Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Biochem Soc Trans ; 52(1): 41-53, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38385554

RESUMEN

Despite the well-established functions of protein palmitoylation in fundamental cellular processes, the roles of this reversible post-translational lipid modification in cardiomyocyte biology remain poorly studied. Palmitoylation is catalyzed by a family of 23 zinc finger and Asp-His-His-Cys domain-containing S-acyltransferases (zDHHC enzymes) and removed by select thioesterases of the lysophospholipase and α/ß-hydroxylase domain (ABHD)-containing families of serine hydrolases. Recently, studies utilizing genetic manipulation of zDHHC enzymes in cardiomyocytes have begun to unveil essential functions for these enzymes in regulating cardiac development, homeostasis, and pathogenesis. Palmitoylation co-ordinates cardiac electrophysiology through direct modulation of ion channels and transporters to impact their trafficking or gating properties as well as indirectly through modification of regulators of channels, transporters, and calcium handling machinery. Not surprisingly, palmitoylation has roles in orchestrating the intracellular trafficking of proteins in cardiomyocytes, but also dynamically fine-tunes cardiomyocyte exocytosis and natriuretic peptide secretion. Palmitoylation has emerged as a potent regulator of intracellular signaling in cardiomyocytes, with recent studies uncovering palmitoylation-dependent regulation of small GTPases through direct modification and sarcolemmal targeting of the small GTPases themselves or by modification of regulators of the GTPase cycle. In addition to dynamic control of G protein signaling, cytosolic DNA is sensed and transduced into an inflammatory transcriptional output through palmitoylation-dependent activation of the cGAS-STING pathway, which has been targeted pharmacologically in preclinical models of heart disease. Further research is needed to fully understand the complex regulatory mechanisms governed by protein palmitoylation in cardiomyocytes and potential emerging therapeutic targets.


Asunto(s)
Lipoilación , Proteínas de Unión al GTP Monoméricas , Lipoilación/fisiología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Canales Iónicos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP Monoméricas/metabolismo , Aciltransferasas/metabolismo
2.
Nat Struct Mol Biol ; 31(3): 436-446, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182928

RESUMEN

Palmitoylation of cysteine residues at the C-terminal hypervariable regions in human HRAS and NRAS, which is necessary for RAS signaling, is catalyzed by the acyltransferase DHHC9 in complex with its accessory protein GCP16. The molecular basis for the acyltransferase activity and the regulation of DHHC9 by GCP16 is not clear. Here we report the cryo-electron microscopy structures of the human DHHC9-GCP16 complex and its yeast counterpart-the Erf2-Erf4 complex, demonstrating that GCP16 and Erf4 are not directly involved in the catalytic process but stabilize the architecture of DHHC9 and Erf2, respectively. We found that a phospholipid binding to an arginine-rich region of DHHC9 and palmitoylation on three residues (C24, C25 and C288) were essential for the catalytic activity of the DHHC9-GCP16 complex. Moreover, we showed that GCP16 also formed complexes with DHHC14 and DHHC18 to catalyze RAS palmitoylation. These findings provide insights into the regulatory mechanism of RAS palmitoyltransferases.


Asunto(s)
Lipoilación , Saccharomyces cerevisiae , Humanos , Lipoilación/fisiología , Microscopía por Crioelectrón , Saccharomyces cerevisiae/metabolismo , Aciltransferasas/metabolismo , Proteínas de la Membrana/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1866(3): 184264, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38104647

RESUMEN

S-palmitoylation is a dynamic lipid-based protein post-translational modification facilitated by a family of protein acyltransferases (PATs) commonly known as DHHC-PATs or DHHCs. It is the only lipid modification that is reversible, and this very fact uniquely qualifies it for therapeutic interventions through the development of DHHC inhibitors. Herein, we report that 4″-alkyl ether lipophilic derivatives of EGCG can effectively inhibit protein S-palmitoylation in vitro. With the help of metabolic labeling followed by copper(I)-catalyzed azide-alkyne cycloaddition Click reaction, we demonstrate that 4″-C14 EGCG and 4″-C16 EGCG markedly inhibited S-palmitoylation in various mammalian cells including HEK 293T, HeLa, and MCF-7 using both in gel fluorescence as well as confocal microscopy. Further, these EGCG derivatives were able to attenuate the S-palmitoylation to the basal level in DHHC3-overexpressed cells, suggesting that they are plausibly targeting DHHCs. Confocal microscopy data qualitatively reflected spatial and temporal distribution of S-palmitoylated proteins in different sub-cellular compartments and the inhibitory effects of 4″-C14 EGCG and 4″-C16 EGCG were clearly observed in the native cellular environment. Our findings were further substantiated by in silico analysis which revealed promising binding affinity and interactions of 4″-C14 EGCG and 4″-C16 EGCG with key amino acid residues present in the hydrophobic cleft of the DHHC20 enzyme. We also demonstrated the successful inhibition of S-palmitoylation of GAPDH by 4″-C16 EGCG. Taken together, our in vitro and in silico data strongly suggest that 4″-C14 EGCG and 4″-C16 EGCG can act as potent inhibitors for S-palmitoylation and can be employed as a complementary tool to investigate S-palmitoylation.


Asunto(s)
Éter , Lipoilación , Animales , Humanos , Lipoilación/fisiología , Proteínas , Éteres de Etila , Éteres , , Polifenoles , Lípidos , Mamíferos
4.
J Transl Med ; 21(1): 826, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978524

RESUMEN

BACKGROUND: Protein palmitoylation, which is catalyzed by palmitoyl-transferase and de-palmitoyl-transferase, plays a crucial role in various biological processes. However, the landscape and dynamics of protein palmitoylation in human cancers are not well understood. METHODS: We utilized 23 palmitoyl-acyltransferases and seven de-palmitoyl-acyltransferases as palmitoylation-related genes for protein palmitoylation analysis. Multiple publicly available datasets were employed to conduct pan-cancer analysis, examining the transcriptome, genomic alterations, clinical outcomes, and correlation with c-Myc (Myc) for palmitoylation-related genes. Real-time quantitative PCR and immunoblotting were performed to assess the expression of palmitoylation-related genes and global protein palmitoylation levels in cancer cells treated with Myc depletion or small molecule inhibitors. Protein docking and drug sensitivity analyses were employed to predict small molecules that target palmitoylation-related genes. RESULTS: We identified associations between palmitoylation and cancer subtype, stage, and patient survival. We discovered that abnormal DNA methylation and oncogenic Myc-driven transcriptional regulation synergistically contribute to the dysregulation of palmitoylation-related genes. This dysregulation of palmitoylation was closely correlated with immune infiltration in the tumor microenvironment and the response to immunotherapy. Importantly, dysregulated palmitoylation was found to modulate canonical cancer-related pathways, thus influencing tumorigenesis. To support our findings, we performed a proof-of-concept experiment showing that depletion of Myc led to reduced expression of most palmitoylation-related genes, resulting in decreased global protein palmitoylation levels. Through mass spectrometry and enrichment analyses, we also identified palmitoyl-acyltransferases ZDHHC7 and ZDHHC23 as significant contributors to mTOR signaling, DNA repair, and immune pathways, highlighting their potential roles in tumorigenesis. Additionally, our study explored the potential of three small molecular (BI-2531, etoposide, and piperlongumine) to modulate palmitoylation by targeting the expression or activity of palmitoylation-related genes or enzymes. CONCLUSIONS: Overall, our findings underscore the critical role of dysregulated palmitoylation in tumorigenesis and the response to immunotherapy, mediated through classical cancer-related pathways and immune cell infiltration. Additionally, we propose that the aforementioned three small molecule hold promise as potential therapeutics for modulating palmitoylation, thereby offering novel avenues for cancer therapy.


Asunto(s)
Lipoilación , Neoplasias , Humanos , Lipoilación/fisiología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Carcinogénesis/genética , Neoplasias/genética , Neoplasias/metabolismo , Transformación Celular Neoplásica , Microambiente Tumoral
5.
Biochem Pharmacol ; 215: 115695, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481134

RESUMEN

Post-translational modifications are an important mechanism in the regulation of protein expression, function, and degradation. Well-known post-translational modifications are phosphorylation, glycosylation, and ubiquitination. However, lipid modifications, including myristoylation, prenylation, and palmitoylation, are poorly studied. Since the early 2000s, researchers have become more interested in lipid modifications, especially palmitoylation. The number of articles in PubMed increased from about 350 between 2000 and 2005 to more than 600 annually during the past ten years. S-palmitoylation, where the 16-carbon saturated (C16:0) palmitic acid is added to free cysteine residues of proteins, is a reversible protein modification that can affect the expression, membrane localization, and function of the modified proteins. Various diseases like Huntington's and Alzheimer's disease have been linked to changes in protein palmitoylation. In humans, the addition of palmitic acid is mediated by 23 palmitoyl acyltransferases, also called DHHC proteins. The modification can be reversed by a few thioesterases or hydrolases. Numerous soluble and membrane-attached proteins are known to be palmitoylated, but among the approximately 400 solute carriers that are classified in 66 families, only 15 found in 8 families have so far been documented to be palmitoylated. Among the best-characterized transporters are the glucose transporters GLUT1 (SLC2A1) and GLUT4 (SLC2A4), the three monoamine transporters norepinephrine transporter (NET; SLC6A2), dopamine transporter (DAT; SLC6A3), and serotonin transporter (SERT; SLC6A4), and the sodium-calcium exchanger NCX1 (SLC8A1). While there is evidence from recent proteomics experiments that numerous solute carriers are palmitoylated, no details beyond the 15 transporters covered in this review are available.


Asunto(s)
Lipoilación , Ácido Palmítico , Humanos , Ácido Palmítico/metabolismo , Lipoilación/fisiología , Procesamiento Proteico-Postraduccional , Fosforilación , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
6.
Eur J Immunol ; 53(10): e2350476, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369620

RESUMEN

S-palmitoylation is a reversible posttranslational lipid modification that targets cysteine residues of proteins and plays critical roles in regulating the biological processes of substrate proteins. The innate immune system serves as the first line of defense against pathogenic invaders and participates in the maintenance of tissue homeostasis. Emerging studies have uncovered the functions of S-palmitoylation in modulating innate immune responses. In this review, we focus on the reversible palmitoylation of innate immune signaling proteins, with particular emphasis on its roles in the regulation of protein localization, protein stability, and protein-protein interactions. We also highlight the potential and challenge of developing therapies that target S-palmitoylation or de-palmitoylation for various diseases.


Asunto(s)
Lipoilación , Transducción de Señal , Lipoilación/fisiología , Inmunidad Innata , Procesamiento Proteico-Postraduccional
7.
Cells ; 12(3)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36766729

RESUMEN

Protein lipidation is a common post-translational modification of proteins that plays an important role in human physiology and pathology. One form of protein lipidation, S-palmitoylation, involves the addition of a 16-carbon fatty acid (palmitate) onto proteins. This reversible modification may affect the regulation of protein trafficking and stability in membranes. From multiple recent experimental studies, a picture emerges whereby protein S-palmitoylation is a ubiquitous yet discrete molecular switch enabling the expansion of protein functions and subcellular localization in minutes to hours. Neural tissue is particularly rich in proteins that are regulated by S-palmitoylation. A surge of novel methods of detection of protein lipidation at high resolution allowed us to get better insights into the roles of protein palmitoylation in brain physiology and pathophysiology. In this review, we specifically discuss experimental work devoted to understanding the impact of protein palmitoylation on functional changes in the excitatory and inhibitory synapses associated with neuronal activity and neuronal plasticity. The accumulated evidence also implies a crucial role of S-palmitoylation in learning and memory, and brain disorders associated with impaired cognitive functions.


Asunto(s)
Lipoilación , Proteínas , Humanos , Lipoilación/fisiología , Proteínas/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Plasticidad Neuronal/fisiología
8.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36650056

RESUMEN

Posttranslational protein S-palmitoylation regulates the localization and function of its target proteins involved in diverse cellular processes including meiosis. In this study, we demonstrate that S-palmitoylation mediated by Erf2-Erf4 and Akr1 palmitoylacyltransferases is required at multiple meiotic stages in the fission yeast Schizosaccharomyces pombe We find that S-palmitoylation by Erf2-Erf4 is required for Ras1 localization at the cell periphery to enrich at the cell conjugation site for mating pheromone response. In the absence of Erf2 or Erf4, mutant cells are sterile. A role of Akr1 S-palmitoylating the nuclear fusion protein Tht1 to function in karyogamy is identified. We demonstrate that S-palmitoylation stabilizes and localizes Tht1 to ER, interacting with Sey1 ER fusion GTPase for proper meiotic nuclear fusion. In akr1, tht1, or sey1 mutant, meiotic cells, haploid nuclei are unfused with subsequent chromosome segregation defects. Erf2-Erf4 has an additional substrate of the spore coat protein Isp3. In the absence of Erf2, Isp3 is mislocalized from the spore coat. Together, these results highlight the versatility of the cellular processes in which protein S-palmitoylation participates.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Lipoilación/fisiología , Meiosis , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Microbiol Spectr ; 11(1): e0386122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36533963

RESUMEN

Protein palmitoylation, one of posttranslational modifications, is catalyzed by a group of palmitoyl transferases (PATs) and plays critical roles in the regulation of protein functions. However, little is known about the function and mechanism of PATs in plant pathogenic fungi. The present study reports the function and molecular mechanism of FonPATs in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt. The Fon genome contains six FonPAT genes with distinct functions in vegetative growth, conidiation and conidial morphology, and stress response. FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for Fon virulence on watermelon mainly through regulating in planta fungal growth within host plants. Comparative proteomics analysis identified a set of proteins that were palmitoylated by FonPAT2, and some of them are previously reported pathogenicity-related proteins in fungi. The FonAP-2 complex core subunits FonAP-2α, FonAP-2ß, and FonAP-2µ were palmitoylated by FonPAT2 in vivo. FonPAT2-catalyzed palmitoylation contributed to the stability and interaction ability of the core subunits to ensure the formation of the FonAP-2 complex, which is essential for vegetative growth, asexual reproduction, cell wall integrity, and virulence in Fon. These findings demonstrate that FonPAT1, FonPAT2, and FonPAT4 play important roles in Fon virulence and that FonPAT2-catalyzed palmitoylation of the FonAP-2 complex is critical to Fon virulence, providing novel insights into the importance of protein palmitoylation in the virulence of plant fungal pathogens. IMPORTANCE Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon Fusarium wilt, is one of the most serious threats for the sustainable development of the watermelon industry worldwide. However, little is known about the underlying molecular mechanism of pathogenicity in Fon. Here, we found that the palmitoyl transferase (FonPAT) genes play distinct and diverse roles in basic biological processes and stress response and demonstrated that FonPAT1, FonPAT2, and FonPAT4 have PAT activity and are required for virulence in Fon. We also found that FonPAT2 palmitoylates the core subunits of the FonAP-2 complex to maintain the stability and the formation of the FonAP-2 complex, which is essential for basic biological processes, stress response, and virulence in Fon. Our study provides new insights into the understanding of the molecular mechanism involved in Fon virulence and will be helpful in the development of novel strategies for disease management.


Asunto(s)
Citrullus , Fusarium , Lipoilación , Estrés Fisiológico , Catálisis , Citrullus/microbiología , Fusarium/metabolismo , Fusarium/fisiología , Lipoilación/fisiología , Enfermedades de las Plantas/microbiología , Virulencia , Complejo 2 de Proteína Adaptadora/química , Complejo 2 de Proteína Adaptadora/metabolismo , Estrés Fisiológico/fisiología
10.
Biol Trace Elem Res ; 201(3): 1398-1406, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35415819

RESUMEN

To study the effect of the palmitoylation/depalmitoylation cycle on the inhibition of ɑ-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptor trafficking induced by aluminum (Al) in vitro. Five different doses of aluminum-maltolate complex (Al(mal)3) were administered to rat adrenal pheochromocytoma cells (PC12 cells) for three exposure time durations, and the cell activity was measured by the CCK-8 method to obtain the optimal doses and time of Al(mal)3 exposure. Following Al(mal)3 exposure, membrane protein (M) and total protein (T) were extracted. The expression levels of GluR1 and GluR2, which are AMPA receptor subunits, were determined by Western blot analysis, and the levels with respect to membrane and total protein were calculated. The ratio of membrane protein to total protein (M/T) was used to measure the rate of AMPA receptor transport. The palmitoylation levels of GluR1 and GluR2 were detected by immunoprecipitation-acyl-biotin exchange (IP-ABE) assay. Western blotting was performed to detect the protein expression of acyltransferase (zDHHC3) and palmitoyl protein thioesterase 1 (PPT1). Following depalmitoylation inhibitor (palmostatin B) treatment of PC12 cells, the effect of aluminum on AMPA receptor trafficking was detected through the aforementioned methods. With increasing Al(mal)3 doses administered to PC12 cells, a gradual decrease in the trafficking of AMPA receptor subunits GluR1 and GluR2 and in the palmitoylation levels of GluR1 and GluR2 was found; the expression of zDHHC3 was decreased; and the expression of PPT1 was increased. In addition, palmostatin B reduced the effects of Al(mal)3 on AMPA receptor palmitoylation and trafficking. Al can inhibit the trafficking of the AMPA receptor in vitro, and a decrease in the palmitoylation level of the AMPA receptor may be a mechanism of Al action. The palmitoylation/depalmitoylation cycle of the AMPA receptor is influenced by Al through the actions of zDHHC3 and PPT1.


Asunto(s)
Aluminio , Receptores AMPA , Ratas , Animales , Receptores AMPA/metabolismo , Aluminio/farmacología , Aluminio/metabolismo , Lipoilación/fisiología , Proteínas de la Membrana/metabolismo
11.
PLoS One ; 17(8): e0261543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35960718

RESUMEN

Protein S-palmitoylation, the addition of a long-chain fatty acid to target proteins, is among the most frequent reversible protein modifications in Metazoa, affecting subcellular protein localization, trafficking and protein-protein interactions. S-palmitoylated proteins are abundant in the neuronal system and are associated with neuronal diseases and cancer. Despite the importance of this post-translational modification, it has not been thoroughly studied in the model organism Drosophila melanogaster. Here we present the palmitoylome of Drosophila S2R+ cells, comprising 198 proteins, an estimated 3.5% of expressed genes in these cells. Comparison of orthologs between mammals and Drosophila suggests that S-palmitoylated proteins are more conserved between these distant phyla than non-S-palmitoylated proteins. To identify putative client proteins and interaction partners of the DHHC family of protein acyl-transferases (PATs) we established DHHC-BioID, a proximity biotinylation-based method. In S2R+ cells, ectopic expression of the DHHC-PAT dHip14-BioID in combination with Snap24 or an interaction-deficient Snap24-mutant as a negative control, resulted in biotinylation of Snap24 but not the Snap24-mutant. DHHC-BioID in S2R+ cells using 10 different DHHC-PATs as bait identified 520 putative DHHC-PAT interaction partners of which 48 were S-palmitoylated and are therefore putative DHHC-PAT client proteins. Comparison of putative client protein/DHHC-PAT combinations indicates that CG8314, CG5196, CG5880 and Patsas have a preference for transmembrane proteins, while S-palmitoylated proteins with the Hip14-interaction motif are most enriched by DHHC-BioID variants of approximated and dHip14. Finally, we show that BioID is active in larval and adult Drosophila and that dHip14-BioID rescues dHip14 mutant flies, indicating that DHHC-BioID is non-toxic. In summary we provide the first systematic analysis of a Drosophila palmitoylome. We show that DHHC-BioID is sensitive and specific enough to identify DHHC-PAT client proteins and provide DHHC-PAT assignment for ca. 25% of the S2R+ cell palmitoylome, providing a valuable resource. In addition, we establish DHHC-BioID as a useful concept for the identification of tissue-specific DHHC-PAT interactomes in Drosophila.


Asunto(s)
Aciltransferasas , Drosophila melanogaster , Aciltransferasas/genética , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Lipoilación/fisiología , Mamíferos/metabolismo , Procesamiento Proteico-Postraduccional
12.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012639

RESUMEN

Protein lipidation is one of the most common forms of posttranslational modification. This alteration couples different lipids, such as fatty acids, phospho- and glycolipids and sterols, to cellular proteins. Lipidation regulates different aspects of the protein's physiology, including structure, stability and affinity for cellular membranes and protein-protein interactions. In this scenario, palmitoylation is the addition of long saturated fatty acid chains to amino acid residues of the proteins. The enzymes responsible for this modification are acyltransferases and thioesterases, which control the protein's behavior by performing a series of acylation and deacylation cycles. These enzymes target a broad repertoire of substrates, including ion channels. Thus, protein palmitoylation exhibits a pleiotropic role by differential modulation of the trafficking, spatial organization and electrophysiological properties of ion channels. Considering voltage-gated ion channels (VGICs), dysregulation of lipidation of both the channels and the associated ancillary subunits correlates with the development of various diseases, such as cancer or mental disorders. Therefore, a major role for protein palmitoylation is currently emerging, affecting not only the dynamism and differential regulation of a moiety of cellular proteins but also linking to human health. Therefore, palmitoylation of VGIC, as well as related enzymes, constitutes a novel pharmacological tool for drug development to target related pathologies.


Asunto(s)
Canales Iónicos , Lipoilación , Acilación , Ácidos Grasos , Humanos , Canales Iónicos/fisiología , Lipoilación/fisiología , Procesamiento Proteico-Postraduccional
13.
J Biol Chem ; 298(10): 102422, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030053

RESUMEN

Sonic hedgehog (Shh) signaling is a key component of embryonic development and is a driving force in several cancers. Hedgehog acyltransferase (Hhat), a member of the membrane-bound O-acyltransferase family of enzymes, catalyzes the attachment of palmitate to the N-terminal cysteine of Shh, a posttranslation modification critical for Shh signaling. The activity of Hhat has been assayed in cells and in vitro, and cryo-EM structures of Hhat have been reported, yet several unanswered questions remain regarding the enzyme's reaction mechanism, substrate specificity, and the impact of the latter on Shh signaling. Here, we present an in vitro acylation assay with purified Hhat that directly monitors attachment of a fluorescently tagged fatty acyl chain to Shh. Our kinetic analyses revealed that the reaction catalyzed by Hhat proceeds through a random sequential mechanism. We also determined that Hhat can utilize multiple fatty acyl-CoA substrates for fatty acid transfer to Shh, with comparable affinities and turnover rates for myristoyl-CoA, palmitoyl-CoA, palmitoleoyl-CoA, and oleoyl-CoA. Furthermore, we investigated the functional consequence of differential fatty acylation of Shh in a luciferase-based Shh reporter system. We found that the potency of the signaling response in cells was higher for Shh acylated with saturated fatty acids compared to monounsaturated fatty acids. These findings demonstrate that Hhat can attach fatty acids other than palmitate to Shh and suggest that heterogeneous fatty acylation has the potential to impact Shh signaling in the developing embryo and/or cancer cells.


Asunto(s)
Proteínas Hedgehog , Lipoilación , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Lipoilación/fisiología , Aciltransferasas/metabolismo , Palmitatos , Coenzima A
14.
Prog Neurobiol ; 218: 102349, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030931

RESUMEN

Many psychiatric disorders accompany deficits in cognitive functions and synaptic plasticity, and abnormal lipid modifications of neuronal proteins are associated with their pathophysiology. Lipid modifications, including palmitoylation and myristoylation, play crucial roles in the subcellular localization and trafficking of proteins. Cyclin Y (CCNY), enriched in the postsynaptic compartment, acts as an inhibitory modulator of functional and structural long-term potentiation (LTP) in the hippocampal neurons. However, cellular and molecular mechanisms underlying CCNY-mediated inhibitory functions in the synapse remain largely unknown. Here, we report that myristoylation located CCNY to the trans-Golgi network (TGN), and subsequent palmitoylation directed the myristoylated CCNY from the TGN to the synaptic cell surface. This myristoylation-dependent palmitoylation of CCNY was required for the inhibitory role of CCNY in excitatory synaptic transmission, activity-induced dynamics of AMPA receptors and PSD-95, LTP, and spatial learning. Furthermore, spatial learning significantly reduced palmitoyl- and myristoyl-CCNY levels, indicating that spatial learning lowers the synaptic abundance of CCNY. Our findings provide mechanistic insight into how CCNY is clustered adjacent to postsynaptic sites where it could play its inhibitory roles in synaptic plasticity and spatial learning.


Asunto(s)
Potenciación a Largo Plazo , Receptores AMPA , Ciclinas/metabolismo , Hipocampo/fisiología , Humanos , Lípidos , Lipoilación/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Aprendizaje Espacial , Sinapsis/metabolismo
15.
Reprod Sci ; 29(8): 2299-2309, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35477839

RESUMEN

The reversible lipid modification, S-palmitoylation, plays regulatory roles in various physiological processes, e.g., neuronal plasticity and organs development; however, the roles of palmitoylation engaged in testis have yet remained unexplored. Here, we used combined approaches of palm-proteomics, informatics and quantitative PCR to systematically analyze the expression of key enzymes related to protein palmitoylation and identify proteome-wide palmitoylated proteins during the processes of spermatogenesis. Specifically, different timepoints were chosen to collect samples to cover the initiation of meiosis (postnatal, P12), the appearance of the first batch of sperm (P36) and fully fertile status (P60) in mouse. Interestingly, our results showed that only a few enzymes related to protein palmitoylation are highly expressed at later stages (from P36 to P60), rather than in the earlier phase of testis development (P12). To focus on the molecular event of spermatogenesis, we examined the palm-proteomics of testes in P36 and P60 mouse. In total, we identified 4,883 palmitoylated proteins, among which 3,310 proteins match the published palmitoyl-proteome datasets and 1,573 proteins were firstly identified as palmitoylated proteins in this study. Informatics analysis suggested that palmitoylation is involved in events of protein transport, metabolic process, protein folding and cell adhesion, etc. Importantly, further analysis revealed that several networks of palmitoylated proteins are closely associated with sperm morphology and motility. Together, our study laid a solid ground for understanding the roles of protein palmitoylation in spermatogenesis for future studies.


Asunto(s)
Proteoma , Testículo , Animales , Lipoilación/fisiología , Masculino , Ratones , Proteoma/metabolismo , Proteómica/métodos , Semen/metabolismo , Testículo/metabolismo
16.
Cell Calcium ; 104: 102567, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35231700

RESUMEN

The cardiac Na+/Ca2+ Exchanger (NCX1) controls Ca2+ extrusion from the cytosol by mediating bidirectional exchange of Na+ for Ca2+, and therefore controls cardiac relaxation. Insulin regulates Ca2+ handling in cardiac tissue through NCX1, however how insulin changes NCX1 activity is poorly understood. Palmitoylation is the only post-translational modification identified to alter NCX1 activity. Here we show that insulin triggers local structural re-arrangements within existing NCX1 dimers by inducing their palmitoylation, thus tunes NCX1 inactivation through a zDHHC5-dependent mechanism in multiple cell types. By activating fatty acid and fatty acyl CoA synthesis insulin promotes palmitoylation of the zDHHC5 active site, which leads to enhanced NCX1 palmitoylation. Our findings represent a new mechanism to regulate the palmitoylation of numerous zDHHC5 substrates.


Asunto(s)
Calcio , Lipoilación , Calcio/metabolismo , Corazón , Insulina/metabolismo , Insulina/farmacología , Lipoilación/fisiología , Sodio/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
17.
Cells ; 11(3)2022 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-35159374

RESUMEN

Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging evidence indicates that S-palmitoylation, a reversible post-translational modification that involves the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of macrophage physiology in health and disease. By controlling protein activity, stability, trafficking, and protein-protein interactions, studies identified a key role of S-palmitoylation in endocytosis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth overview of the impact of S-palmitoylation on these cellular processes in macrophages in health and disease. Findings discussed in this review highlight the therapeutic potential of modulators of S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders to metabolic conditions.


Asunto(s)
Lipoilación , Palmitatos , Lipoilación/fisiología , Macrófagos/metabolismo , Palmitatos/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal
18.
J Gen Physiol ; 154(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35201266

RESUMEN

ß-Secretase 1 (ß-site amyloid precursor protein [APP]-cleaving enzyme 1, BACE1) plays a crucial role in the amyloidogenesis of Alzheimer's disease (AD). BACE1 was also discovered to act like an auxiliary subunit to modulate neuronal KCNQ2/3 channels independently of its proteolytic function. BACE1 is palmitoylated at its carboxyl-terminal region, which brings BACE1 to ordered, cholesterol-rich membrane microdomains (lipid rafts). However, the physiological consequences of this specific localization of BACE1 remain elusive. Using spectral Förster resonance energy transfer (FRET), BACE1 and KCNQ2/3 channels were confirmed to form a signaling complex, a phenomenon that was relatively independent of the palmitoylation of BACE1. Nevertheless, palmitoylation of BACE1 was required for recruitment of KCNQ2/3 channels to lipid-raft domains. Two fluorescent probes, designated L10 and S15, were used to label lipid-raft and non-raft domains of the plasma membrane, respectively. Coexpressing BACE1 substantially elevated FRET between L10 and KCNQ2/3, whereas the BACE1-4C/A quadruple mutation failed to produce this effect. In contrast, BACE1 had no significant effect on FRET between S15 probes and KCNQ2/3 channels. A reduction of BACE1-dependent FRET between raft-targeting L10 probes and KCNQ2/3 channels by applying the cholesterol-extracting reagent methyl-ß-cyclodextrin (MßCD), raft-disrupting general anesthetics, or pharmacological inhibitors of palmitoylation, all supported the hypothesis of the palmitoylation-dependent and raft-specific localization of KCNQ2/3 channels. Furthermore, mutating the four carboxyl-terminal cysteines (4C/A) of BACE1 abolished the BACE1-dependent increase of FRET between KCNQ2/3 and the lipid raft-specific protein caveolin 1. Taking these data collectively, we propose that the AD-related protein BACE1 underlies the localization of a neuronal potassium channel.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Colesterol , Lipoilación/fisiología , Microdominios de Membrana/metabolismo
19.
J Med Virol ; 94(1): 342-348, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528721

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The S protein is the key viral protein for associating with ACE2, the receptor for SARS-CoV-2. There are many kinds of posttranslational modifications in S protein. However, the detailed mechanism of palmitoylation of SARS-CoV-2 S remains to be elucidated. In our current study, we characterized the palmitoylation of SARS-CoV-2 S. Both the C15 and cytoplasmic tail of SARS-CoV-2 S were palmitoylated. Fatty acid synthase inhibitor C75 and zinc finger DHHC domain-containing palmitoyltransferase (ZDHHC) inhibitor 2-BP reduced the palmitoylation of S. Interestingly, palmitoylation of SARS-CoV-2 S was not required for plasma membrane targeting of S but was critical for S-mediated syncytia formation and SARS-CoV-2 pseudovirus particle entry. Overexpression of ZDHHC2, ZDHHC3, ZDHHC4, ZDHHC5, ZDHHC8, ZDHHC9, ZDHHC11, ZDHHC14, ZDHHC16, ZDHHC19, and ZDHHC20 promoted the palmitoylation of S. Furthermore, those ZDHHCs were identified to associate with SARS-CoV-2 S. Our study not only reveals the mechanism of S palmitoylation but also will shed important light into the role of S palmitoylation in syncytia formation and virus entry.


Asunto(s)
Membrana Celular/metabolismo , Células Gigantes/metabolismo , Lipoilación/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Aciltransferasas/antagonistas & inhibidores , COVID-19/patología , Línea Celular , Células HEK293 , Humanos , Procesamiento Proteico-Postraduccional/fisiología
20.
Nat Commun ; 12(1): 6064, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663815

RESUMEN

Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAß1. We show that unlike canonical cytosolic calcineurin, CNAß1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAß1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAß1.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Membrana Celular/metabolismo , Lipoilación/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcineurina/metabolismo , Línea Celular , Citoplasma/metabolismo , Aparato de Golgi/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...