria, aligned with PECo, in the following databases: PubMed, ScienceDirect, Scopus, Web of Science, BVS, and EMBASE. The search strategy yielded 1142 articles, from which, based on the evaluation criteria, 12 were included in the systematic review. Only seven these articles allowed the identification of both in silico and in vivo reassessed therapeutic targets. Among these targets, five were exclusively experimental, one was exclusively theoretical, and one of the targets presented an experimental portion and a portion obtained by modeling. The predominant methodology used was molecular docking and the most studied target was Human Pancreatic Lipase (HPL) (n = 4). The lack of methodological details resulted in more than 50% of the papers being categorized with an "unclear risk of bias" across eight out of the eleven evaluated criteria. From the current systematic review, it seems evident that integrating in silico methodologies into studies of potential drug targets for the exploration of new therapeutic agents provides an important tool, given the ongoing challenges in controlling obesity.


Asunto(s)
Simulación por Computador , Obesidad , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Animales , Simulación del Acoplamiento Molecular , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico , Lipasa/metabolismo , Lipasa/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos
10.
Luminescence ; 39(5): e4765, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769927

RESUMEN

Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the ß-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.


Asunto(s)
Apigenina , Dicroismo Circular , Inhibidores Enzimáticos , Lipasa , Páncreas , Espectrometría de Fluorescencia , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Lipasa/química , Páncreas/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Apigenina/química , Apigenina/farmacología , Animales
11.
World J Microbiol Biotechnol ; 40(7): 206, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755297

RESUMEN

The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.


Asunto(s)
Células 3T3-L1 , Anticolesterolemiantes , Bacillus amyloliquefaciens , Dieta Alta en Grasa , Metabolismo de los Lípidos , Obesidad , ARN Ribosómico 16S , Ratas Wistar , Animales , Bacillus amyloliquefaciens/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Obesidad/microbiología , Ratas , Anticolesterolemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , ARN Ribosómico 16S/genética , Masculino , Modelos Animales de Enfermedad , Colesterol/metabolismo , Lipasa/metabolismo , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos
12.
Arch Microbiol ; 206(6): 264, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760519

RESUMEN

Fungi that inhabit fire-prone forests have to be adapted to harsh conditions and fungi affiliated to Ascomycota recovered from foliar litter samples were used for bioprospecting of molecules such as enzymes. Agni's fungi isolated from leaf litter, whose spores are capable of tolerating 110 oC were screened for thermostable lipases. One of the isolates, Leptosphaerulina trifolii A SMR-2011 exhibited high positive lipase activity than other isolates while screening through agar plate assay using Tween 20 in the medium. Maximum lipase activity (173.2 U/mg) of L. trifolii was observed at six days of inoculation and decreased thereafter. Among different oils used, the maximum lipase activity was attained by soybean oil (940.1 U/mg) followed by sunflower oil (917.1 U/mg), and then by mustard oil (884.8 U/mg), showing its specificity towards unsaturated fatty acids. Among the various organic nitrogen sources tested, soybean meal showed maximum lipase activity (985.4 U/mg). The partially purified enzyme was active over a wide range of pH from 8 to 12 with a pH optimum of 11.0 (728.1 U/mg) and a temperature range of 60-80 oC with an optimal temperature of 70 oC (779.1 U/mg). The results showed that lipase produced by L. trifolii is alkali stable and retained 85% of its activity at pH 11.0. This enzyme also showed high thermal stability retaining more than 50% of activity when incubated at 60 oC to 90 °C for 2 h. The ions Ca2+ and Mn2+ induced the lipase activity, while Cu2+ and Zn2+ ions lowered the activity compared to control. These results suggests that the leaf litter fungus L. trifolii serves as a potential source for the production of alkali-tolerant and thermostable lipase.


Asunto(s)
Ascomicetos , Estabilidad de Enzimas , Proteínas Fúngicas , Lipasa , Hojas de la Planta , Lipasa/metabolismo , Lipasa/genética , Hojas de la Planta/microbiología , Ascomicetos/enzimología , Ascomicetos/genética , Ascomicetos/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Temperatura , Especificidad por Sustrato , Calor , Proteínas Bacterianas
13.
Food Res Int ; 187: 114421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763671

RESUMEN

This study focused on the protein-stabilised triglyceride (TG)/water interfaces and oil-in-water emulsions, and explored the influence of varying molar ratios of bile salts (BSs) and phospholipids (PLs) on the intestinal lipolysis of TGs. The presence of these two major groups of biosurfactants delivered with human bile to the physiological environment of intestinal digestion was replicated in our experiments by using mixtures of individual BSs and PLs under in vitro small intestinal lipolysis conditions. Conducted initially, retrospective analysis of available scientific literature revealed that an average molar ratio of 9:4 for BSs to PLs (BS/PL) can be considered physiological in the postprandial adult human small intestine. Our experimental data showed that combining BSs and PLs synergistically enhanced interfacial activity, substantially reducing oil-water interfacial tension (IFT) during interfacial lipolysis experiments with pancreatic lipase, especially at the BS/PL-9:4 ratio. Other BS/PL molar proportions (BS/PL-6.5:6.5 and BS/PL-4:9) and an equimolar amount of BSs (BS-13) followed in IFT reduction efficiency, while using PLs alone as biosurfactants was the least efficient. In the following emulsion lipolysis experiments, BS/PL-9:4 outperformed other BS/PL mixtures in terms of enhancing the TG digestion extent. The degree of TG conversion and the desorption efficiency of interfacial material post-lipolysis correlated directly with the BS/PL ratio, decreasing as the PL proportion increased. In conclusion, this study highlights the crucial role of biliary PLs, alongside BSs, in replicating the physiological function of bile in intestinal lipolysis of emulsified TGs. Our results showed different contributions of PLs and BSs to lipolysis, strongly suggesting that any future in vitro studies aiming to simulate the human digestion conditions should take into account the impact of biliary PLs - not just BSs - to accurately mimic the physiological role of bile in intestinal lipolysis. This is particularly crucial given the fact that existing in vitro digestion protocols typically focus solely on applying specific concentrations and/or compositions of BSs to simulate the action of human bile during intestinal digestion, while overlooking the presence and concentration of biliary PLs under physiological gut conditions.


Asunto(s)
Ácidos y Sales Biliares , Digestión , Emulsiones , Lipólisis , Fosfolípidos , Triglicéridos , Emulsiones/química , Triglicéridos/metabolismo , Triglicéridos/química , Ácidos y Sales Biliares/metabolismo , Humanos , Fosfolípidos/química , Fosfolípidos/metabolismo , Digestión/fisiología , Lipasa/metabolismo , Intestino Delgado/metabolismo , Tensoactivos/química
14.
J Ethnopharmacol ; 331: 118351, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759763

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Momordica dioica Roxb. ex Willd. (M. dioica Roxb.) a nutritious and therapeutic property rich crop of Cucurbitaceae plant family. In various folklore medicine including Ayurveda fruits are used to treat several metabolic related disorders i.e., hyperglycemia, hyperlipidemia, diabetes, obesity etc. Furthermore, traditionally it is used to treat fever, inflammation, ulcer, skin diseases, haemorrhoids, hypertension and also employed as cardioprotective, hepatoprotective, analgesic, diuretic. AIM OF THE STUDY: This study focuses to explore the therapeutic potential of Momordica dioica Roxb. ex Willd. through in-vitro and in-silico approach for managing hyperlipidemia, hyperglycemia and related metabolic disorders along with its phytochemical profiling for quality evaluation and validation of traditional claim. MATERIALS AND METHODS: The present study was carried out on hydroalcohol extract of dried leaf and fruit of Momordica dioica. In-vitro antioxidant potential using DPPH and Nitric oxide scavenging assay along with in-vitro enzyme inhibitory potential against α-amylase, α-glucosidase, and pancreatic lipase enzymes was studied. The bioactive metabolites were identified from the most potent bioactive extract by analysis with LC-QTOF-MS and also studied their role to lessen the metabolic related disorder through in-silico approaches. RESULTS: The results confirmed that the fruit extract is more active to possess antioxidant and prominent enzyme inhibition potential compared to the leaf. Sixteen identified metabolites in M. dioica Roxb. fruits may be responsible for the therapeutic potential related to metabolic related disorder. The in-silico study of the identified phytomolecules against α-amylase, α-glucosidase and pancreatic lipase showed significant docking scores ranging from -9.8 to -5.5, -8.3 to -4.8 and -8.3 to -6 respectively. CONCLUSION: The current study illustrated that M. dioica Roxb., a traditionally important plant is potential against metabolic related disorders. Phytocomponents present in the fruit extract may be responsible for antioxidant as well as the enzymes' inhibitory potential. Thus, fruits of M. dioica Roxb. will be useful as alternative therapeutics for treatment of hyperlipidemia, hyperglycemia and related metabolic disorders.


Asunto(s)
Antioxidantes , Frutas , Simulación del Acoplamiento Molecular , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/química , Frutas/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/uso terapéutico , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Hojas de la Planta/química , alfa-Glucosidasas/metabolismo , Momordica/química , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología
15.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791124

RESUMEN

The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.


Asunto(s)
Biocatálisis , Enzimas Inmovilizadas , Proteínas Fúngicas , Lipasa , Sefarosa , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Sefarosa/química , Propionatos/química , Estereoisomerismo , Cinética , Esterificación , Temperatura , Estabilidad de Enzimas , Candida/enzimología , Solventes/química , Saccharomycetales
16.
Commun Biol ; 7(1): 572, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750133

RESUMEN

Long-chain fatty acids with antimicrobial properties are abundant on the skin and mucosal surfaces, where they are essential to restrict the proliferation of opportunistic pathogens such as Staphylococcus aureus. These antimicrobial fatty acids (AFAs) elicit bacterial adaptation strategies, which have yet to be fully elucidated. Characterizing the pervasive mechanisms used by S. aureus to resist AFAs could open new avenues to prevent pathogen colonization. Here, we identify the S. aureus lipase Lip2 as a novel resistance factor against AFAs. Lip2 detoxifies AFAs via esterification with cholesterol. This is reminiscent of the activity of the fatty acid-modifying enzyme (FAME), whose identity has remained elusive for over three decades. In vitro, Lip2-dependent AFA-detoxification was apparent during planktonic growth and biofilm formation. Our genomic analysis revealed that prophage-mediated inactivation of Lip2 was rare in blood, nose, and skin strains, suggesting a particularly important role of Lip2 for host - microbe interactions. In a mouse model of S. aureus skin colonization, bacteria were protected from sapienic acid (a human-specific AFA) in a cholesterol- and lipase-dependent manner. These results suggest Lip2 is the long-sought FAME that exquisitely manipulates environmental lipids to promote bacterial growth in otherwise inhospitable niches.


Asunto(s)
Ácidos Grasos , Lipasa , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Ácidos Grasos/metabolismo , Animales , Ratones , Lipasa/metabolismo , Lipasa/genética , Humanos , Infecciones Estafilocócicas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Femenino , Infecciones Cutáneas Estafilocócicas/microbiología
17.
Plant Cell Rep ; 43(6): 145, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761220

RESUMEN

KEY MESSAGE: We highlight the emerging role of the R. solani novel lipase domain effector AGLIP1 in suppressing pattern-triggered immunity and inducing plant cell death. The dynamic interplay between plants and Rhizoctonia solani constitutes a multifaceted struggle for survival and dominance. Within this complex dynamic, R. solani has evolved virulence mechanisms by secreting effectors that disrupt plants' first line of defense. A newly discovered effector, AGLIP1 in R. solani, plays a pivotal role in inducing plant cell death and subverting immune responses. AGLIP1, a protein containing a signal peptide and a lipase domain, involves complex formation in the intercellular space, followed by translocation to the plant cytoplasm, where it induces cell death (CD) and suppresses defense gene regulation. This study provides valuable insights into the intricate molecular interactions between plants and necrotrophic fungi, underscoring the imperative for further exploration in this field.


Asunto(s)
Lipasa , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/patogenicidad , Rhizoctonia/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Lipasa/metabolismo , Lipasa/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Muerte Celular , Inmunidad de la Planta/genética , Dominios Proteicos , Regulación de la Expresión Génica de las Plantas
18.
Molecules ; 29(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38792242

RESUMEN

The development of immobilized enzymes with high activity and stability is critical. Metal-organic frameworks (MOFs) have attracted much academic and industrial interest in the field of enzyme immobilization due to their unique properties. In this study, the amino-functionalized ionic liquid (NIL)-modified metal-organic framework (UiO-66-NH2) was prepared to immobilize Candida rugosa lipase (CRL), using dialdehyde starch (DAS) as the cross-linker. The results of the Fourier transform infrared (FT-IR) spectra, X-ray powder diffraction (XRD), and scanning electronic microscopy (SEM) confirmed that the NIL was successfully grafted to UiO-66-NH2. The CRL immobilized on NIL-modified UiO-66-NH2 (UiO-66-NH2-NIL-DAS@CRL) exhibited satisfactory activity recovery (79.33%), stability, reusability, and excellent organic solvent tolerance. The research results indicated that ionic liquid-modified UiO-66-NH2 had practical potential for application in enzyme immobilization.


Asunto(s)
Enzimas Inmovilizadas , Líquidos Iónicos , Lipasa , Estructuras Metalorgánicas , Lipasa/química , Lipasa/metabolismo , Líquidos Iónicos/química , Enzimas Inmovilizadas/química , Estructuras Metalorgánicas/química , Estabilidad de Enzimas , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Almidón/química , Almidón/análogos & derivados , Saccharomycetales/enzimología , Ácidos Ftálicos
19.
PLoS One ; 19(5): e0301966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776280

RESUMEN

The purpose of this study is to assess the bioactive peptides derived from the defatted lemon basil seeds hydrolysate (DLSH) for their ability to inhibit pancreatic lipase, decrease intracellular lipid accumulation, and reduce adipogenesis. Response surface methodology (RSM) was employed to optimize trypsin hydrolysis conditions for maximizing lipase inhibitory activity (LI). A hydrolysis time of 387.06 min, a temperature of 49.03°C, and an enzyme concentration of 1.61% w/v, resulted in the highest LI with an IC50 of 368.07 µg/mL. The ultrafiltration of the protein hydrolysate revealed that the fraction below 0.65kDa exhibited the greatest LI potential. Further purification via RP-HPLC identified the Gly-Arg-Ser-Pro-Asp-Thr-His-Ser-Gly (GRSPDTHSG) peptide in the HPLC fraction F1 using mass spectrometry. The peptide was synthesized and demonstrated LI with an IC50 of 0.255 mM through a non-competitive mechanism, with a constant (Ki) of 0.61 mM. Docking studies revealed its binding site with the pancreatic lipase-colipase complex. Additionally, GRSPDTHSG inhibited lipid accumulation in 3T3-L1 cells in a dose-dependent manner without cytotoxic effects. Western blot analysis indicated downregulation of PPAR-γ and SREBP-1c levels under GRSPDTHSG treatment, while an increase in AMPK-α phosphorylation was observed, suggesting a role in regulating cellular lipid metabolism. Overall, GRSPDTHSG demonstrates potential in attenuating lipid absorption and adipogenesis, suggesting a prospective application in functional foods and nutraceuticals.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Lipasa , Ocimum basilicum , PPAR gamma , Péptidos , Semillas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Ratones , Animales , Adipogénesis/efectos de los fármacos , Semillas/química , PPAR gamma/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Hidrólisis , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ocimum basilicum/química , Regulación hacia Abajo/efectos de los fármacos , Simulación del Acoplamiento Molecular
20.
SAR QSAR Environ Res ; 35(5): 411-432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38764437

RESUMEN

Phytochemicals are now increasingly exploited as remedial agents for the management of diabetes due to side effects attributable to commercial antidiabetic agents. This study investigated the structural and molecular mechanisms by which betulinic acid exhibits its antidiabetic effect via in vitro and computational techniques. In vitro antidiabetic potential was analysed via on α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin inhibitory assays. Its structural and molecular inhibitory mechanisms were investigated using Density Functional Theory (DFT) analysis, molecular docking and molecular dynamics (MD) simulation. Betulinic acid significantly (p < 0.05) inhibited α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin enzymes with IC50 of 70.02 µg/mL, 0.27 µg/mL, 1.70 µg/mL and 8.44 µg/mL, respectively. According to DFT studies, betulinic acid possesses similar reaction in gaseous phase and water due to close values observed for highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) and the chemical descriptors. The dipole moment indicates that betulinic acid has high polarity. Molecular electrostatic potential surface revealed the electrophilic and nucleophilic attack-prone atoms of the molecule. Molecular dynamic studies revealed a stable complex between betulinic acid and α-amylase, α-glucosidase, pancreatic lipase and α-chymotrypsin. The study elucidated the potent antidiabetic properties of betulinic acid by revealing its conformational inhibitory mode of action on enzymes involved in the onset of diabetes.


Asunto(s)
Ácido Betulínico , Quimotripsina , Hipoglucemiantes , Lipasa , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Triterpenos Pentacíclicos , alfa-Amilasas , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Lipasa/antagonistas & inhibidores , Lipasa/química , Lipasa/metabolismo , Quimotripsina/antagonistas & inhibidores , Quimotripsina/metabolismo , Triterpenos/química , Triterpenos/farmacología , Relación Estructura-Actividad Cuantitativa , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Diabetes Mellitus/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...